Traces of composite light quarks at the LHC

Cédric Delaunay CERN-TH

based on *arxiv:1303.!!!!* w/ Grojean-Perez 1306.asap w/ Flacke-Lee-Panico-Perez 1306.asap w/ Blanke-Martin-Perez

gdr.terascale@montpellier.fr

May 15th 2013

Outline

- Naturalness → there's a top sector ~< TeV but no hint for (a scale for) flavor physics
- Composite PNGB Higgs & partial compositeness

|SM> = cosθ |elementary> + sinθ |composite> |partner> = -sinθ |elementary> + cosθ |composite>

- Constraining light quark compositeness w/
 - dijet searches
 - direct searches of partners
 - Higgs couplings to gluons and photons
- Hidding top partners with top/charm mixing

Q: what makes the observed SM-like Higgs light?

If nothing but gravity $\rightarrow \Lambda = M_{Pl} \sim IO^{Iq} Ge \mathcal{V} = hierarchy problem$

- 2 new physics paths:
 - $\land \sim M_{PL}$ but there's a new symmetry above the TeV scale *e.g. supersymmetry*
 - SM fields couple to a new strong dynamics with $\land \sim \neg e \lor$ *e.g. composite Higgs models*

be it weakly or strongly coupled, natural BSM theories have **top partners < / TeV** to soften the UV sensitivity of the Higgs mass

Q: where are they?

SUSY \rightarrow light stops

Barbieri-Giudice '88,..., Papucci-Ruderman-Weiler '11

current limits are rather strong:

m_{stop}>~700GeV

unless compressed spectrum? $m_{stop} \sim m_{top}$

taken from Stelzer @HCP'12

m_{T5/3}>~770GeV

direct searches of top partners at the LHC7+8 have started to pressure naturalness direct searches of top partners at the LHC7+8 have started to pressure naturalness

light quarks are (almost exactly) blind to EWSB, no hint for flavor physics from naturalness

Q1: do they have partners too? within LHC reach?

Q2: are light quark composite objects?

Assume a new QCD-like force confining at $\land \sim few \ \forall eV$

EW symmetry breaking through a composite Higgs has no (big) hierarchy problem! Georgi-Kaplan '84

Assume a new QCD-like force confining at $\land \sim few \ \forall e \lor$

EW symmetry breaking through a composite Higgs has no (big) hierarchy problem! Georgi-Kaplan '84

to solve little hierarchy problem *and* naturally get $M_H \ll TeV$:

make H a "pion" *i.e.* a PNGB : $H \subset \mathcal{G}_{\mathcal{H}}$

 $(\text{QCD pions} \subset SU(2)_L \times SU(2)_R/SU(2)_V)$

Contino-Nomura-Pomarol '03 Agashe-Contino-Pomarol '04

CHM 2-site description

elementary sector ∧~M_{Pl}

 $\begin{array}{c} q_L \ u_R \ d_R \\ W_\mu \ B_\mu \ G_\mu \end{array}$

 \leftarrow mass mixing \rightarrow

 $g_i \psi_i O_i$ $\epsilon_i = g_i / g_{\rho}$

strong sector $\Lambda = 4\pi f$ $\neg few \ TeV$ $H \in G/\mathcal{H}$ + resonances $m_{\rho} = g_{\rho}f$

f = Higgs "decay constant", $g_{\rho} < 4\pi$

CHM 2-site description

elementary sector $\Lambda \sim M_{Pl}$ $q_L \ u_R \ d_R$ $W_\mu \ B_\mu \ G_\mu$

 $\leftarrow \text{mass mixing} \rightarrow g_i \psi_i O_i$

 $\epsilon_i = g_i / g_{\rho}$

strong sector $\Lambda = 4\pi f$ $\neg few \ TeV$ $H \in G/\mathcal{H}$ $+ \text{ resonances } m_{\rho} = g_{\rho}f$

 $f = \text{Higgs "decay constant"}, g_{\rho} < 4\pi$ smallest coset w/ unbroken custodial symmetry: SO(5)/SO(4)fermion masses induced by ϵ_i

CHM 5D warped duals

Maldacena'97: « strong 4D SYM theories are dual to gravity in AdS5xS5 » **RS'99:** « Hierarchy problem is solved in AdS5 bckg: $ds^2 = e^{-2ky} dx^2 - dy^2$ »

CHM 5D warped duals

Maldacena'97: « strong 4D SYM theories are dual to gravity in AdS5xS5 » **RS'99:** « Hierarchy problem is solved in AdS5 bckg: $ds^2 = e^{-2ky} dx^2 - dy^2$ »

 $\epsilon \sim \text{IR zeromode-wavefunction } f(c),$ c = 5D fermion mass ~ anomalous dim' of chiral operators Arkani-Hamed-Porrati-Randall '00

1) dijets searches:

 $q=u_{,d}: \Lambda > 4 - 6 \text{TeV}_{e.g.} \text{CMS-EXO-11-010'13}$ $q=s_{,c}: \Lambda > o(300) \text{GeV} \text{DaRold-CD-Grojean-Perez'12}$

 \rightarrow 2nd generation's not constrained thanks to small pdf

2) direct searches of partners = vector-like Q

Carena-Han-Santiago et al. '11

 $\lambda \sim v/f \times \epsilon_{q}$

2) direct searches of partners = vector-like Q

Carena-Han-Santiago et al. '11

 $\lambda \sim v/f \star e_q$

Q=u,d partners: $m_Q > 1.0-1.4$ TeV ATLAS-CONF-2012-137 driven by valence quark PDFs + t-channel (assumed $\lambda \sim v/m_Q$) Q=c, S partners: $m_Q > \sim few IOOGeV$ CD-Flacke-Gonzalez-Lee-Panico-Perez, to appear

3) Higgs (radiative) couplings:

3) Higgs (radiative) couplings:

3) Higgs (radiative) couplings:

3) Higgs (radiative) couplings:

3) Higgs (radiative) couplings:

3) Higgs (radiative) couplings:

CD-Grojean-Perez '13

Low-energy Higgs theorem: Vainshtein-Voloshin-Zakharov-Shifman '79

 $\mathcal{M}_{gg \to h} \propto \left(\frac{\partial}{\partial \log H} \log \det \mathcal{M}^2(H)\right)$

typical structure in CHM:

$$\mathcal{M} = \begin{pmatrix} 0 & \lambda_q & 0\\ 0 & M_Q & Y\tilde{H}\\ \lambda_u & \tilde{Y}\tilde{H}^{\dagger} & M_U \end{pmatrix}$$

det $M \propto H$

→ no sensitivity to top compositeness and top partners spectrum Falkowski 'o8, Azatov-Galloway '10

3) Higgs (radiative) couplings:

3) Higgs (radiative) couplings:

3) Higgs (radiative) couplings:

3) Higgs (radiative) couplings:

CD-Grojean-Perez '13

→ composite higgs couplings to gluon and photon probe light quark compositeness !!

net effect scales like ϵ_L^2 or ϵ_R^2 but not $\epsilon_L \epsilon_R$ (hgg is flavor singlet) \rightarrow one chirality composite is enough, say RH to pass EWPTs

3) Higgs (radiative) couplings:

3) Higgs (radiative) couplings:

3) Higgs (radiative) couplings:

CD-Grojean-Perez '13

light quark compositeness →

Q: can one bury composite top partners @LHC?

Yes! by mixing (RH) top with composite charm
Blancke-CD-Martin-Perez
to appear

Q: can one bury composite top partners @LHC?

Yes! by mixing (RH) top with composite charm

Blancke-CD-Martin-Perez

 $\sigma = \sigma(m_{T}) (\cos\theta_{ct})^{2} + \sigma(m_{C}) (\sin\theta_{ct})^{2}$

Q: can one bury composite top partners @LHC?

Yes! by mixing (RH) top with composite charm

Blancke-CD-Martin-Perez

$\sigma = \sigma(m_T) (\cos\theta_{ct})^2 + \sigma(m_C) (\sin\theta_{ct})^2$

PNGB Higgs potential is controlled by ϵ^2

- → one can slightly decouple C5/3 without introducing fine-tuning since the c/t mixing is in the RH sector!
- \rightarrow limit on top partners much weaker, T₂/₃ dominated