Dark Energy:

an Effective Field Theory approach

Federico Piazza

Gleyzes, Langlois, F.P., Vernizzi, 1304.4840

Nobel Prize in Physics 2011

The Universe is accelerating!

The energy budget

Non-relativistic matter (dark matter, baryons) $\quad p_{\mathrm{M}} \sim 0$

$$
\Omega_{\mathrm{M}} \sim 0.3
$$

Dark Energy $\quad p_{\mathrm{DE}}<-\frac{1}{3} \rho_{\mathrm{DE}}$

$$
\Omega_{\mathrm{DE}} \sim 0.7
$$

Beyond the Cosmological Constant...

The first obvious candidate for Dark Energy is a cosmological constant

$$
S=\int \sqrt{-g}\left(M_{\mathrm{Pl}}^{2} R-\Lambda\right)
$$

However:
Naturalness problem (perhaps $\Lambda=0$ is better than $\Lambda \sim\left(10^{-3} \mathrm{eV}\right)^{4}$)
(a)

Coincidence problem (why $\rho_{\mathrm{DE}} \sim \rho_{\mathrm{M}}$ now?!).

Beyond the Cosmological Constant...

The first obvious candidate for Dark Energy is a cosmological constant

$$
S=\int \sqrt{-g}\left(M_{\mathrm{Pl}}^{2} R-\Lambda\right)
$$

$D E \neq \Lambda$

there is a new propagating degree of freedom in the theory ϕ

- There is 'no shortage' of dark energy and modified gravity (DE) models (>5000 papers on Spires)
- Each one with its motivations, number and type of parameters etc...
- EUCLID and BigBoss will be sensitive to dynamical properties of DE
- Need for a Unifying and Effective description of DE Ideally...
- A limited number of effective operators, each one responsible for an observable dynamical feature (e.g. flavor-changing neutral currents in physics beyond Standard Model)
- There is 'no shortage' of dark energy and modified gravity (DE) models (>5000 papers on Spires)
- Each one with its motivations, number and type of parameters etc...
- EUCLID and BigBoss will be sensitive to dynamical properties of DE

$$
S\left[\phi, g_{\mu \nu}, \Psi_{m}\right]
$$

Background

$\phi=\phi_{0}(t)$
$d s^{2}=-d t^{2}+a^{2}(t) d x^{2}$
$\rho_{m}=\rho_{m}(t)$

Expand in perturbations

$\delta \rho_{m}(t, \vec{x}) \leadsto \delta \phi(t, \vec{x})$
pाysics Deyontu otanuaru ivivuel)

- There is 'no shortage' of dark energy and modified gravity (DE) models (>5000 papers on Spires)
- Each one with its motivations, number and type of parameters etc...
- EUCLID and BigBoss will be sensitive to dynamical properties of DE
- Need for a Unifying and Effective description of DE Ideally...
- A limited number of effective operators, each one responsible for an observable dynamical feature (e.g. flavor-changing neutral currents in physics beyond Standard Model)

Hint:

Most DE models reduce, in their relevant regimes, to scalar tensor-theories
$S=\int d^{4} x \sqrt{-g}\left[\frac{M^{2}}{2} f(\phi) R-\frac{1}{2}(\partial \phi)^{2}-V(\phi)+\mathcal{F}\left[\phi, g^{\mu \nu}\right]\right]+S_{m}\left[g_{\mu \nu}, \Psi_{m}\right]$
One possible strategy:
(Weinberg `08, Park, Zurek and Watson `IO, Bloomfield and Flanagan `II)
Apply covariant EFT to explore $\mathcal{F}\left[\phi, g^{\mu \nu}\right]$: field/derivative expansion

Hint:

Most DE models reduce, in their relevant regimes, to scalar tensor-theories
$S=\int d^{4} x \sqrt{-g}\left[\frac{M^{2}}{2} f(\phi) R-\frac{1}{2}(\partial \phi)^{2}-V(\phi)+\mathcal{F}\left[\phi, g^{\mu \nu}\right]\right]+S_{m}\left[g_{\mu \nu}, \Psi_{m}\right]$
One possible strategy:
Apply covariant EFT to explore $\mathcal{F}\left[\phi, g^{\mu \nu}\right]$: field/derivative expansion

However:
I) Expansion in number of fields is not necessarily meaningful

Hint:

Most DE models reduce, in their relevant regimes, to scalar tensor-theories

$$
S=\int d^{4} x \sqrt{-g}\left[\frac{M^{2}}{2} f(\phi) R-\frac{1}{2}(\partial \phi)^{2}-V(\phi)+\mathcal{F}\left[\phi, g^{\mu \nu}\right]\right]+S_{m}\left[g_{\mu \nu}, \Psi_{m}\right]
$$

$$
\begin{aligned}
& \qquad \begin{aligned}
V & =V_{1} \phi+V_{2} \phi^{2}+V_{3} \phi^{3}+V_{4} \phi^{4} \\
& =V_{2} \delta \phi^{2}+V_{3} \phi_{0}(t) \delta \phi^{2}+6 V_{4} \phi_{0}^{2}(t) \delta \phi^{2}
\end{aligned} \\
& \text { All terms potentially important in cosmological perturbation theory! }
\end{aligned}
$$

I) Expansion in number of fields is not necessarily meaningful

Hint:

Most DE models reduce, in their relevant regimes, to scalar tensor-theories
$S=\int d^{4} x \sqrt{-g}\left[\frac{M^{2}}{2} f(\phi) R-\frac{1}{2}(\partial \phi)^{2}-V(\phi)+\mathcal{F}\left[\phi, g^{\mu \nu}\right]\right]+S_{m}\left[g_{\mu \nu}, \Psi_{m}\right]$
One possible strategy:
Apply covariant EFT to explore $\mathcal{F}\left[\phi, g^{\mu \nu}\right]$: field/derivative expansion

However:

1) Expansion in number of fields is not necessarily meaningful
2) Naively "perturbations" but not always so...

Hint:

Most DE models reduce, in their relevant regimes, to scalar tensor-theories
$S=\int d^{4} x \sqrt{-g}\left[\frac{M^{2}}{2} f(\phi) R-\frac{1}{2}(\partial \phi)^{2}-V(\phi)+\mathcal{F}\left[\phi, g^{\mu \nu}\right]\right]+S_{m}\left[g_{\mu \nu}, \Psi_{m}\right]$
One possible strategy:
(Weinberg `08, Park, Zurek and Watson `IO, Bloomfield and Flanagan `II)
Apply covariant Ef
$\partial \phi^{4}, \square \phi \partial \phi^{2}$, etc.

However:

1) Expansion in number of fields is not necessarily meaningful
2) Naively "perturbations" but not always so...

Hint:

Most DE models reduce, in their relevant regimes, to scalar tensor-theories
$S=\int d^{4} x \sqrt{-g}\left[\frac{M^{2}}{2} f(\phi) R-\frac{1}{2}(\partial \phi)^{2}-V(\phi)+\mathcal{F}\left[\phi, g^{\mu \nu}\right]\right]+S_{m}\left[g_{\mu \nu}, \Psi_{m}\right]$
One possible strategy: (Weinberg `08, Park, Zurek and Watson ` 10 , Bloomfield and Flanagan ` 11)
Apply covariant EI ative expansion

However:

1) Expansion in number of fields is not necessarily meaningful
2) Naively "perturbations" but not always so...

Hint:

Most DE models reduce, in their relevant regimes, to scalar tensor-theories
$S=\int d^{4} x \sqrt{-g}\left[\frac{M^{2}}{2} f(\phi) R-\frac{1}{2}(\partial \phi)^{2}-V(\phi)+\mathcal{F}\left[\phi, g^{\mu \nu}\right]\right]+S_{m}\left[g_{\mu \nu}, \Psi_{m}\right]$
One possible strategy: (Weinberg `08, Park, Zurek and Watson ` 10 , Bloomfield and Flanagan ` 11)
Apply covariant EI ative expansion

However:
I) Expansion in number of fields is not necessarily meaningful
2) Naively "perturbations" but not always so...

Hint:

Most DE models reduce, in their relevant regimes, to scalar tensor-theories
$S=\int d^{4} x \sqrt{-g}\left[\frac{M^{2}}{2} f(\phi) R-\frac{1}{2}(\partial \phi)^{2}-V(\phi)+\mathcal{F}\left[\phi, g^{\mu \nu}\right]\right]+S_{m}\left[g_{\mu \nu}, \Psi_{m}\right]$
One possible strategy:
Apply covariant EFT to explore $\mathcal{F}\left[\phi, g^{\mu \nu}\right]$: field/derivative expansion

However:
I) Expansion in number of fields is not necessarily meaningful
2) Naively "perturbations" but not always so...
3) Only halfway through the work to be done (background first + expand..)

EFT: a theory for the relevant low-energy d.o.f.

Examples:

।) QCD: quarks and gluons \quad nucleons and pions at low energies

EFT: a theory for the relevant low-energy d.o.f.

Examples:
।) QCD: quarks and gluons nucleons and pions at low energies
2) EW theory: 4 massless vector bosons, 2 complex scalars etc. UNITARY GAUGE

3 massive vector bosons, I massive "Higgs" field etc.

EFT: a theory for the relevant low-energy d.o.f.

 Examples:।) QCD: quarks and gluons nucleons and pions at low energies
2) EW theory: 4 massless vector bosons, 2 complex scalars etc.

3 massive vector bosons, I massive "Higgs" field etc.
3) Cosmology: ...Cosmological Perturbations!

Unitary Gauge in Cosmology

The Effective Field Theory of Inflation
(Creminelli et al. `06, Cheung et al. `07)

Main idea: scalar degrees of freedom are `eaten' by the metric. Ex:
$\phi(t, \vec{x}) \rightarrow \phi_{0}(t) \quad(\delta \phi=0) \quad-\frac{1}{2} \partial \phi^{2} \rightarrow-\frac{1}{2} \dot{\phi}_{0}^{2}(t) g^{00}$

Bennett et al, 2012 (FinalWMAP paper) constrain inflation EFT operators

Unitary Gauge in Cosmology

Main idea: scalar degrees of freedom are `eaten' by the metric. Ex:
$\phi(t, \vec{x}) \rightarrow \phi_{0}(t) \quad(\delta \phi=0) \quad-\frac{1}{2} \partial \phi^{2} \rightarrow-\frac{1}{2} \dot{\phi}_{0}^{2}(t) g^{00}$
Our Recipe for Dark Energy: (Gubitosi, F.P.,Vernizzi 20I2)
I) Assume WEP (universally coupled metric $S_{m}\left[g_{\mu \nu}, \Psi_{i}\right]$)
2) Write the most generic action for $g_{\mu \nu}$ compatible with the residual un-broken symmetries (3-diff).

The Action

$$
S=\int d^{4} x \sqrt{-g}\left[\frac{M^{2}}{2} f(t) R-\Lambda(t)-c(t) g^{00}\right]+S_{D E}^{(2)}
$$

The most generic action written in terms of $g_{\mu \nu}$ compatible with the residual symmetry of spatial diffeomorphisms

The Action

$$
S=\int d^{4} x \sqrt{-g}\left[\frac{M^{2}}{2} f(t) R-\Lambda(t)-c(t) g^{00}\right]+S_{D E}^{(2)}
$$

The most generic action written in terms of $g_{\mu \nu}$ compatible with the residual symmetry of spatial diffeomorphisms

Genuine 4-dim covariant terms are still allowed, but will in general be multiplied by functions of time cause time translations are broken

The Action

$$
S=\int d^{4} x \sqrt{-g}\left[\frac{M^{2}}{2} f(t) R-\Lambda(t)-c(t) g^{00}\right]+S_{D E}^{(2)}
$$

The most generic action written in terms of $g_{\mu \nu}$ compatible with the residual symmetry of spatial diffeomorphisms

General functions of time are allowed

The Action

$$
S=\int d^{4} x \sqrt{-g}\left[\frac{M^{2}}{2} f(t) R-\Lambda(t)-c(t) g^{00}\right]+S_{D E}^{(2)}
$$

The most generic action written in terms of $g_{\mu \nu}$ compatible with the residual symmetry of spatial diffeomorphisms
...as well as tensors with free ' 0 ' indices
Essentially: contractions with $\quad n_{\mu}=-\frac{\partial_{\mu} \phi}{\sqrt{-\left(\partial \phi^{2}\right)}}$

The Action: main message

$$
S=\int d^{4} x \sqrt{-g}\left[\frac{M^{2}}{2} f(t) R-\Lambda(t)-c(t) g^{00}\right]+S_{D E}^{(2)}
$$

Any arbitrarily complicate action with one scalar d.o.f. will reduce to this in Unitary gauge, plus terms that start explicitly quadratic in the perturbations

The Action: main message

$$
S=\int d^{4} x \sqrt{-g}\left[\frac{M^{2}}{2} f(t) R-\Lambda(t)-c(t) g^{00}\right]+S_{D E}^{(2)}
$$

Any arbitrarily complicate action with one scalar d.o.f. will reduce to this in Unitary gauge, plus terms that start explicitly quadratic in the perturbations

Example:

$$
\partial \phi^{2} R=\dot{\phi}_{0}^{2}\left(-1+\delta g^{00}\right)\left(R^{(0)}+\delta R\right)=\dot{\phi}_{0}^{2}\left[-R+R^{(0)}(t)+R^{(0)}(t) g^{00}+\delta g^{00} \delta R\right]
$$

The Action: main message

$$
S=\int d^{4} x \sqrt{-g}\left[\frac{M^{2}}{2} f(t) R-\Lambda(t)-c(t) g^{00}\right]+S_{D E}^{(2)}
$$

Any arbitrarily complicate action with one scalar d.o.f. will reduce to this in Unitary gauge, plus terms that start explicitly quadratic in the perturbations

Example:

$$
\partial \phi^{2} R=\dot{\phi}_{0}^{2}\left(-1+\delta g^{00}\right)\left(R^{(0)}+\delta R\right)=\dot{\phi}_{0}^{2}\left[-R+R^{(0)}(t)+R^{(0)}(t) g^{00}+\delta g^{00} \delta R\right]
$$

The Action: main message

$$
S=\int d^{4} x \sqrt{-g}\left[\frac{M^{2}}{2} f(t) R-\Lambda(t)-c(t) g^{00}\right]+S_{D E}^{(2)}
$$

Any arbitrarily complicate action with one scalar d.o.f. will reduce to this in Unitary gauge, plus terms that start explicitly quadratic in the perturbations

Example:
$\partial \phi^{2} R=\dot{\phi}_{0}^{2}\left(-1+\delta g^{00}\right)\left(R^{(0)}+\delta R\right)=\dot{\phi}_{0}^{2}\left[-R+R^{(0)}(t)+R^{(0)}(t) g^{00}+\delta g^{00} \delta R\right]$

The Action: main message

$$
S=\int d^{4} x \sqrt{-g}\left[\frac{M^{2}}{2} f(t) R-\Lambda(t)-c(t) g^{00}\right]+S_{D E}^{(2)}
$$

Any arbitrarily complicate action with one scalar d.o.f. will reduce to this in Unitary gauge, plus terms that start explicitly quadratic in the perturbations

Example:
$\partial \phi^{2} R=\dot{\phi}_{0}^{2}\left(-1+\delta g^{00}\right)\left(R^{(0)}+\delta R\right)=\dot{\phi}_{0}^{2}\left[-R+R^{(0)}(t)+R^{(0)}(t) g^{00}+\delta g^{00} \delta R\right]$

The Action: main message

$$
S=\int d^{4} x \sqrt{-g}\left[\frac{M^{2}}{2} f(t) R-\Lambda(t)-c(t) g^{00}\right]+S_{D E}^{(2)}
$$

Any arbitrarily complicate action with one scallar d.o.f. will reduce to this in Unitary gauge, plus terms that start explicitly quadratic in the perturbations

Example:
$\partial \phi^{2} R=\dot{\phi}_{0}^{2}\left(-1+\delta g^{00}\right)\left(R^{(0)}+\delta R\right)=\dot{\phi}_{0}^{2}\left[-R+R^{(0)}(t)+R^{(0)}(t) g^{00}+\delta g^{00} \delta R\right]$

The Action

$$
S=\int d^{4} x \sqrt{-g}\left[\frac{M^{2}}{2} f(t) R-\Lambda(t)-c(t) g^{00}\right]+S_{D E}^{(2)}
$$

Enough for background equations:

$$
\begin{aligned}
c & =\frac{1}{2}(-\ddot{f}+H \dot{f}) M^{2}+\frac{1}{2}\left(\rho_{D}+p_{D}\right) \\
\Lambda & =\frac{1}{2}(\ddot{f}+5 H \dot{f}) M^{2}+\frac{1}{2}\left(\rho_{D}-p_{D}\right)
\end{aligned}
$$

The Action

$$
S=\int d^{4} x \sqrt{-g}\left[\frac{M^{2}}{2} f(t) R-\Lambda(t)-c(t) g^{00}\right]+S_{D E}^{(2)}
$$

Enough for background equations:

$$
\begin{aligned}
c & =\frac{1}{2}(-\ddot{f}+H \dot{f}) M^{2}+\frac{1}{2}\left(\rho_{D}+p_{D}\right) \\
\Lambda & =\frac{1}{2}(\ddot{f}+5 H \dot{f}) M^{2}+\frac{1}{2}\left(\rho_{D}-p_{D}\right)
\end{aligned}
$$

Generally Related to post-newtonian parameters

The Action

$$
S=\int d^{4} x \sqrt{-g}\left[\frac{M^{2}}{2} f(t) R-\Lambda(t)-c(t) g^{00}\right]+S_{D E}^{(2)}
$$

Enough for background equations:

$$
\begin{gathered}
\qquad=\frac{1}{2}(-\ddot{f}+H \dot{f}) M^{2}+\frac{1}{2}\left(\rho_{D}+p_{D}\right) \\
\Lambda=\frac{1}{2}(\ddot{f}+5 H \dot{f}) M^{2}+\frac{1}{2}\left(\rho_{D}-p_{D}\right) \\
\text { Generally Related to post-newtonian parameters } \\
\text { "Bare" Planck Mass }
\end{gathered}
$$

The Action

$$
S=\int d^{4} x \sqrt{-g}\left[\frac{M^{2}}{2} f(t) R-\Lambda(t)-c(t) g^{00}\right]+S_{D E}^{(2)}
$$

Enough for background equations:

$$
\begin{array}{rlr}
c= & \frac{1}{2}(-\ddot{f}+H \dot{f}) M^{2}+\frac{1}{2}\left(\rho_{D}+p_{D}\right) \\
\Lambda= & \frac{1}{2}(\ddot{f}+5 H \dot{f}) M^{2}+\frac{1}{2}\left(\rho_{D}-p_{D}\right) & H^{2}=\frac{1}{3 f M^{2}}\left(\rho_{m}+\rho_{D}\right) \\
\text { Generally Related to post-newtonian parameters } & \dot{H}=-\frac{1}{2 f M^{2}}\left(\rho_{m}+\rho_{D}+p_{m}+p_{D}\right) \\
& \text { "Bare" Planck Mass } \quad \text { Defined by the modified Friedman equations }
\end{array}
$$

The Action

$$
S=\int d^{4} x \sqrt{-g}\left[\frac{M^{2}}{2} f(t) R-\Lambda(t)-c(t) g^{00}\right]+S_{D E}^{(2)}
$$

Enough for background equations:

$$
\begin{array}{rlr}
c= & \frac{1}{2}(-\ddot{f}+H \dot{f}) M^{2}+\frac{1}{2}\left(\rho_{D}+p_{D}\right) & \text { Matter + Dark matter (in practice } \left.\rho_{m} \propto a^{-3}\right) \\
\Lambda=\frac{1}{2}(\ddot{f}+5 H \dot{f}) M^{2}+\frac{1}{2}\left(\rho_{D}-p_{D}\right) & H^{2}=\frac{1}{3 f M^{2}}\left(\rho_{m}+\rho_{D}\right) \\
\text { ienerally Related to post-newtonian parameters } & \dot{H}=-\frac{1}{2 f M^{2}}\left(\rho_{m}+\rho_{D}+p_{m}+p_{D}\right) \\
& \text { "Bare" Planck Mass Defined by the modified Friedman equations }
\end{array}
$$

The Action: perturbations

$$
S=\int d^{4} x \sqrt{-g}\left[\frac{M^{2}}{2} f(t) R-\Lambda(t)-c(t) g^{00}\right]+S_{D E}^{(2)}
$$

Explicitly quadratic in the perturbations:

$$
S_{D E}^{(2)}=\frac{M_{2}^{4}}{2}\left(\delta g^{00}\right)^{2}-\frac{\bar{m}_{1}^{3}}{2} \delta g^{00} \delta K-\frac{\bar{M}_{2}^{2}}{2} \delta K^{2}-\frac{\bar{M}_{3}^{2}}{2} \delta K_{\mu}{ }^{\nu} \delta K_{\nu}^{\mu}+\ldots
$$

The Action: perturbations

$$
S=\int d^{4} x \sqrt{-g}\left[\frac{M^{2}}{2} f(t) R-\Lambda(t)-c(t) g^{00}\right]+S_{D E}^{(2)}
$$

Explicitly quadratic in the perturbations:

$$
S_{D E}^{(2)}=\frac{M_{2}^{4}}{2}\left(\delta g^{00}\right)^{2}-\frac{\bar{m}_{1}^{3}}{2} \delta g^{00} \delta K-\frac{\bar{M}_{2}^{2}}{2} \delta K^{2}-\frac{\bar{M}_{3}^{2}}{2} \delta K_{\mu}{ }^{\nu} \delta K_{\nu}^{\mu}+\ldots
$$

Extrinsic curvature: $\quad n_{\mu}=-\frac{\partial_{\mu} \phi}{\sqrt{-\left(\partial \phi^{2}\right)}} \quad h_{\mu \nu} \equiv g_{\mu \nu}+n_{\mu} n_{\nu}$

$$
K_{\mu \nu}=h_{\mu}{ }^{\sigma} \nabla_{\sigma} n_{\nu} \quad \delta K_{\mu \nu}=K_{\mu \nu}-H h_{\mu \nu}
$$

The Action: perturbations

$$
S=\int d^{4} x \sqrt{-g}\left[\frac{M^{2}}{2} f(t) R-\Lambda(t)-c(t) g^{00}\right]+S_{D E}^{(2)}
$$

Explicitly quadratic in the perturbations:

$$
S_{D E}^{(2)}=\frac{M_{2}^{4}}{2}\left(\delta g^{00}\right)^{2}-\frac{\bar{m}_{1}^{3}}{2} \delta g^{00} \delta K-\frac{\bar{M}_{2}^{2}}{2} \delta K^{2}-\frac{\bar{M}_{3}^{2}}{2} \delta K_{\mu}^{\nu} \delta K_{\nu}^{\mu}+\ldots
$$

Action in standard form (no ambiguities, field redefinitions)

Examples

$$
S=\int \sqrt{-g}\left(\frac{M^{2}}{2} f R-\Lambda-g^{00}+\frac{M_{2}^{4}}{2}\left(\delta g^{00}\right)^{2}-\frac{\bar{m}_{1}^{3}}{2} \delta g^{00} \delta K+\frac{M_{3}^{4}}{6}\left(\delta g^{00}\right)^{3}+\ldots\right)
$$

Examples

$$
S=\int \sqrt{-q}\left(\frac{M^{2}}{2} f R-\Lambda-c g^{00}+\frac{M_{2}^{4}}{2}\left(\delta g^{00}\right)^{2}-\frac{\bar{m}_{1}^{3}}{2} \delta g^{00} \delta K+\frac{M_{3}^{4}}{6}\left(\delta g^{00}\right)^{3}+\ldots\right)
$$

Non-minimally coupled scalar field

$$
\begin{aligned}
S & =\int d^{4} x \sqrt{-g}\left[\frac{M^{2}}{2} F(\phi) R-\frac{1}{2}(\partial \phi)^{2}-V(\phi)\right] \\
f(t) & =F\left(\phi_{0}(t)\right), \quad \Lambda(t)=V\left(\phi_{0}(t)\right), \quad c(t)=\dot{\phi}_{0}^{2}(t)
\end{aligned}
$$

Examples

$$
S=\int \sqrt{-g}\left(\frac{M^{2}}{2} f R-\Lambda-c g^{00}+\frac{M_{2}^{4}}{2}\left(\delta g^{00}\right)^{2}-\frac{\bar{m}_{1}^{3}}{2} \delta g^{00} \delta K+\frac{M_{3}^{4}}{6}\left(\delta g^{00}\right)^{3}+\ldots\right)
$$

K-essence (Amendariz-Picon et al., 2000)

$$
S=\int d^{4} x \sqrt{-g} P(\phi, X) \quad X \equiv g^{\mu \nu} \partial_{\mu} \phi \partial_{\nu} \phi
$$

$$
\begin{gathered}
\text { Expansion: } \quad X=\dot{\phi}_{0}^{2}(t)\left(-1+\delta g^{00}\right) \\
\Lambda(t)=c(t)-P\left(\phi_{0}(t), \dot{\phi}_{0}^{2}(t)\right), \quad c(t)=\left.\frac{\partial P}{\partial X}\right|_{\phi=\phi_{0}, X=\dot{\phi}_{0}^{2}}, \\
M_{n}^{4}(t)=\left.\frac{\partial^{n} P}{\partial X^{n}}\right|_{\phi=\phi_{0}, X=\dot{\phi}_{0}^{2}} \quad(n \geq 2)
\end{gathered}
$$

Examples

$$
\left.S=\int \sqrt{-q}\left(\frac{M^{2}}{2} f R-\Lambda-c g^{00}+\frac{M_{2}^{4}}{2}\left(\delta g^{00}\right)^{2}-\frac{\bar{m}_{1}^{3}}{2} \delta g^{00} \delta K\right)+\frac{M_{3}^{4}}{6}\left(\delta g^{00}\right)^{3}+\ldots\right)
$$

"Galilean Cosmology" (Chow and Khoury, 2009)

$$
\begin{gathered}
S=\int d^{4} x \sqrt{-g}\left[\frac{M^{2}}{2} e^{-2 \phi / M} R-\frac{r_{c}^{2}}{M}(\partial \phi)^{2} \square \phi\right] \\
f(t)=e^{-2 \frac{\phi_{0}}{M}}, \quad \Lambda(t)=-\frac{r_{c}^{2}}{M} \dot{\phi}_{0}^{2}\left(\ddot{\phi}_{0}+3 H \dot{\phi}_{0}\right), \quad c(t)=\frac{r_{c}^{2}}{M} \dot{\phi}_{0}^{2}\left(\ddot{\phi}_{0}-3 H \dot{\phi}_{0}\right), \\
M_{2}^{4}(t)=-\frac{r_{c}^{2}}{2 M} \dot{\phi}_{0}^{2}\left(\ddot{\phi}_{0}+3 H \dot{\phi}_{0}\right), \quad M_{3}^{4}(t)=-\frac{3 r_{c}^{2}}{4 M} \dot{\phi}_{0}^{2}\left(\ddot{\phi}_{0}+H \dot{\phi}_{0}\right), \quad \bar{m}_{1}^{3}(t)=-\frac{r_{c}^{2}}{M} 2 \dot{\phi}_{0}^{3},
\end{gathered}
$$

More examples, more operators...

$$
S=\int \sqrt{-g}\left(\frac{M^{2}}{2} f R-\Lambda-c g^{00}+\frac{M_{2}^{4}}{2}\left(\delta g^{00}\right)^{2}-\frac{\bar{m}_{1}^{3}}{2} \delta g^{00} \delta K+\frac{M_{3}^{4}}{6}\left(\delta g^{00}\right)^{3}+\ldots\right)
$$

"Generalized Galileons" (三 Horndeski)

(Deffayet et al., 201I)

$$
\begin{aligned}
& \mathcal{L}_{2}=A(\phi, X), \\
& \mathcal{L}_{3}=B(\phi, X) \square \phi, \\
& \mathcal{L}_{4}=C(\phi, X) R-2 C_{, X}(\phi, X)\left[(\square \phi)^{2}-\left(\nabla_{\mu} \nabla_{\nu} \phi\right)^{2}\right], \\
& \mathcal{L}_{5}=D(\phi, X) G^{\mu \nu} \nabla_{\mu} \nabla_{\nu} \phi+\frac{1}{3} D_{, X}(\phi, X)\left[(\square \phi)^{3}-3(\square \phi)\left(\nabla_{\mu} \nabla_{\nu} \phi\right)^{2}+2\left(\nabla_{\mu} \nabla_{\nu} \phi\right)^{3}\right],
\end{aligned}
$$

More examples, more operators...

$$
\begin{gathered}
S=\int \sqrt{-g}\left(\frac{M^{2}}{2} f R-\Lambda-c g^{00}+\frac{M_{2}^{4}}{2}\left(\delta g^{00}\right)^{2}-\frac{\bar{m}_{1}^{3}}{2} \delta g^{00} \delta K+\frac{M_{3}^{4}}{6}\left(\delta g^{00}\right)^{3}+\ldots\right) \\
\text { Only I more quadratic operator! }
\end{gathered}
$$

"Generalized Galileons" (三 Horndeski)

(Deffayet et al., 2011)

$$
\begin{aligned}
& \mathcal{L}_{2}=A(\phi, X), \\
& \mathcal{L}_{3}=B(\phi, X) \square \phi, \\
& \mathcal{L}_{4}=C(\phi, X) R-2 C_{, X}(\phi, X)\left[(\square \phi)^{2}-\left(\nabla_{\mu} \nabla_{\nu} \phi\right)^{2}\right], \\
& \mathcal{L}_{5}=D(\phi, X) G^{\mu \nu} \nabla_{\mu} \nabla_{\nu} \phi+\frac{1}{3} D_{, X}(\phi, X)\left[(\square \phi)^{3}-3(\square \phi)\left(\nabla_{\mu} \nabla_{\nu} \phi\right)^{2}+2\left(\nabla_{\mu} \nabla_{\nu} \phi\right)^{3}\right],
\end{aligned}
$$

The Power of EFT of DE

- Completely democratic (quintessence and modified gravity on same foot)
- Mixing with gravity studied systematically

Mixing with gravity:

$$
S=\int \sqrt{-g}\left(\frac{M^{2}}{2} f R-\Lambda-c g^{00}+\frac{M_{2}^{4}}{2}\left(\delta g^{00}\right)^{2}-\frac{\bar{m}_{1}^{3}}{2} \delta g^{00} \delta K+\frac{1}{2} T^{\mu \nu} \delta g_{\mu \nu}\right)
$$

Apply "Stueckelberg trick"

$$
t \rightarrow t+\pi(x)
$$

and go to Newtonian Gauge $\quad d s^{2}=-(1+2 \Phi) d t^{2}+a^{2}(1-2 \Psi) \delta_{i j} d x^{i} d x^{j}$
Expand at quadratic order and retain only kinetic operators (2 derivatives):

$$
\dot{\Psi}^{2}, \quad(\vec{\nabla} \Psi)^{2}, \quad \text { etc. }
$$

Modified Gravity \approx Kinetic mixing $\quad \dot{\Psi} \dot{\pi}, \quad \vec{\nabla} \Psi \vec{\nabla} \pi, \quad$ etc.

Mixing with gravity:

$$
S=\int \sqrt{-g}\left(\frac{M^{2}}{2} f R-\Lambda-c g^{00}+\frac{M_{2}^{4}}{2}\left(\delta g^{00}\right)^{2}-\frac{\bar{m}_{1}^{3}}{2} \delta g^{00} \delta K+\frac{1}{2} T^{\mu \nu} \delta g_{\mu \nu}\right)
$$

Apply "Stueckelberg trick"

$$
t \rightarrow t+\pi(x)
$$

and go to Newtonian Gauge $\quad d s^{2}=-(1+2 \Phi) d t^{2}+a^{2}(1-2 \Psi) \delta_{i j} d x^{i} d x^{j}$
Expand at quadratic order and retain only kinetic operators (2 derivatives):

$$
\dot{\Psi}^{2}, \quad(\vec{\nabla} \Psi)^{2}, \quad \text { etc. }
$$

Modified Gravity \approx Kinetic mixing $\quad \dot{\Psi} \dot{\pi}, \quad \vec{\nabla} \Psi \vec{\nabla} \pi, \quad$ etc.
Ex: $\quad \delta g^{00} \delta K \simeq \dot{\Psi} \dot{\pi}+\nabla \Phi \nabla \pi$

Anisotropic stress, Renormalized Newton Constant etc.

The Power of EFT of DE

- Completely democratic (quintessence and modified gravity on same foot)
- Mixing with gravity studied systematically
- Stability, speed of sound etc.

Model building v.s. General treatment (winh Gubiosis, PRazar, 2012)

$S=\int \sqrt{-g}\left(\frac{M^{2}}{2} f R-\Lambda-c g^{00}+\frac{M_{2}^{4}}{2}\left(\delta g^{00}\right)^{2}-\frac{\bar{m}_{1}^{3}}{2} \delta g^{00} \delta K+\frac{M_{3}^{4}}{6}\left(\delta g^{00}\right)^{3}+\ldots\right)$
Find, once and for all, the action for the scalar degree of freedom:

$$
\begin{array}{r}
S_{\pi} \stackrel{\text { kinetic }}{=} \int a^{3}\left\{\left[c+2 M_{2}^{4}+\frac{3}{4} \frac{\dot{f}^{2}}{f} M^{2}-\frac{3}{2} \bar{m}_{1}^{3} \frac{\dot{f}}{f}+\frac{3}{4} \frac{\bar{m}_{1}^{6}}{M^{2}}\right] \dot{\pi}^{2}\right. \\
\left.-\left[c+\frac{3}{4} \frac{\dot{f}^{2}}{f} M^{2}-\frac{1}{2} \bar{m}_{1}^{3} \frac{\dot{f}}{f}-\frac{1}{4} \frac{\bar{m}_{1}^{6}}{M^{2}}+\frac{1}{2}\left(\dot{m}_{1}^{3}+H \bar{m}_{1}^{3}\right)\right] \frac{(\vec{\nabla} \pi)^{2}}{a^{2}}\right\}
\end{array}
$$

And address, once and for all, all questions of stability, speed of sound and deviations from GR:

$$
\begin{aligned}
1-\gamma & =\frac{1}{2} \frac{\left(M^{2} \dot{f}^{2}+\bar{m}_{1}^{3} \dot{f}\right) / f}{c+M^{2} \dot{f}^{2} / f+\frac{1}{2}\left(\bar{m}_{1}^{3}+H \bar{m}_{1}^{3}\right)} \\
G_{\mathrm{eff}} & =\frac{1}{8 \pi M^{2} f} \frac{c+M^{2} \dot{f}^{2} / f+\frac{1}{2}\left(\bar{m}_{1}^{3}+H \bar{m}_{1}^{3}\right)}{c+\frac{3}{4} M^{2} \dot{f}^{2} / f-\frac{1}{2} \bar{m}_{1}^{3} \dot{f} / f-\frac{1}{4} \bar{m}_{1}^{6} / M^{2}+\frac{1}{2}\left(\bar{m}_{1}^{3}+H \bar{m}_{1}^{3}\right)}
\end{aligned}
$$

Conclusions

- Unifying framework for dark energy/modified gravity
- Effective language: cosmological perturbations as the relevant d.o.f.
- Dark energy and modified gravity on the same foot
- Unambiguous way to address mixing, stability, speed of sound etc.
- See also Bloomfield et al. 1211.7054. Much work in progress

A venturesome path

A venturesome path

 The Universe has accelerated... twice!

A venturesome path

The Universe has accelerated... twice!

A venturesome path

The Universe has accelerated... twice!
Both DE and Inflation are (at face value) Infra-red issues. Can't we attempt a Unifying description?

A venturesome path

The Universe has accelerated... twice!
Both DE and Inflation are (at face value) Infra-red issues. Can't we attempt a Unifying description?

Modify General Relativity in the infra-red at the level of the geometry:
Go beyond the Pseudo-Riemannian Metric Manifold
0904.4299 (JMPA)
0907.0765 (NJP, "best of 2009")
0910.3949 (PLB, with S. Nesseris and S. Tsujikawa)
0910.4677, 1204.4099, in progress...

Rest of the talk: not concerned about this. Unifying approach for DE and more conventional modifications of gravity.

Mixing with gravity 1: Brans-Dicke

$$
S=\int \sqrt{-g}\left(\frac{M^{2}}{2} f R-\Lambda-c g^{00}+\frac{M_{2}^{4}}{2}\left(\delta g^{00}\right)^{2}-\frac{\bar{m}_{1}^{3}}{2} \delta g^{00} \delta K+\frac{1}{2} T^{\mu \nu} \delta g_{\mu \nu}\right)
$$

Apply Stueckelberg and go to Newtonian Gauge

$$
d s^{2}=-(1+2 \Phi) d t^{2}+a^{2}(1-2 \Psi) \delta_{i j} d x^{i} d x^{j}
$$

$S \stackrel{\text { kinetic }}{=} \int M^{2} f\left[-3 \dot{\Psi}^{2}-2 \vec{\nabla} \Phi \vec{\nabla} \Psi+(\vec{\nabla} \Psi)^{2}+c \dot{\pi}^{2}-c(\vec{\nabla} \pi)^{2}+3(\dot{f} / f) \dot{\Psi} \dot{\pi}\right)+(\hat{f} / f) \vec{\nabla} \pi(\vec{\nabla} \Phi-2 \vec{\nabla} \Psi)$
Mixing

Mixing with gravity 1: Brans-Dicke

$$
S=\int \sqrt{-g}\left(\frac{M^{2}}{2} f R-\Lambda-c g^{00}+\frac{M_{2}^{4}}{2}\left(\delta g^{00}\right)^{2}-\frac{\bar{m}_{1}^{3}}{2} \delta g^{00} \delta K+\frac{1}{2} T^{\mu \nu} \delta g_{\mu \nu}\right)
$$

Apply Stueckelberg and go to Newtonian Gauge

$$
d s^{2}=-(1+2 \Phi) d t^{2}+a^{2}(1-2 \Psi) \delta_{i j} d x^{i} d x^{j}
$$

$S \stackrel{\text { kinetic }}{=} \int M^{2} f\left[-3 \dot{\Psi}^{2}-2 \vec{\nabla} \Phi \vec{\nabla} \Psi+(\vec{\nabla} \Psi)^{2}+c \dot{\pi}^{2}-c(\vec{\nabla} \pi)^{2}+3(\dot{f} / f) \dot{\Psi} \dot{\pi}\right)+(\dot{f} / f) \vec{\nabla} \pi(\vec{\nabla} \Phi-2 \vec{\nabla} \Psi)$

De-mixing $=$ conformal transformation
Mixing

$$
\begin{aligned}
& \Phi_{E}=\Phi+\frac{1}{2}(\dot{f} / f) \pi \\
& \Psi_{E}=\Psi-\frac{1}{2}(\dot{f} / f) \pi
\end{aligned}
$$

Mixing with gravity 1: Brans-Dicke

$$
S=\int \sqrt{-g}\left(\frac{M^{2}}{2} f R-\Lambda-c g^{00}+\frac{M_{2}^{4}}{2}\left(\delta g^{00}\right)^{2}-\frac{\bar{m}_{1}^{3}}{2} \delta g^{00} \delta K+\frac{1}{2} T^{\mu \nu} \delta g_{\mu \nu}\right)
$$

Apply Stueckelberg and go to Newtonian Gauge

$$
d s^{2}=-(1+2 \Phi) d t^{2}+a^{2}(1-2 \Psi) \delta_{i j} d x^{i} d x^{j}
$$

$S^{\text {kinetic }} \int M^{2} f\left[-3 \dot{\Psi}^{2}-2 \vec{\nabla} \Phi \vec{\nabla} \Psi+(\vec{\nabla} \Psi)^{2}+c \dot{\pi}^{2}-c(\vec{\nabla} \pi)^{2}+3(\dot{f} / f) \dot{\Psi} \dot{\pi}+(\dot{f} / f) \vec{\nabla} \pi(\vec{\nabla} \Phi-2 \vec{\nabla} \Psi)\right]$

$$
1-\gamma \equiv \frac{\Phi-\Psi}{\Phi}=\frac{M^{2} \dot{f}^{2} / f}{2\left(c+M^{2} \dot{f}^{2} / f\right)} \quad \text { anisotropic stress }
$$

Newtonian limit

$$
G_{\text {eff }}=\frac{1}{8 \pi M^{2} f} \frac{c+M^{2} \dot{f}^{2} / f}{c+\frac{3}{4} M^{2} \dot{f}^{2} / f} \quad \text { dressed Newton constant }
$$

Mixing with gravity 2 :
(Cf. braiding: Deffayet et al., 2010)

$$
\begin{gathered}
f(t)=1 \\
S=\int \sqrt{-g}\left(\frac{M^{2}}{2} f R-\Lambda-c g^{00}+\frac{M_{2}^{4}}{2}\left(\delta g^{00}\right)^{2}-\frac{\bar{m}_{1}^{3}}{2} \delta g^{00} \delta K+\frac{1}{2} T^{\mu \nu} \delta g_{\mu \nu}\right)
\end{gathered}
$$

Apply Stueckelberg and go to Newtonian Gauge

$$
d s^{2}=-(1+2 \Phi) d t^{2}+a^{2}(1-2 \Psi) \delta_{i j} d x^{i} d x^{j}
$$

$$
\begin{gathered}
S_{\text {Linetic }}^{=} \int M^{2}\left[-3 \dot{\Psi}^{2}-2 \vec{\nabla} \Phi \vec{\nabla} \Psi+(\vec{\nabla} \Psi)^{2}\right]+c \dot{\pi}^{2}-c(\vec{\nabla} \pi)^{2}-3 \bar{m}_{1}^{3} \dot{\Psi} \dot{\pi}-\dot{m}_{1}^{3} \vec{\nabla} \Phi \vec{\nabla} \pi \\
\text { De-mixing } \neq \text { conformal transformation }
\end{gathered}
$$

$$
\begin{aligned}
& \Phi_{E}=\Phi+\frac{\bar{m}_{1}^{3}}{2 M^{2}} \pi \\
& \Psi_{E}=\Psi+\frac{\bar{m}_{1}^{3}}{2 M^{2}} \pi
\end{aligned}
$$

Mixing with gravity 2 :
(Cf. braiding: Deffayet et al., 2010)

$$
\begin{gathered}
f(t)=1 \\
S=\int \sqrt{-g}\left(\frac{M^{2}}{2} f R-\Lambda-c g^{00}+\frac{M_{2}^{4}}{2}\left(\delta g^{00}\right)^{2}-\frac{\bar{m}_{1}^{3}}{2} \delta g^{00} \delta K+\frac{1}{2} T^{\mu \nu} \delta g_{\mu \nu}\right)
\end{gathered}
$$

Apply Stueckelberg and go to Newtonian Gauge
$S \stackrel{\text { kinetic }}{=} \int M^{2}\left[-3 \dot{\Psi}^{2}-2 \vec{\nabla} \Phi \vec{\nabla} \Psi+(\vec{\nabla} \Psi)^{2}\right]+c \dot{\pi}^{2}-c(\vec{\nabla} \pi)^{2}-3 \bar{m}_{1}^{3} \dot{\Psi} \dot{\pi}-\vec{m}_{1}^{3} \vec{\nabla} \Phi \vec{\nabla} \pi$
Mixing

Mixing with gravity 2 :
(Cf. braiding: Deffayet et al., 2010)

$$
\begin{gathered}
f(t)=1 \\
S=\int \sqrt{-g}\left(\frac{M^{2}}{2} f R-\Lambda-c g^{00}+\frac{M_{2}^{4}}{2}\left(\delta g^{00}\right)^{2}-\frac{\bar{m}_{1}^{3}}{2} \delta g^{00} \delta K+\frac{1}{2} T^{\mu \nu} \delta g_{\mu \nu}\right)
\end{gathered}
$$

Apply Stueckelberg and go to Newtonian Gauge
$S \stackrel{\text { kinetic }}{=} \int M^{2}\left[-3 \dot{\Psi}^{2}-2 \vec{\nabla} \Phi \vec{\nabla} \Psi+(\vec{\nabla} \Psi)^{2}\right]+c \dot{\pi}^{2}-c(\vec{\nabla} \pi)^{2}-3 \vec{m}_{1}^{3} \dot{\Psi} \dot{\pi}-\dot{m}_{1}^{3} \vec{\nabla} \Phi \vec{\nabla} \pi$

Speed of Sound of DE
Mixing

$$
c_{s}^{2}=\frac{c+\frac{1}{2}\left(H \bar{m}_{1}^{3}+\dot{m}_{1}^{3}\right)-\frac{1}{4} \bar{m}_{1}^{6} / M^{2}}{c+\frac{3}{4} \bar{m}_{1}^{6} / M^{2}}
$$

Mixing with gravity 2 :
(Cf. braiding: Deffayet et al., 2010)
$f(t)=1$
$S=\int \sqrt{-g}\left(\frac{M^{2}}{2} f R-\Lambda-c g^{00}+\frac{M_{2}^{4}}{2}\left(\delta g^{00}\right)^{2}-\frac{\bar{m}_{1}^{3}}{2} \delta g^{00} \delta K+\frac{1}{2} T^{\mu \nu} \delta g_{\mu \nu}\right)$
Apply Stueckelberg and go to Newtonian Gauge
$S \stackrel{\text { kinetic }}{=} \int M^{2}\left[-3 \dot{\Psi}^{2}-2 \vec{\nabla} \Phi \vec{\nabla} \Psi+(\vec{\nabla} \Psi)^{2}\right]+c \dot{\pi}^{2}-c(\vec{\nabla} \pi)^{2}-3 \bar{m}_{1}^{3} \dot{\Psi} \dot{\pi}-\dot{m}_{1}^{3} \vec{\nabla} \Phi \vec{\nabla} \pi$

Newtonian limit

NO anisotropic stress

$$
G_{\mathrm{eff}}=\frac{1}{8 \pi M^{2} f}\left(1-\frac{\bar{m}_{1}^{3}}{4 c M^{2}}\right)^{-1} \text { dressed Newton constant }
$$

Detailed model building v.s. general treatments

$$
S=\int \sqrt{-g}\left(\frac{M^{2}}{2} f R-\Lambda-c g^{00}+\frac{M_{2}^{4}}{2}\left(\delta g^{00}\right)^{2}-\frac{\bar{m}_{1}^{3}}{2} \delta g^{00} \delta K+\frac{M_{3}^{4}}{6}\left(\delta g^{00}\right)^{3}+\ldots\right)
$$

More interesting operators to come...
(Gleyzes, Langlois, F.P.,Vernizzi, in progress)

Conclusions

- Unifying framework for dark energy/modified gravity
- Effective language: cosmological perturbations as the relevant d.o.f.
- Dark energy and modified gravity on the same foot
- Unambiguous way to address mixing, stability, speed of sound etc.
- See also Bloomfield et al. 1211.7054. Much work in progress

