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Main arguments:

* Annihilation final states lead to: gamma-rays + antimatter

e y-rays : lines, spatial + spectral distribution of signals vs bg
* Antimatter cosmic rays: secondary, therefore low bg

* DM-induced antimatter has specific spectral properties

* Do we control the backgrounds?
* Antiprotons are secondaries, not necessarily positrons
* Do the natural DM particle models provide clean signatures?
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Main arguments:

 Annihilation final states lead to: gamma-rays + antimatter

e y-rays : lines, spatial + spectral distribution of signals vs bg
* Antimatter cosmic rays: secondary, therefore low bg

* DM-induced antimatter has specific spectral properties

* Do we control the backgrounds?
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* Do the natural DM particle models provide clean signatures?
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Transport of Galactic cosmic rays
The standard picture
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From Haslam et al data (1982)



Dark matter has long been discovered !
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Hooper++ 12: gamma-rays + radio at GC
— DM around 10 GeV

WIMP-nucleon cross-section [em 7]

-
=

10' ,
WIMP Mass [GeV/ic™|

Agnese++ 13
DAMA, CoGenT, CRESST ... + CDMSII(SI)
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— DM around 10 GeV

Counts - Model

Around the GC
o AMS-02 " r 3
o PAMELA Weniger++, Finkbeiner++ 12
A Fermi — DM around 130 GeV

Positron fraction

511 keV, Knodlséder/Weidenspointner++ 05 - 08
Boehm, Hooper++ 04 — DM around | MeV

e* energy [GeV]

HEAT/PAMELA/AMS positron excess
Bergstrom++, Cirelli++ 08 — DM around 300-1000 GeV
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Around the GC
o AMS-02 " r 3
o PAMELA Weniger++, Finkbeiner++ 12
A Fermi — DM around 130 GeV

Pulsars?

Positron fraction

511 keV, Knodlséder/Weidenspointner++ 05 - 08
Boehm, Hooper++ 04 — DM around | MeV

e* energy [GeV]

HEAT/PAMELA/AMS positron excess
Bergstrom++, Cirelli++ 08 — DM around 300-1000 GeV
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Comments on the positron fraction

AMS result: nothing really new but impressive precision

o AMS-02
o PAMELA
A Fermi
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AMS Collab (2013)

Delahaye, Lavalle, Lineros, Donate & Fornengo (2010)

Primary e* from pulsars

Relativistic losses
——  Thomson approx.
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Aharonian+ (1995)

Pulsars efficiently produce e+/- pairs.

Realistic modeling is complicated (eg Delahaye et al 10).

=> geparate distant/local sources, and accommodate the full data (e-, e+,
ete-, et/ete-) ...

=> Pulsar wind nebulae (PWNe) as HE positron/electron sources
=> SNRs as HE electron sources (each PWN is paired with an SNR)

=> you may fit amplitudes / spectral indices ... then what?
** Observational constraints!

=>use pulsar period, multiwavelength data for all observed sources ...
but ... not that simple.



Modeling the electron/positron sources?

cosmic rays

IR Optical
p 3*1..‘_ X-ray

Crab nebula (ESA)
(just for illustration,
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I K(E) o 1 TeV 100 pc

log10i(EeV)
E-loss time Horns & Aharonian (04)
e Crab SED
Different timescales: Very complicated problem:
1) E-loss time > source age > transport time 1) photon data: CRs which are mostly still confined in sources
2) transport time >> photon time (escape issue)
=> cannot directly use photon data 2) coupled evolution of magnetic fields and CR density

=> requires dynamical models for sources (time evolution)
Some attempts at the source level (eg Ohira+ 10-11), but

much more work necessary.

Work in prep. with Y. Gallant and A. Marcowith (LUPM).
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Anisotropy as a test?
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Caveats:

* model-dependent (diffusion halo size again!)

* contributions of other sources (eg dipole from
GC/antiGC asymmetry in the source distribution)
* cancellations might occur in the dipole

* multipole analysis necessary

* physically meaningful information

* should be provided for all CR species separately (eg
positrons, antiprotons, etc.)

* will provide constraints to the full transport model

* AMS and CTA may reach the necessary sensitivity



Other astrophysical solution(s)

Secondaries generated in SNRs are accelerated like primaries:
Berezhko++ 03, Blasi 09, Blasi & Serpico 09,
Mertch & Sarkar 09, Ahler++ 09

Acceleration in SNR Propagation in Galaxy

accelerated

secondary eT Lo

- % secondary o (v, ) component

primary protons

= =

- = % secondary e conventional

primary e~ component

(from Ahler++ 09)

Antiproton fraction B/C ratio

Bohm-like ISM
ISM+B term
Total ——

Dashed Lines — Bohm like
Salid lines — Kraichnan

§ HEAD-3-C2
i ATIC-2
# CREAM

“ Aterm

Blasi & Serpico 09
108

Kinetic Energy, T [GeV]

Ahler++ 0%

10* 1?
energy per nucleon [GeV)

Blasi 09

Associated signatures: rising antiproton fraction (like DM) and B/C ratio
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Dark Matter?

(indirect searches very important and
complementary with other methods ...
doesn't mean DM must be the solution to
every astrophysical “excess”)



“Standard”™ DM models do not fit
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Generic DM interpretation of the positron excess

PAMELA 08

background? !’
backeground?

i/

ATICOS
PPB—BETS08

background? 'S
DM DM — pu. NFW profile

Cirelli, Strumia++ (2008-2013)

Method:
* background (!!!) + annihilation cross-section as free params.

Conclusions:

ov [cm?/sec)

* severe antiproton constraints => multi-TeV or leptophilic models FERMI Dwarts
— — — FERMI 30
---- FERMI

=> other constraints from CMB, gamma-rays, etc. ye
Mpy [GeV]
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Impact of the size of the diffusion zone

Maurin+ (2001) & Donato+ (2002)
=> attempts to bracket theoretical uncertainties

Besides best fit transport model (dubbed med), proposal for 2
extreme configurations:

min: L =1 kpc
med: L =4 kpc
max: L =15 kpc

minimizing and maximizing the DM-induced fluxes, respectively.

NB: much less effect on high-energy positrons (Lavalle+ 07,
Delahaye+ 08) — short propagation scale.
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ANTIDEUTERON FLUXES FROM DARK MATTER ...
10-2

——————— m,= 50 GeV, TOA
Solar Minimum with ¢, = 500 MV ||

The game people usually play:

1) you want your model to survive antiproton
constraints:

=> take a small L

2) you want to advertise your model for detection:
=> take L from med to max.
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Where do constraints on L come from?

Putze++ 11
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IMPT-8 (6=250 MV)
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Secondary/primary ratios constrain transport history
=> most used is B/C
** provides constraints on K/L

Breaking degeneracy with
radioactive secondaries
=> lifetime too short to reach L
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Uncertainties in the diffusion halo size?
Quick digression towards positrons

Secondary positrons
(eg. Delahaye++09, Lavalle 11)

Lavalle (2010)
[

Secondary e’ flux
[CREAM CR fit]

AR

Small L. models in tension with positron data

=> L > 1 kpc => Very conservative statement!
Propagation [KN incl.]

_ Perspectives:
* CAPRICE 94 min « PAMELA/AMS data still to come

o HEAT 94-95 med ; . _
=> Ongoing work with Maurin and Putze
AMS 01 max

10
E [GeV]
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Summary

- HESS, PAMELA, Fermi, AMSO02: GeV-TeV astrophysics has entered the precision era
- AMSO02 will provide data with unprecedented precision: big improvements expected in CR physics

- Current GCR models allow for a reasonable understanding of (1) the local CR budget and (11) the
Galactic diffuse emission(s)

- Nota: there is no “standard model” for GCRs so far! (many inputs, lucidity is required)

- Current models are reaching their limits

=> prediction power saturates, need to put more physics in (eg pulsars) ... at the price of increasing
theoretical uncertainties (though expected to decrease in the future)

For DM:
- Some existing astrophysical anomalies might (or not) be due to DM annihilation/decay.
- Very contrived/unnatural solution for the positron excess.
- Best indirect detection smoking-gun signals remain:
1) DSPhs as observed in gamma-rays + gamma-ray lines
2) HE neutrinos from the Sun
- “second-class” smoking gun: antiproton + antideuteron excesses not seen in B/C
- Antimatter CRs + diffuse emissions more powerful as constraints: other astrophysical processes come
in (not completely controlled yet)

*** Complementarity with other detection methods (direct/LLHC) is definitely the best strategy.
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Diffuse emission. a top bottom approach

Cosmological simulation:
self-consistent modeling of a galaxy (DM, gas, stars)

Stars/SNRs

FIG. 1. Left: DM halo and subhalos; the virial radius (264 kpc) appears as a red circle. Middle: top view of the gas content
(scaled as in right panel). Right: SN events in the last 500 Myr (10 kpc grid).

1204.4121

Skymaps:
DM (100 GeV b-bbar) — astro processes — DM/astro

Advantages:

* all ingredients are identified and localized (sources and gas)
* check the relevance of current assumptions
Limits: spatial resolution

=> preliminary results encouraging, work in progress Compare e.g. with Wenlger 12
(optimized region for 130 GeV line)
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