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Nobel Prize in Physics 2011

The Universe is accelerating!
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The energy budget

 Non-relativistic matter 
 (dark matter, baryons)

 Dark Energy pDE < −1

3
ρDE

ΩDE ∼ 0.7

ΩM ∼ 0.3

pM ∼ 0
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Beyond the Cosmological Constant... 

The first obvious candidate for Dark Energy is a cosmological constant

S =

� √
−g

�
M2

PlR− Λ
�

However: 

Naturalness problem (perhaps             is better than                         ) 

Coincidence problem (why                  now?!).

Λ = 0 Λ ∼ (10−3eV)4

ρDE ∼ ρM
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Beyond the Cosmological Constant... 

The first obvious candidate for Dark Energy is a cosmological constant

S =

� √
−g

�
M2

PlR− Λ
�

 there is a new propagating degree of freedom in the theory

DE �= Λ

φ
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• There is `no shortage’ of dark energy and modified gravity (DE) models 
(>5000 papers on Spires)

• Each one with its motivations, number and type of parameters etc...

• EUCLID and BigBoss will be sensitive to dynamical properties of DE

• Need for a Unifying and Effective description of DE

• A limited number of effective operators, each one responsible for an 
observable dynamical feature (e.g. flavor-changing neutral currents in  
physics beyond Standard Model) 

Ideally... 
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• There is `no shortage’ of dark energy and modified gravity (DE) models 
(>5000 papers on Spires)

• Each one with its motivations, number and type of parameters etc...

• EUCLID and BigBoss will be sensitive to dynamical properties of DE

• Need for a Unifying and Effective description of DE

• A limited number of effective operators, each one responsible for an 
observable dynamical feature (e.g. flavor-changing neutral currents in  
physics beyond Standard Model) 

Ideally... 

S[φ, gµν ,Ψm]

Background

φ = φ0(t)

ds2 =− dt2 + a2(t)dx2

ρm = ρm(t)

Expand in perturbations

δρm(t, �x) δφ(t, �x)
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• There is `no shortage’ of dark energy and modified gravity (DE) models 
(>5000 papers on Spires)

• Each one with its motivations, number and type of parameters etc...
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Hint:

Most DE models reduce, in their relevant regimes, to scalar tensor-theories

S =

�
d4x

√
−g

�
M2

2
f(φ)R− 1

2
(∂φ)2 − V (φ) + F [φ, gµν ]

�
+ Sm[gµν ,Ψm]

Apply covariant EFT to explore                   : field/derivative expansionF [φ, gµν ]

(Weinberg `08, Park, Zurek and Watson `10,  Bloomfield and Flanagan `11)One possible strategy:
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Hint:

Most DE models reduce, in their relevant regimes, to scalar tensor-theories

S =

�
d4x

√
−g

�
M2

2
f(φ)R− 1

2
(∂φ)2 − V (φ) + F [φ, gµν ]

�
+ Sm[gµν ,Ψm]

Apply covariant EFT to explore                   : field/derivative expansionF [φ, gµν ]

However:
 
1) Expansion in number of fields is not necessarily meaningful 

(Weinberg `08, Park, Zurek and Watson `10,  Bloomfield and Flanagan `11)One possible strategy:
V = V1φ+ V2φ

2 + V3φ
3 + V4φ

4

= V2δφ
2 + V3φ0(t)δφ

2 + 6V4φ
2
0(t)δφ

2

All terms potentially important in cosmological perturbation theory!
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Hint:

Most DE models reduce, in their relevant regimes, to scalar tensor-theories

S =

�
d4x

√
−g

�
M2

2
f(φ)R− 1

2
(∂φ)2 − V (φ) + F [φ, gµν ]

�
+ Sm[gµν ,Ψm]

Apply covariant EFT to explore                   : field/derivative expansionF [φ, gµν ]

However:
 
1) Expansion in number of fields is not necessarily meaningful 
2) Naively ``perturbations” but not always so... 

(Weinberg `08, Park, Zurek and Watson `10,  Bloomfield and Flanagan `11)One possible strategy:

∂φ4, �φ∂φ2, etc.

Ghost Condensate
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Hint:

Most DE models reduce, in their relevant regimes, to scalar tensor-theories

S =

�
d4x

√
−g

�
M2

2
f(φ)R− 1

2
(∂φ)2 − V (φ) + F [φ, gµν ]

�
+ Sm[gµν ,Ψm]

Apply covariant EFT to explore                   : field/derivative expansionF [φ, gµν ]

However:
 
1) Expansion in number of fields is not necessarily meaningful 
2) Naively ``perturbations” but not always so... 

(Weinberg `08, Park, Zurek and Watson `10,  Bloomfield and Flanagan `11)One possible strategy:

∂φ4, �φ∂φ2, etc.

Ghost Condensate Galileons
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Hint:

Most DE models reduce, in their relevant regimes, to scalar tensor-theories

S =

�
d4x

√
−g

�
M2

2
f(φ)R− 1

2
(∂φ)2 − V (φ) + F [φ, gµν ]

�
+ Sm[gµν ,Ψm]

Apply covariant EFT to explore                   : field/derivative expansionF [φ, gµν ]

However:
 
1) Expansion in number of fields is not necessarily meaningful 
2) Naively ``perturbations” but not always so... 
3) Only halfway through the work to be done (background first + expand..)

(Weinberg `08, Park, Zurek and Watson `10,  Bloomfield and Flanagan `11)One possible strategy:
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EFT: a theory for the relevant low-energy d.o.f.

Examples:  

1) QCD: quarks and gluons                nucleons and pions at low energies
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EFT: a theory for the relevant low-energy d.o.f.

Examples:  

1) QCD: quarks and gluons                nucleons and pions at low energies

2) EW theory: 4 massless vector bosons, 2 complex scalars etc. 

3 massive vector bosons, 1 massive ``Higgs” field etc.

UNITARY GAUGE
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EFT: a theory for the relevant low-energy d.o.f.

Examples:  

1) QCD: quarks and gluons                nucleons and pions at low energies

2) EW theory: 4 massless vector bosons, 2 complex scalars etc. 

3 massive vector bosons, 1 massive ``Higgs” field etc.

UNITARY GAUGE

3) Cosmology: ...Cosmological Perturbations!
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The Effective Field Theory of Inflation

Main idea: scalar degrees of freedom are `eaten’ by the metric. Ex:

Unitary Gauge in Cosmology

φ(t, �x) → φ0(t) (δφ = 0) −1

2
∂φ2 → −1

2
φ̇2
0(t) g

00

(Creminelli et al. `06, Cheung et al. `07)

φ3

φ2

φ1

Bennett et al, 2012 (Final WMAP paper) constrain inflation EFT operators 
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The Effective Field Theory of Inflation

Main idea: scalar degrees of freedom are `eaten’ by the metric. Ex:

Unitary Gauge in Cosmology

φ(t, �x) → φ0(t) (δφ = 0) −1

2
∂φ2 → −1

2
φ̇2
0(t) g

00

(Creminelli et al. `06, Cheung et al. `07)

Our Recipe for Dark Energy:       (Gubitosi, F.P., Vernizzi 2012)

1) Assume WEP (universally coupled metric                )  

2) Write the most generic action for       compatible with the residual
   un-broken symmetries (3-diff). 

Sm[gµν ,Ψi]

gµν
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The Action

S =

�
d4x

√
−g

�
M2

2
f(t)R− Λ(t)− c(t)g00

�
+ S(2)

DE

The most generic action written in terms of       compatible with the 
residual symmetry of spatial diffeomorphisms

gµν
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The Action

S =

�
d4x

√
−g

�
M2

2
f(t)R− Λ(t)− c(t)g00

�
+ S(2)

DE

The most generic action written in terms of       compatible with the 
residual symmetry of spatial diffeomorphisms

gµν

Genuine 4-dim covariant terms are still allowed, but will in general be 
multiplied by functions of time cause time translations are broken 
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The Action

S =

�
d4x

√
−g

�
M2

2
f(t)R− Λ(t)− c(t)g00

�
+ S(2)

DE

The most generic action written in terms of       compatible with the 
residual symmetry of spatial diffeomorphisms

gµν

General functions of time are allowed
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The Action

S =

�
d4x

√
−g

�
M2

2
f(t)R− Λ(t)− c(t)g00

�
+ S(2)

DE

The most generic action written in terms of       compatible with the 
residual symmetry of spatial diffeomorphisms

gµν

...as well as tensors with free `0’ indices 

nµ = − ∂µφ�
−(∂φ2)

Essentially: contractions with
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The Action: main message

S =

�
d4x

√
−g

�
M2

2
f(t)R− Λ(t)− c(t)g00

�
+ S(2)

DE

Any arbitrarily complicate action with one scalar d.o.f. will 
reduce to this in Unitary gauge, plus terms that start explicitly 
quadratic in the perturbations  
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�
+ S(2)

DE
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quadratic in the perturbations  

Example: 

∂φ2 R = φ̇2
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0
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�
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The Action

S =

�
d4x

√
−g

�
M2

2
f(t)R− Λ(t)− c(t)g00

�
+ S(2)

DE

Enough for background equations:

c =
1

2
(−f̈ +Hḟ)M2 +

1

2
(ρD + pD)

Λ =
1

2
(f̈ + 5Hḟ)M2 +

1

2
(ρD − pD)

Monday, May 13, 2013



The Action

S =

�
d4x

√
−g

�
M2

2
f(t)R− Λ(t)− c(t)g00

�
+ S(2)

DE

Enough for background equations:

c =
1

2
(−f̈ +Hḟ)M2 +
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The Action

S =

�
d4x

√
−g

�
M2

2
f(t)R− Λ(t)− c(t)g00

�
+ S(2)

DE

Enough for background equations:

c =
1

2
(−f̈ +Hḟ)M2 +

1

2
(ρD + pD)

Λ =
1

2
(f̈ + 5Hḟ)M2 +

1

2
(ρD − pD)

“Bare” Planck Mass

Generally Related to post-newtonian parameters

Defined by the modified Friedman equations

H
2 =

1

3fM2
(ρm + ρD)

Ḣ = − 1

2fM2
(ρm + ρD + pm + pD)
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The Action

S =

�
d4x

√
−g

�
M2

2
f(t)R− Λ(t)− c(t)g00

�
+ S(2)

DE

Enough for background equations:

c =
1

2
(−f̈ +Hḟ)M2 +

1

2
(ρD + pD)

Λ =
1

2
(f̈ + 5Hḟ)M2 +

1

2
(ρD − pD)

“Bare” Planck Mass

Generally Related to post-newtonian parameters

Matter + Dark matter (in practice                   )               ρm ∝ a−3

Defined by the modified Friedman equations

H
2 =

1

3fM2
(ρm + ρD)

Ḣ = − 1

2fM2
(ρm + ρD + pm + pD)
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The Action: perturbations

S =

�
d4x

√
−g

�
M2

2
f(t)R− Λ(t)− c(t)g00

�
+ S(2)

DE

Explicitly quadratic in the perturbations:

S(2)
DE =

M4
2

2
(δg00)2 − m̄3

1

2
δg00δK − M̄2

2

2
δK2 − M̄2

3

2
δK ν

µ δKµ
ν + . . .
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The Action: perturbations

S =

�
d4x

√
−g

�
M2

2
f(t)R− Λ(t)− c(t)g00

�
+ S(2)

DE

Explicitly quadratic in the perturbations:

nµ = − ∂µφ�
−(∂φ2)

hµν ≡ gµν + nµnνExtrinsic curvature:

Kµν = h σ
µ ∇σnν δKµν = Kµν −Hhµν

S(2)
DE =

M4
2

2
(δg00)2 − m̄3

1

2
δg00δK − M̄2

2

2
δK2 − M̄2

3

2
δK ν

µ δKµ
ν + . . .
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The Action: perturbations

S =

�
d4x

√
−g

�
M2

2
f(t)R− Λ(t)− c(t)g00

�
+ S(2)

DE

Explicitly quadratic in the perturbations:

S(2)
DE =

M4
2

2
(δg00)2 − m̄3

1

2
δg00δK − M̄2

2

2
δK2 − M̄2

3

2
δK ν

µ δKµ
ν + . . .

Action in standard form (no ambiguities, field redefinitions)
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Examples

S =

� √
−g

�
M2

2
fR− Λ− cg00 +

M4
2

2
(δg00)2 − m̄3

1

2
δg00δK +

M4
3

6
(δg00)3 + . . .

�

Monday, May 13, 2013



Examples

S =

� √
−g

�
M2

2
fR− Λ− cg00 +

M4
2

2
(δg00)2 − m̄3

1

2
δg00δK +

M4
3

6
(δg00)3 + . . .

�

Non-minimally coupled scalar field

f(t) = F (φ0(t)) , Λ(t) = V (φ0(t)) , c(t) = φ̇2
0(t)

S =

�
d4x

√
−g

�
M2

2
F (φ)R− 1

2
(∂φ)2 − V (φ)

�
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Expansion:

Examples

S =

� √
−g

�
M2

2
fR− Λ− cg00 +

M4
2

2
(δg00)2 − m̄3

1

2
δg00δK +

M4
3

6
(δg00)3 + . . .

�

K-essence

S =

�
d4x

√
−gP (φ, X)

(Amendariz-Picon et al., 2000)

Λ(t) = c(t)− P (φ0(t), φ̇
2
0(t)) , c(t) =

∂P

∂X

����
φ=φ0, X=φ̇2

0

,

M4
n(t) =

∂nP

∂Xn

����
φ=φ0, X=φ̇2

0

(n ≥ 2)

X ≡ gµν∂µφ∂νφ

X = φ̇2
0(t)(−1 + δg00)
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Examples

S =

� √
−g

�
M2

2
fR− Λ− cg00 +

M4
2

2
(δg00)2 − m̄3

1

2
δg00δK +

M4
3

6
(δg00)3 + . . .

�

“Galilean Cosmology” (Chow and Khoury,  2009)

f(t) = e
−2

φ0
M , Λ(t) = − r

2
c

M
φ̇2
0(φ̈0 + 3Hφ̇0) , c(t) =

r
2
c

M
φ̇2
0(φ̈0 − 3Hφ̇0) ,

M
4
2 (t) = − r

2
c

2M
φ̇2
0(φ̈0 + 3Hφ̇0) , M

4
3 (t) = − 3r2c

4M
φ̇2
0(φ̈0 +Hφ̇0) , m̄

3
1(t) = − r

2
c

M
2φ̇3

0 ,

S =

�
d4x

√
−g

�
M2

2
e−2φ/MR− r2c

M
(∂φ)2�φ

�
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More examples, more operators...

S =

� √
−g

�
M2

2
fR− Λ− cg00 +

M4
2

2
(δg00)2 − m̄3

1

2
δg00δK +

M4
3

6
(δg00)3 + . . .

�

“Generalized Galileons” (≡ Horndeski) (Deffayet et al.,  2011)

L2 = A(φ, X) ,

L3 = B(φ, X)�φ ,

L4 = C(φ, X)R− 2C,X(φ, X)
�
(�φ)2 − (∇µ∇νφ)

2
�
,

L5 = D(φ, X)Gµν∇µ∇νφ+
1

3
D,X(φ, X)

�
(�φ)3 − 3(�φ)(∇µ∇νφ)

2 + 2(∇µ∇νφ)
3
�
,

Gleyzes, Langlois, F.P., Vernizzi, 1304.4840
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More examples, more operators...

S =

� √
−g

�
M2

2
fR− Λ− cg00 +

M4
2

2
(δg00)2 − m̄3

1

2
δg00δK +

M4
3

6
(δg00)3 + . . .

�

“Generalized Galileons” (≡ Horndeski) (Deffayet et al.,  2011)

L2 = A(φ, X) ,

L3 = B(φ, X)�φ ,

L4 = C(φ, X)R− 2C,X(φ, X)
�
(�φ)2 − (∇µ∇νφ)

2
�
,

L5 = D(φ, X)Gµν∇µ∇νφ+
1

3
D,X(φ, X)

�
(�φ)3 − 3(�φ)(∇µ∇νφ)

2 + 2(∇µ∇νφ)
3
�
,

                                                  Only 1 more quadratic operator!

Gleyzes, Langlois, F.P., Vernizzi, 1304.4840
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The Power of EFT of DE

• Completely democratic (quintessence and modified gravity on same foot)

• Mixing with gravity studied systematically
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Mixing with gravity:

S =

� √
−g

�
M2

2
fR− Λ− cg00 +

M4
2

2
(δg00)2 − m̄3

1

2
δg00δK +

1

2
Tµνδgµν

�

ds2 = −(1 + 2Φ)dt2 + a2(1− 2Ψ)δijdx
idxj

Apply “Stueckelberg trick” 
and go to Newtonian Gauge

Expand at quadratic order and retain only kinetic operators (2 derivatives):

Ψ̇2 , (�∇Ψ)2 , etc.

Modified Gravity  ≈  Kinetic mixing Ψ̇π̇ , �∇Ψ�∇π , etc.

t → t+ π(x)
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Mixing with gravity:

S =

� √
−g

�
M2

2
fR− Λ− cg00 +

M4
2

2
(δg00)2 − m̄3

1

2
δg00δK +

1

2
Tµνδgµν

�

Apply “Stueckelberg trick” 
and go to Newtonian Gauge

Expand at quadratic order and retain only kinetic operators (2 derivatives):

Ψ̇2 , (�∇Ψ)2 , etc.

Modified Gravity  ≈  Kinetic mixing Ψ̇π̇ , �∇Ψ�∇π , etc.

Ex: δg00δK � Ψ̇π̇ +∇Φ∇π
Anisotropic stress,

Renormalized Newton Constant
etc.

ds2 = −(1 + 2Φ)dt2 + a2(1− 2Ψ)δijdx
idxj

t → t+ π(x)
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The Power of EFT of DE

• Completely democratic (quintessence and modified gravity on same foot)

• Mixing with gravity studied systematically

• Stability, speed of sound etc.
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Model building  v.s. General treatment
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Find, once and for all, the action for the scalar degree of freedom:
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And address, once and for all, all questions of stability, speed of sound and 
deviations from GR:

1− γ =
1

2
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2 (m̄

3
1 +Hm̄

3
1)

Geff =
1
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2
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1 +Hm̄

3
1)
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3
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6
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2 (m̄

3
1 +Hm̄

3
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(with Gubitosi, Piazza, 2012)
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Conclusions

• Unifying framework for dark energy/modified gravity

• Effective language: cosmological perturbations as the relevant d.o.f.

• Dark energy and modified gravity on the same foot

• Unambiguous way to address mixing, stability, speed of sound etc.

• See also Bloomfield et al. 1211.7054. Much work in progress
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A venturesome path  
The Universe has accelerated... twice!
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A venturesome path  
The Universe has accelerated... twice!
Both DE and Inflation are 
(at face value) Infra-red 
issues. Can’t we attempt a 
Unifying description? 

Monday, May 13, 2013



The Universe has accelerated... twice!

Modify General Relativity in the infra-red 
at the level of the geometry: 

Go beyond the Pseudo-Riemannian Metric Manifold

Both DE and Inflation are 
(at face value) Infra-red 
issues. Can’t we attempt a 
Unifying description? 

0904.4299 (JMPA)

0907.0765 (NJP, “best of 2009”)

0910.3949 (PLB, with S. Nesseris and S. Tsujikawa)

0910.4677, 1204.4099, in progress...

Rest of the talk: not concerned about 
this. Unifying approach for DE and more 
conventional modifications of gravity.  

A venturesome path  
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Mixing with gravity 1: Brans-Dicke

S =

� √
−g

�
M2

2
fR− Λ− cg00 +

M4
2

2
(δg00)2 − m̄3

1

2
δg00δK +

1

2
Tµνδgµν

�

Apply Stueckelberg and go to 
Newtonian Gauge

ds2 = −(1 + 2Φ)dt2 + a2(1− 2Ψ)δijdx
idxj

S
kinetic
=

�
M2f

�
−3Ψ̇2 − 2�∇Φ�∇Ψ+ (�∇Ψ)2 + c π̇2 − c(�∇π)2 + 3(ḟ/f)Ψ̇π̇ + (ḟ/f)�∇π(�∇Φ− 2�∇Ψ)

�

Mixing
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Mixing with gravity 1: Brans-Dicke

S =

� √
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fR− Λ− cg00 +

M4
2

2
(δg00)2 − m̄3

1

2
δg00δK +

1

2
Tµνδgµν

�

Apply Stueckelberg and go to 
Newtonian Gauge

ds2 = −(1 + 2Φ)dt2 + a2(1− 2Ψ)δijdx
idxj

De-mixing = conformal transformation 

ΦE = Φ+
1

2
(ḟ/f)π

ΨE = Ψ− 1

2
(ḟ/f)π

S
kinetic
=

�
M2f

�
−3Ψ̇2 − 2�∇Φ�∇Ψ+ (�∇Ψ)2 + c π̇2 − c(�∇π)2 + 3(ḟ/f)Ψ̇π̇ + (ḟ/f)�∇π(�∇Φ− 2�∇Ψ)

�

Mixing
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Mixing with gravity 1: Brans-Dicke

S =
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fR− Λ− cg00 +

M4
2

2
(δg00)2 − m̄3

1

2
δg00δK +

1

2
Tµνδgµν

�

Apply Stueckelberg and go to 
Newtonian Gauge

ds2 = −(1 + 2Φ)dt2 + a2(1− 2Ψ)δijdx
idxj

S
kinetic
=

�
M2f

�
−3Ψ̇2 − 2�∇Φ�∇Ψ+ (�∇Ψ)2 + c π̇2 − c(�∇π)2 + 3(ḟ/f)Ψ̇π̇ + (ḟ/f)�∇π(�∇Φ− 2�∇Ψ)

�

1− γ ≡ Φ−Ψ

Φ
=

M2ḟ2/f

2(c+M2ḟ2/f)

Geff =
1

8πM2f

c+M2ḟ2/f

c+ 3
4M

2ḟ2/f

Newtonian
limit

anisotropic stress

dressed Newton constant
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Mixing with gravity 2:

S =
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−g
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fR− Λ− cg00 +

M4
2

2
(δg00)2 − m̄3

1

2
δg00δK +
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�
f(t) = 1

Apply Stueckelberg and go to 
Newtonian Gauge

De-mixing ≠ conformal transformation 

ΦE = Φ+
m̄3

1

2M2
π

ΨE = Ψ+
m̄3

1

2M2
π

ds2 = −(1 + 2Φ)dt2 + a2(1− 2Ψ)δijdx
idxj

(Cf. braiding: Deffayet et al.,  2010)
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Mixing

Monday, May 13, 2013



Mixing with gravity 2:
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f(t) = 1

Apply Stueckelberg and go to 
Newtonian Gauge

ds2 = −(1 + 2Φ)dt2 + a2(1− 2Ψ)δijdx
idxj

(Cf. braiding: Deffayet et al.,  2010)

S
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=
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Mixing
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Speed of Sound of DE
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Mixing with gravity 2:

S =
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f(t) = 1

Apply Stueckelberg and go to 
Newtonian Gauge

ds2 = −(1 + 2Φ)dt2 + a2(1− 2Ψ)δijdx
idxj

(Cf. braiding: Deffayet et al.,  2010)

S
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Mixing
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Newtonian
limit

NO anisotropic stress

dressed Newton constant

Mixing with gravity 2:

S =
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Apply Stueckelberg and go to 
Newtonian Gauge

ds2 = −(1 + 2Φ)dt2 + a2(1− 2Ψ)δijdx
idxj

(Cf. braiding: Deffayet et al.,  2010)
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More interesting operators to come...

Detailed model building v.s. general treatments

S =
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1

2
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M4
3

6
(δg00)3 + . . .

�

(Gleyzes, Langlois, F.P., Vernizzi, in progress) 
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Conclusions

• Unifying framework for dark energy/modified gravity

• Effective language: cosmological perturbations as the relevant d.o.f.

• Dark energy and modified gravity on the same foot

• Unambiguous way to address mixing, stability, speed of sound etc.

• See also Bloomfield et al. 1211.7054. Much work in progress
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