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Inflation: a phase of accelerated expansion before the 
radiation era, that:

- solves the problems of the Hot Big Bang model
- generates the seeds of the large scale structures.



Slow-roll single field inflation

• Simplest set-up for prolonged phase of accelerated expansion: 
scalar field with flat potential in Planck units
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power spectra (2-point correlations) measure:

scalar (density) 
fluctuations
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Power spectra 
measurements constrain
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Planck constraints



Microphysical origin of inflation?

• Plethora of inflationary models. How can we learn more? 

• Physics at the energy scale of inflation is unknown! 
Observational probe of very high-energy physics

• Candidate physical theories motivate much more complicated 
dynamics than the simplest scenarios:

  - eta-problem (like Higgs hierarchy problem)
  - multiple fields 
  - non-standard kinetic terms
  - modified gravity
  - alternatives to inflation, e.g. curvaton
 

m2
φ ∼ Λ2

uv � H
2



probes physics beyond

H(t)

Non-Gaussianity

3-point correlations

direct measurement of 
inflaton interactions



• Gaussian approximation: freely propagating particles

• Non-Gaussianities measure the interactions of the field(s) 
driving inflation. Discrimination amongst models which 
are degenerate at the linear level
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 ‘Happy families are all alike; 
every unhappy family is 
unhappy in its own way.’

Anna Karénine, Tolstoï

Primordial non-Gaussianities



Gaussian distribution are all 
alike; every non-Gaussian 

distribution is non-Gaussian 
in its own way. 

Cosmologist.

Primordial non-Gaussianities



Maldacena’s 2003 result 

• Single field

• Standard kinetic term

• Slow-roll

• Initial vacuum state

• Einstein gravity

Very small non-Gaussianities (much more 
quantitative statement actually!)

UNDER HYPOTHESES

It is now clear that 
violating any of these 

assumptions might lead to 
observably large NGs.



A simple example and orders of 
magnitude

WMAP 9

ζ = ζG +
3
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f loc
NLζ
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δT

T
∼ ζ ∼ 10−5

Gaussianity already tested to better than 0.1%

•  Constraints:

• Planck:

• Slow-roll single field prediction:

f loc
NL = 37.2± 19.9 (68%CL)

f loc
NL = 2.7± 5.8 (68%CL)

f loc
NL = O(�, η) ≈ 10−2
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3δ3(k1 + k2)• Beyond the 

power spectrum: 

• Higher-order connected, n-point functions:
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Non-Gaussianities 



Shape (dependence on the configuration of triangles)
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dimensionless measure 
of the amplitude of the bispectrum

fNL ∼ S

The bispectrum

Scale-dependence (growing or shrinking on small scales?)

Sign (more or less cold spots?)
Each of these features 

can rule out large 
classes of models



The shape of the bispectrum
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In most (almost scale-invariant) 
models

- only depends on the ratios 
between the norms of the 
wavevectors

- has the same properties than 
the observed angular bispectrum

The shape of the bispectrum

S(k1, k2, k3)
Babich et al (04)
Fergusson & Shellard (08)  
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Inflationary physics and shapes of 
non-Gaussianities

S(k1, k2, k3) = f loc
NL

�
k21
k2k3

+ 2perm.

�

+ 3feq
NL

�
−
�

k21
k2k3

+ 2perm.

�
+

�
k1
k2

+ 5perm.

�
− 2

�



Inflationary physics and shapes of 
non-Gaussianities

Non-standard kinetic terms:
DBI, low sound speed models.

Multiple degrees of freedom:
Multified inflation, curvaton, 
ekyprotic...

Equilateral type (quantum) Local type (classical)

WMAP WMAP 

Good understanding 
with EFT of inflation

feq
NL = −42± 75

feq
NL = 51± 136

Planck 

f loc
NL = 37.2± 19.9

f loc
NL = 2.7± 5.8Planck 



Inflationary physics and shapes of 
non-Gaussianities

Non-standard 
kinetic terms

Multifield

Modified 
vacuum

Features

And more!



Inflationary physics and shapes of 
non-Gaussianities
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Single field consistency relation

Remember Planck

fsq
NL � 1If                of primordial origin is robustly detected, 

all single field models would be ruled out!

Any single-clock 
inflation (irrespective of 
kinetic terms, potential etc)

fsq
NL(k1) =

5

12
(1− ns(k1))

fsq
NL(k1) ≡ lim

k3→0
fNL(k1, k2, k3)

with

Maldacena (03), Creminelli 
& Zaldarriaga (04) 

ns = 0.9603± 0.0073 (68% CL)



Planck implications

Strong constraints on light hidden sector fields coupled to 
the inflaton via operators suppressed by a high mass scale.

Constrain multi-field effectsf loc
NL = 2.7± 5.8

feq
NL = −42± 75

forth
NL = −25± 39 cs ≥ 0.02 (95%CL)

Lower bound on the 
inflaton speed of sound

Λ > 105H Λ > 102H
 depending on assumptions on the hidden sector 

Assassi et al, 2013.

 The simplest inflationary models are in full agreement with data 
and have passed very stringent tests. 


