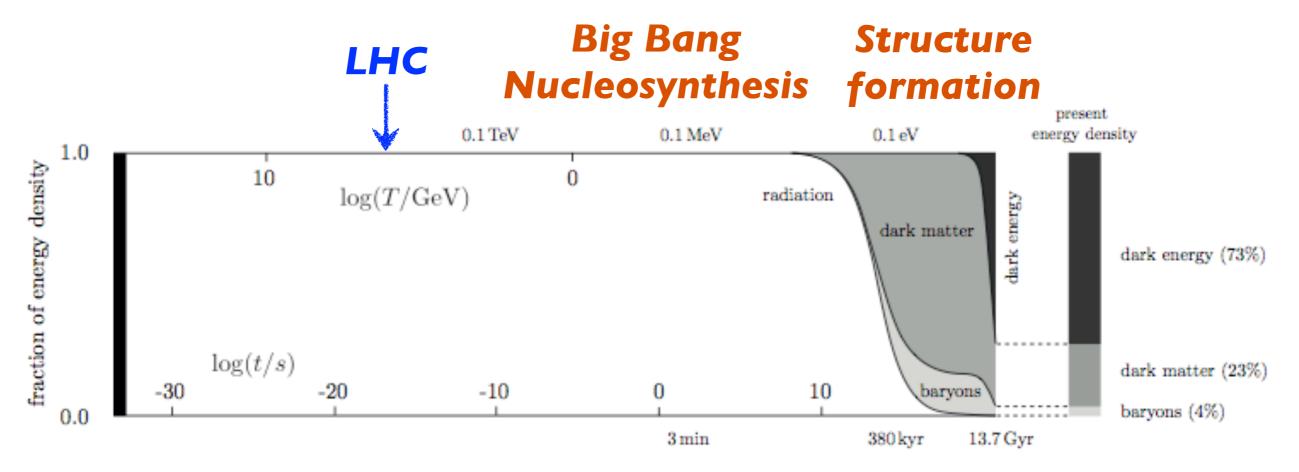
Sébastien Renaux-Petel

LPTHE - ILP

GDR Terascale, Montpellier.

May 14, 2013

Cosmic history



Inflation

Cosmic Microwave Background

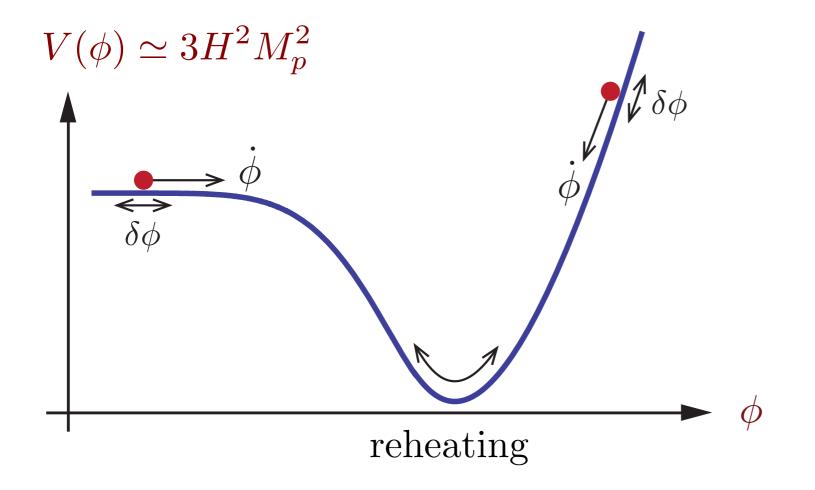
Inflation: a phase of accelerated expansion before the radiation era, that:

- solves the problems of the Hot Big Bang model
- generates the seeds of the large scale structures.

Slow-roll single field inflation

• Simplest set-up for prolonged phase of accelerated expansion: scalar field with flat potential in Planck units

$$S = \int d^4x \sqrt{-g} \left[\frac{M_P^2}{2} R - \frac{1}{2} g^{\mu\nu} \partial_{\mu} \phi \, \partial_{\nu} \phi - V(\phi) \right]$$



$$\epsilon \equiv \frac{M_{
m pl}^2}{2} \left(\frac{V_{,\phi}}{V}\right)^2 \ll 1$$
 $\eta \equiv M_{
m pl}^2 \frac{V_{,\phi\phi}}{V} \ll 1$

Inflation generates

scalar (density) fluctuations

$$P_{\zeta} \sim \frac{H^4}{M_{\rm pl}^2 \dot{H}}$$

tensor fluctuations (Gravitational Waves)

$$P_h \sim \frac{H^2}{M_{\rm pl}^2}$$

power spectra (2-point correlations) measure:

$$H(t) \equiv \frac{\dot{a}(t)}{a(t)}$$

Power spectra measurements constrain

Scale-dependence of scalar fluctuations

Tensor-to-Scalar ratio

$$n_s - 1 \equiv \frac{\mathrm{d} \ln P_{\zeta}}{\mathrm{d} \ln k} \propto \frac{\mathrm{d}}{\mathrm{d} t} \left(\frac{H^4}{M_{\mathrm{Pl}}^2 \dot{H}} \right)$$

$$r \equiv \frac{P_h}{P_{\zeta}}$$

Planck constraints

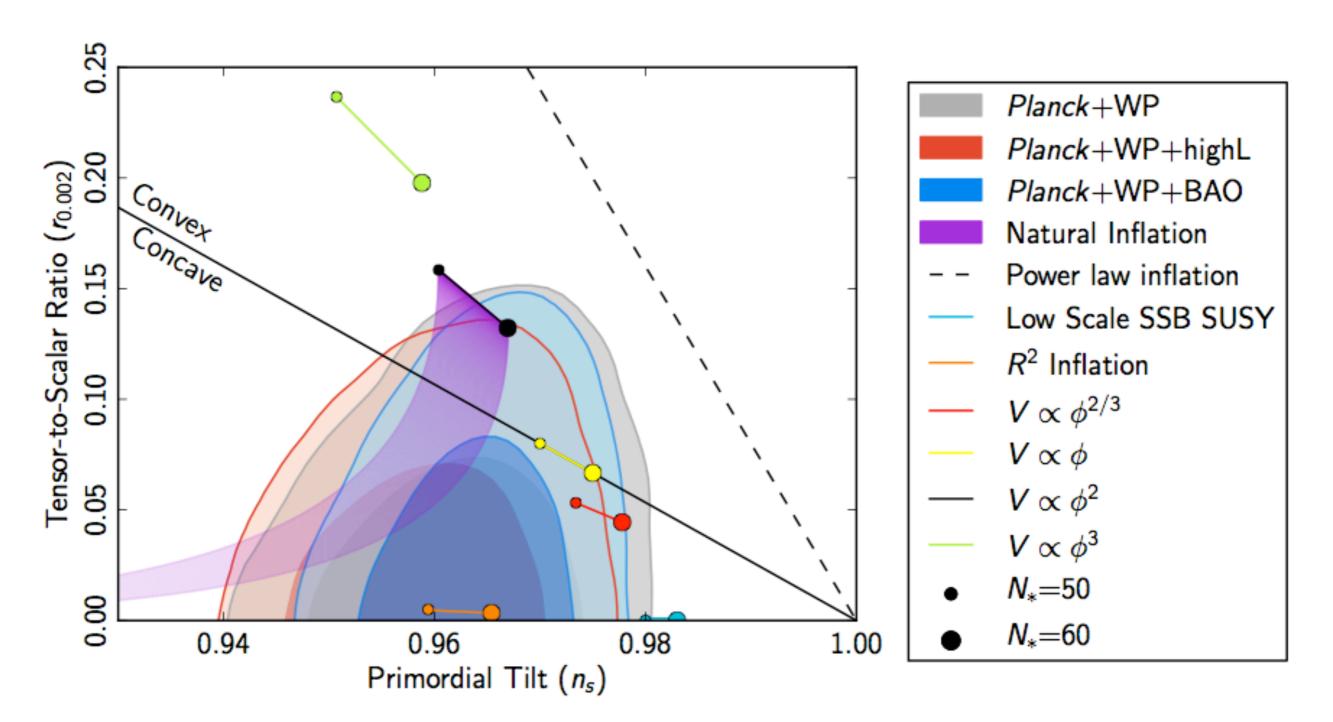
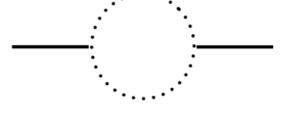


Fig. 1. Marginalized joint 68% and 95% CL regions for n_s and $r_{0.002}$ from *Planck* in combination with other data sets compared to the theoretical predictions of selected inflationary models.

Microphysical origin of inflation?

- Physics at the energy scale of inflation is unknown!
- Observational probe of very high-energy physics
- Candidate physical theories motivate much more complicated dynamics than the simplest scenarios:
 - eta-problem (like Higgs hierarchy problem)

- modified gravity
- alternatives to inflation, e.g. curvaton
- Plethora of inflationary models. How can we learn more?

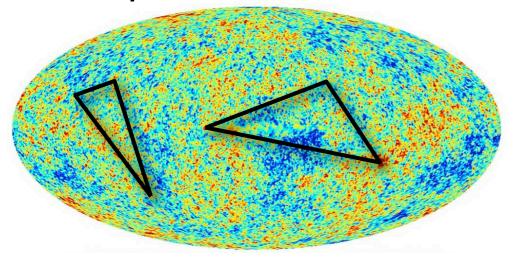


$$m_{\phi}^2 \sim \Lambda_{\rm uv}^2 \gg H^2$$

Non-Gaussianity

probes physics beyond

3-point correlations



direct measurement of inflaton interactions

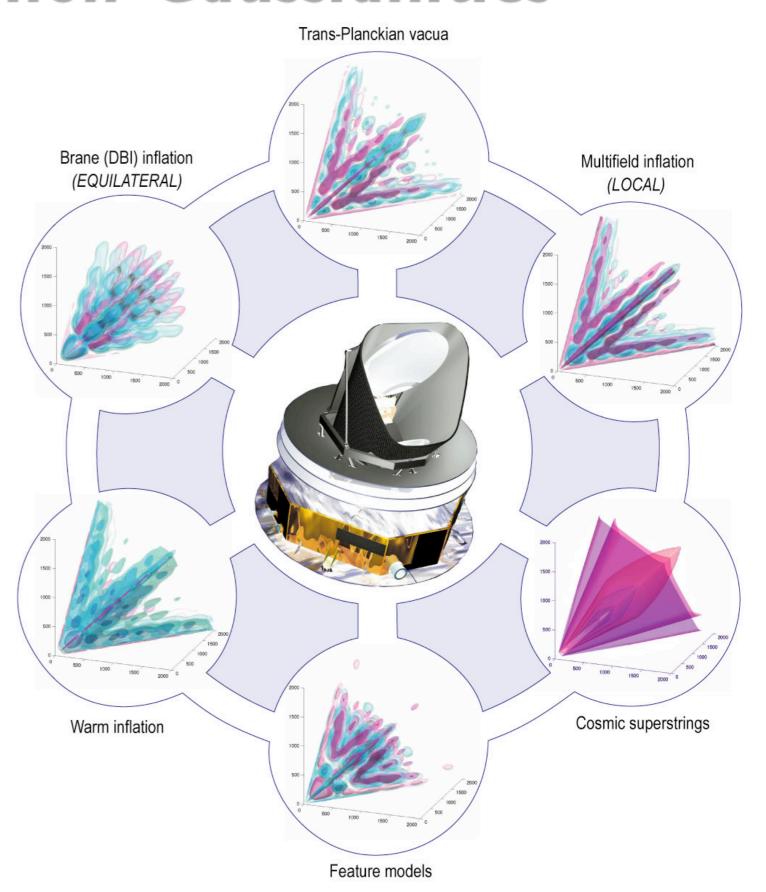
- Gaussian approximation: freely propagating particles
- Non-Gaussianities measure the **interactions** of the field(s) driving inflation. **Discrimination amongst models** which are degenerate at the linear level

Particle physics

Cosmology

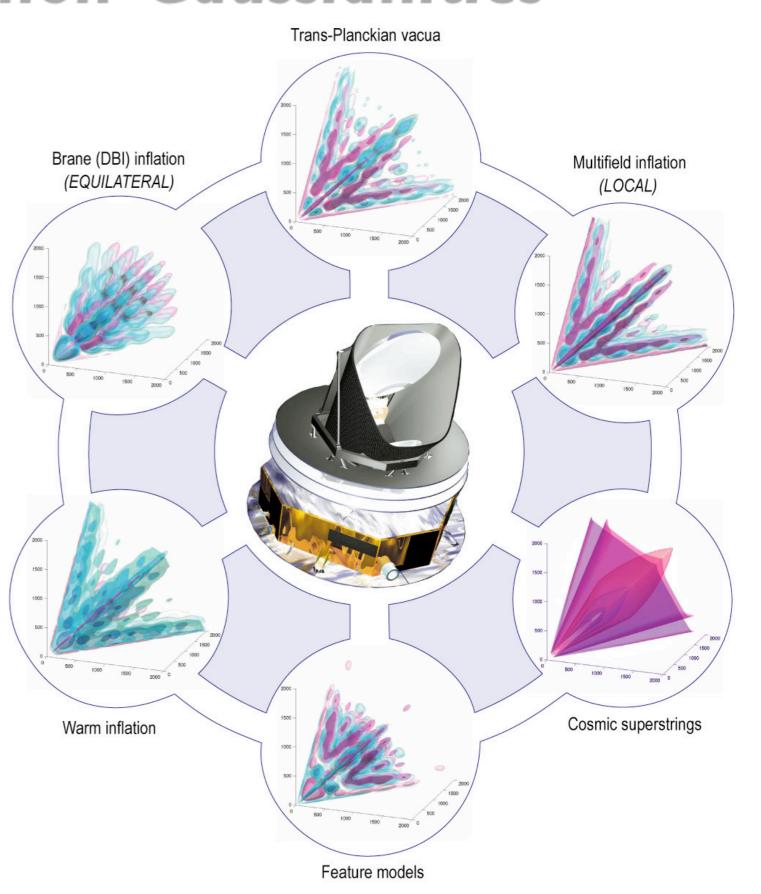
'Happy families are all alike; every unhappy family is unhappy in its own way.'

Anna Karénine, Tolstoï



Gaussian distribution are all alike; every non-Gaussian distribution is non-Gaussian in its own way.

Cosmologist.



Maldacena's 2003 result

Very small non-Gaussianities (much more quantitative statement actually!)

UNDER HYPOTHESES

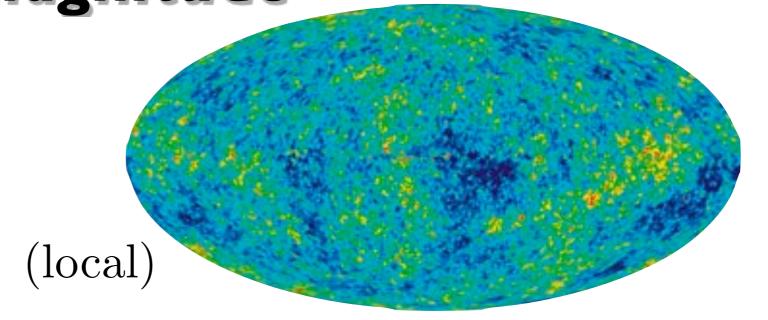
- Single field
- Standard kinetic term
- Slow-roll
- Initial vacuum state
- Einstein gravity

It is now clear that violating any of these assumptions might lead to observably large NGs.

A simple example and orders of magnitude

$$\frac{\delta T}{T} \sim \zeta \sim 10^{-5}$$

$$\zeta = \zeta_G + \frac{3}{5} f_{NL}^{loc} \zeta_G^2 \qquad \text{(local)}$$



• Constraints: $f_{NL}^{loc} = 37.2 \pm 19.9 \, (68\% \, CL)$ WMAP 9

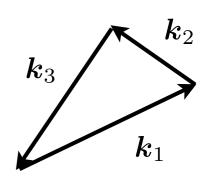
Gaussianity already tested to better than 0.1%

- Planck: $f_{NL}^{loc} = 2.7 \pm 5.8 \, (68\% \, CL)$
- Slow-roll single field prediction: $f_{NL}^{loc} = \mathcal{O}(\epsilon,\eta) \approx 10^{-2}$

Non-Gaussianities

- Beyond the power spectrum:
- $\langle \zeta_{\mathbf{k}_1} \zeta_{\mathbf{k}_2} \rangle = P_{\zeta}(k_1)(2\pi)^3 \delta^3(\mathbf{k}_1 + \mathbf{k}_2)$
- Higher-order connected, n-point functions:
 - 3 point: bispectrum

$$\langle \zeta_{\mathbf{k}_1} \zeta_{\mathbf{k}_2} \zeta_{\mathbf{k}_3} \rangle = B_{\zeta}(k_1, k_2, k_3)(2\pi)^3 \delta^3(\mathbf{k}_1 + \mathbf{k}_2 + \mathbf{k}_3)$$



4 point: trispectrum

$$\langle \zeta_{\boldsymbol{k}_1} \zeta_{\boldsymbol{k}_2} \zeta_{\boldsymbol{k}_3} \zeta_{\boldsymbol{k}_4} \rangle_c = T_{\zeta}(\boldsymbol{k}_1, \boldsymbol{k}_2, \boldsymbol{k}_3, \boldsymbol{k}_4)(2\pi)^3 \delta^3(\sum_i \boldsymbol{k}_i)$$

The bispectrum

$$\langle \zeta(\mathbf{k}_1)\zeta(\mathbf{k}_2)\zeta(\mathbf{k}_3)\rangle = (2\pi)^7 \delta(\sum_{i=1}^3 \mathbf{k}_i)\mathcal{P}_{\zeta}^2 \frac{S(k_1, k_2, k_3)}{(k_1 k_2 k_3)^2}$$



 $f_{NL} \sim S$

dimensionless measure of the amplitude of the bispectrum

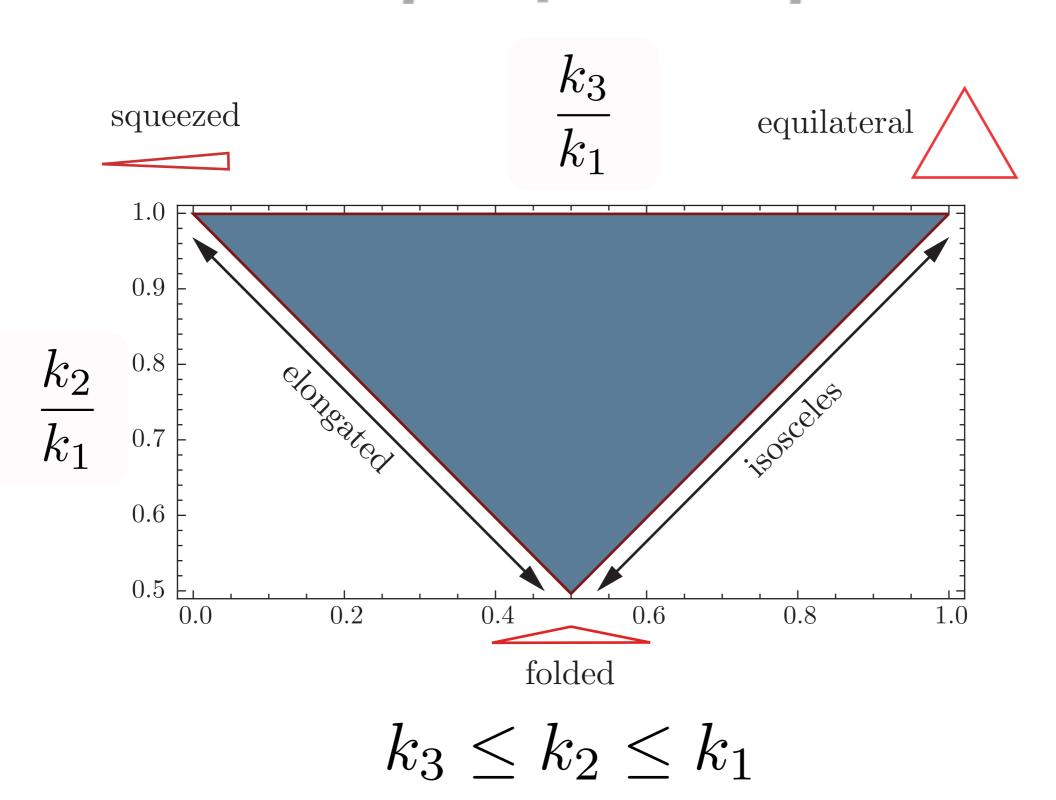
Scale-dependence (growing or shrinking on small scales?)

Sign (more or less cold spots?)

Each of these features can rule out large classes of models

Shape (dependence on the configuration of triangles)

The shape of the bispectrum

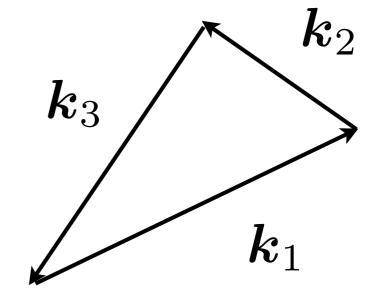


The shape of the bispectrum

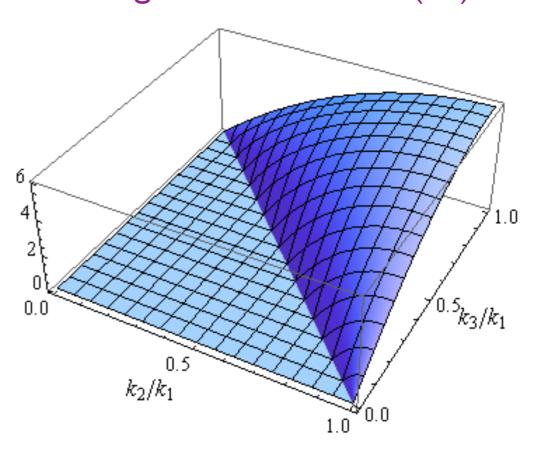
In most (almost scale-invariant) models

$$S(k_1, k_2, k_3)$$

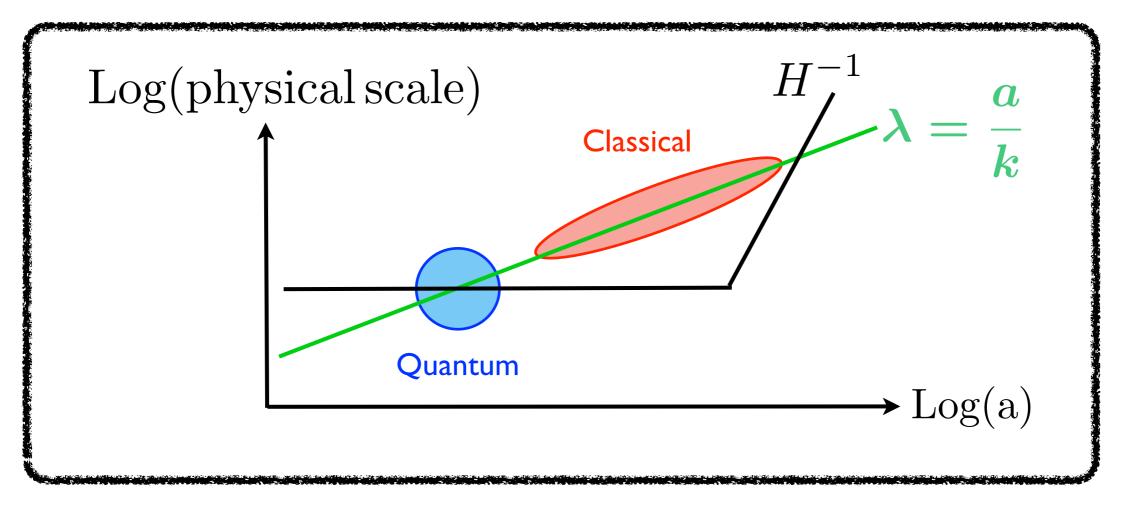
- only depends on the ratios between the norms of the wavevectors
- has the same properties than the observed angular bispectrum



Babich et al (04) Fergusson & Shellard (08)



Inflationary physics and shapes of non-Gaussianities

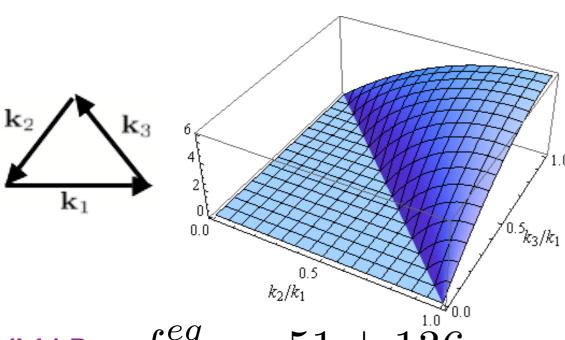


$$S(k_1, k_2, k_3) = f_{NL}^{loc} \left(\frac{k_1^2}{k_2 k_3} + 2 \text{ perm.} \right) - \frac{\mathbf{k}_2}{\mathbf{k}_1} \mathbf{k}_3$$

$$+ 3 f_{NL}^{eq} \left(-\left(\frac{k_1^2}{k_2 k_3} + 2 \text{ perm.} \right) + \left(\frac{k_1}{k_2} + 5 \text{ perm.} \right) - 2 \right)$$

Inflationary physics and shapes of non-Gaussianities

Equilateral type (quantum)



WMAP
$$f_{NL}^{eq} = 51 \pm 136$$

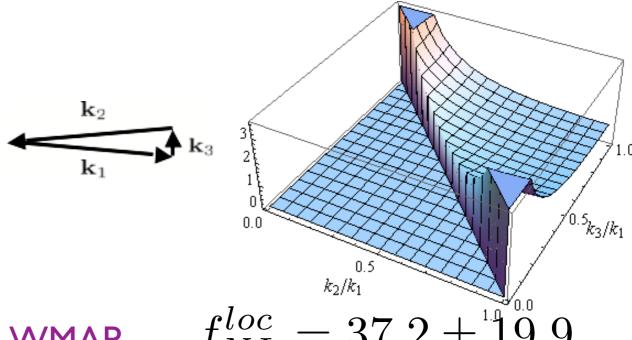
Planck
$$f_{NL}^{eq}=-42\pm75$$

Non-standard kinetic terms:

DBI, low sound speed models.

Good understanding with EFT of inflation

Local type (classical)



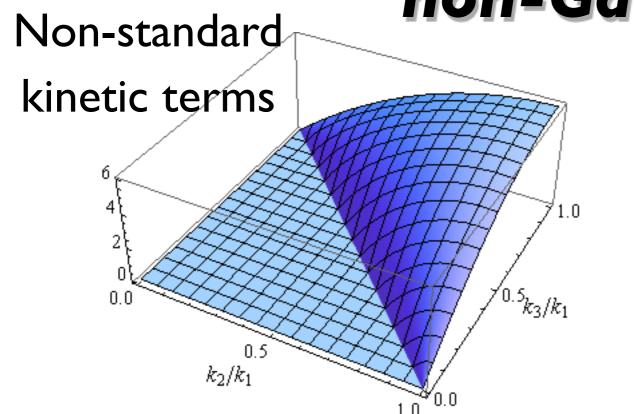
WMAP $f_{NL}^{loc} = 37.2 \pm 19.9$

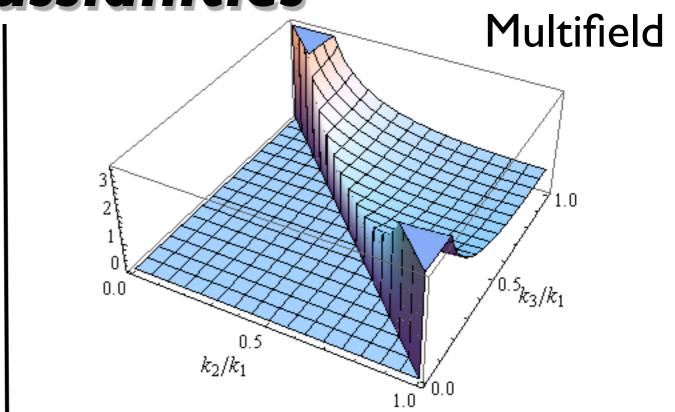
Planck $f_{NL}^{loc} = 2.7 \pm 5.8$

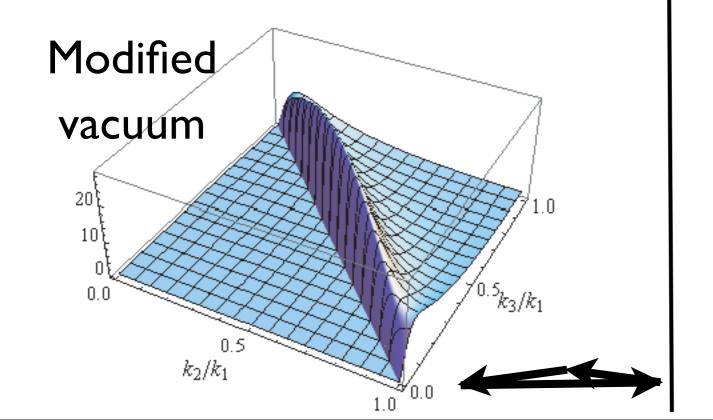
Multiple degrees of freedom:

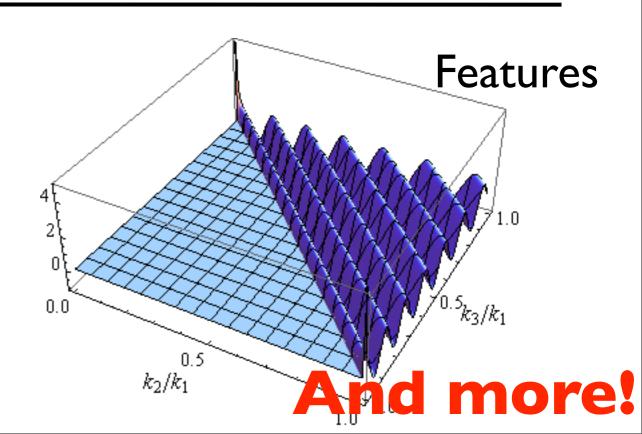
Multified inflation, curvaton, ekyprotic...

Inflationary physics and shapes of non-Gaussianities

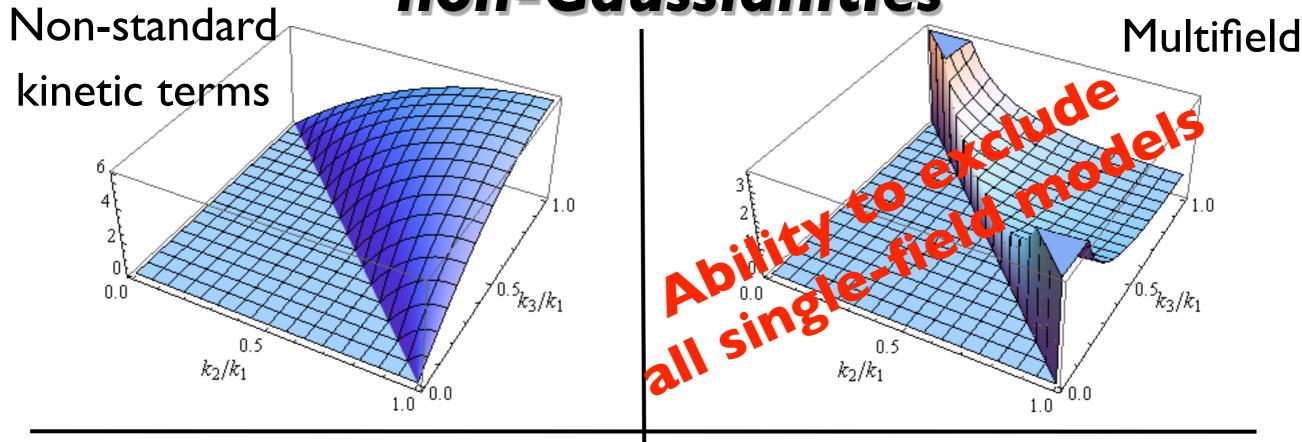


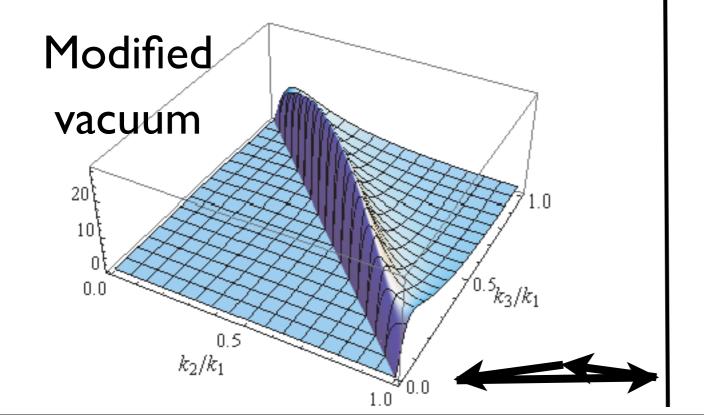


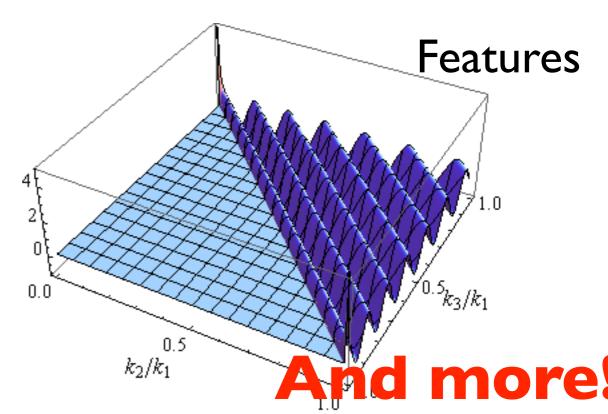




Inflationary physics and shapes of non-Gaussianities







Single field consistency relation

Any single-clock inflation (irrespective of kinetic terms, potential etc)

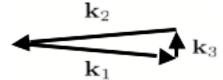
$$f_{NL}^{sq}(k_1) = \frac{5}{12}(1 - n_s(k_1))$$

Maldacena (03), Creminelli

& Zaldarriaga (04)

with

$$f_{NL}^{sq}(k_1) \equiv \lim_{k_3 \to 0} f_{NL}(k_1, k_2, k_3)$$



Remember $n_s = 0.9603 \pm 0.0073 \; (68\% \; \text{CL})$ Planck

If $f_{NL}^{sq} \gtrsim 1$ of primordial origin is robustly detected, all single field models would be ruled out!

Planck implications

$$f_{NL}^{loc} = 2.7 \pm 5.8$$

Constrain multi-field effects

$$f_{NL}^{eq} = -42 \pm 75$$

$$f_{NL}^{orth} = -25 \pm 39$$

$$c_s \ge 0.02 \, (95\% \, \text{CL})$$

Assassi et al, 2013.

Strong constraints on light hidden sector fields coupled to the inflaton via operators suppressed by a high mass scale.

$$\Lambda > 10^5 H$$

$$\Lambda > 10^2 H$$

depending on assumptions on the hidden sector

The simplest inflationary models are in full agreement with data and have passed very stringent tests.