MicrOMEGAs - a tool for dark matter studies in a generic model of particle physics. Version 3

G. Belanger, F. Boudjema, A. Pukhov, A. Semenov arXiv:1305.0237 [hep-ph]

Outline

- DM observables calculated by micrOMEGAs:
 - Relic density
 - Direct detection
 - Indirect detection (Green function method)
 - Sun/Earth captured DM neutrino signal
- Dark matter models
 - MSSM, NMSSM,CPVMSS (SUSY)
 - IDM, Z3M, LHM,RHNM,
 - any user model
- Particle decays and cross sections
 - Higgs decays with $\chi\chi$, gg and virtial Z/W channels
- Easy interface with other packages:
 - SuSpect, SoftSUSY, SPHENO,.., NMSSMTools, CPsuperH (spectra)
 - HIGGSBOUNGS, SUPERISO, (observables)

Guiding principles of micrOMEGAs

• Human make mistakes - computer not

– Automation

- Several groups are developing specialized codes
 - Interface routines
- Users might want to improve one aspect
 - Modularity
- We do not know what DM is made of
 - Possibility to include different DM candidates
- Models are often complex with huge parameter space
 Speed of execution
- Ready made, stand-alone package for the non-expert
 - User friendly interface and manual

Matrix elements in micrOMEGAS

MicrOMEGAs uses CalcHEP program arXiv 1207.6082(hep ph)

for generation of matrix elements. Because **CalcHEP** is designed to work with generic model, **micrOMEGAs** is able to calculate DM related observables for generic model as well.

Model of particle interaction in CalcHEP is presented by 5 tables.

1) Variables

Inert Doublet Model Variables

Name	Value	> Comment	<
EE	0.31333	Electromagnetic coupling constant	
SW	0.474	sin of the Weinberg angle	
MZ	91.187	Mass of Z	
MHX	111	Mass of Inert Doublet Higgs	
MH3	222	Mass of CP-odd Higgs	
MHC	333	Mass of charged Higgs	
LaL	0.01	Coupling in Inert Sector	4

3) Constrained parameters of the model.

Inert	Doublet					
Const	raints					
Name	<pre>> Expression</pre>					
CW	sqrt(1-SW^2)					
MW	MZ*CW					
Mb	MbEff(Q)					
Мс	McEff(Q)					
mu2	$MHX^2-laL*(2*MW/EE*SW)^2$					
la3	2*(MHC^2-mu2)/(2*MW/EE*SW)^2					
la5	(MHX^2-MH3^2)/(2*MW/EE*SW)^2					
4) External functions and and their prototypes.						
Librar	ies					
% - C	omment					
extern	type func(type X) % C-prototype					

Lines of other type are passed to linker

Particle list

Inert Doublet Model

Particles

Full Name	P	aP	number	spin2	mass	width	color	aux
photon	A	A	22	2	0	0	1	G
Z boson	Z	Z	23	2	MZ	wΖ	1	G
gluon	G	G	21	2	0	0	8	G
W boson	W+	W -	24	2	MW	wW	1	G
neutrino	n1	N1	12	1	0	0	1	L
electron	e1	E1	11	1	0	0	1	
mu-neutrino	n2	N2	14	1	0	0	1	L
muon	e2	E2	13	1	Mm	0	1	
tau-neutrino	n3	N3	16	1	0	0	1	L
tau-lepton	e3	E3	15	1	Mt	0	1	
u-quark	u	U	2	1	0	0	3	
d-quark	d	D	1	1	0	0	3	
c-quark	C	C	4	1	Мс	0	3	
s-quark	S	S	3	1	Ms	0	3	
t-quark	t	T	6	1	Mtop	wtop	3	
b-quark	b	B	5	1	Mb	0	3	
Higgs	h	h	25	0	Mh	!wh	1	
odd Higgs	~H3	~H3	36	0	MH3	!wH3	1	
Charged Higgs	~H+	~H-	37	0	MHC	!wHC	1 6	
second Higgs	~X	~X	35	0	MHX	!wHX	1	

4) List of Feynman rules

Ine	rt Du	ublet	t		
Lag	grang	gian			
P1	P2	P3	P4	Factor	<pre>dLagrangian/dA(p1)dA(p2)dA(p3)</pre>
Α	W+	W -		-EE	m3.p2*m1.m2-m1.p2*m2.m3
B	b	A		EE/3	G(m3)
B	b	G		GG	G(m3)
В	b	Z		EE/(12*CW*SW)	$ 3*G(m3)*(1-G5)-4*SW^{2}*G(m3)$
W+	~H-	~H3		-EE/(2*SW)	m1.p2-m1.p3
W+	~H-	~X		i*EE/(2*SW)	m1.p2-m1.p3
W -	~H+	~H3		-EE/(2*SW)	m1.p3-m1.p2
W -	~H+	~X		-i*EE/(2*SW)	[m1.p3-m1.p2
Z	~H+	~H-		EE/(2*CW*SW)	B00003*m1.p3+B00005*m1.p2
Z	~H3	~X		i*EE/(2*CW*SW)	m1.p2-m1.p3
~H3	~H3	~X	~X	-2*la2	1
~X	~X	~X	~X	-6*la2	1

LanHEP package is able to generate model files with Feynman rules based on Lagrangin.

Semenov, A.

LanHEP - a package for automatic generation of Feynman rules from the Lagrangian. arrXiv: 1005.1909 [hep-ph] Matrix elements codes are **not** generated in advance. When some matrix element needs, it is

- 1) generated by means of CalcHEP,
- 2) compiled as a shared library,
- 3) linked to the main code,
- 4) included in the list of attached matrix elements,
- 5) stored on the disk.

Last two options need for subsequent call of the same matrix element. Such scheme was initially realized for co-annihilation precesses, but now is used for all matrix elements in micrOMEGAs.

LanHEP package is able to generate model files with Feynman rules based on Lagrangin.

micrOMEGAs

Model File Particles Vertices parameters

LanHEP

CalcHEP Generate Tree-level matrix elements

Auxiliary routines

Improved hbb, Δmb Other constraints Annihilation Coannihilation Cross-sections

Relic density

Cross sections Decay widths

> Indirect σV + propagation

WIMP nucleon Direct

MicrOMEGAs_3 :new features

- Neutrino signal of DM captured by Sun/Earth
- Generalization of relic density computation
 - 3-body final state with virtual W/Z
 - Z_3 discrete symmetry
 - Asymmetric dark matter
 - g_eff(T), h_eff(T) input (SM termodynamics)

Particle decays

- -Virtual W/Z channels (automatically)
- -Loop-induced Higgs decay (semi-automatically)
- Loop induces 2γ and γZ signals of DM annihilation
 - for SUSY-like models (semi-automatically)
- SLHA interface with BSM related packages

DM capture in Sun

- DM particles captured by Sun/Earth, concentrate in center and annihilate into SM
- Lead to neutrino flux, can be observed at Earth (SuperKamiokande, IceCube)
- Shape of neutrino flux depends on dominant DM annihilation channel
- Signal determined by cross section for DM scattering on nuclei --related to DD
- Capture rate

$$C_{\chi} = \frac{\rho_{\chi}}{m_{\chi}} \int_{o}^{\infty} du f_1(u) \int 4\pi r^2 dr \sum_A \sigma_{\chi A} n_A(r) \frac{\beta_A}{\alpha_A} \left(e^{-\alpha_A u^2} - e^{-\alpha_A (u^2 + v_{esc}^2(r))/\beta_A} \right)$$

$$\alpha_A = \frac{1}{3} m_{\chi} m_A R_A^2, \quad \beta_A = \frac{(m_{\chi} + m_A)^2}{4m_{\chi} m_A}$$
 12

- Annihilation
- Number of DM particles
- When capture/annihilation is large, no evaporation, selfconj. particle, equilibrium is reached and annih. rate determined by capture rate
- In general solve equation for number density numerically and obtain v flux at Earth do_v

$$\begin{split} A_{\chi} &= \langle \sigma v \rangle \frac{V_2}{V_1^2} \\ \dot{N}_{\chi} &= C_{\chi} - A_{\chi\chi} N_{\chi}^2 - A_{\chi\bar{\chi}} N_{\chi} N_{\bar{\chi}} - E N_{\chi} \,, \\ \dot{N}_{\bar{\chi}} &= C_{\bar{\chi}} - A_{\chi\bar{\chi}} N_{\chi} N_{\bar{\chi}} - A_{\chi\bar{\chi}} N_{\bar{\chi}}^2 - E N_{\bar{\chi}} \,, \end{split}$$

$$\Gamma_{\chi} = A_{\chi\chi} N_{\chi}^2 = C_{\chi}/2.$$

$$\frac{d\phi_{\nu}}{dE_{\nu}} = \frac{1}{4\pi d^2} \left(\Gamma_{\chi\chi} B r_{\nu\nu} \frac{dN_{\nu\nu}}{dE} + \Gamma_{\chi\bar{\chi}} \sum_{\substack{f \\ \mathbf{13}}} B r_{f\bar{f}} \frac{dN_f}{dE} \right)$$

- neutrino spectrum originating from different SM annihilation channels and including oscillation available in
 - M. Cirelli, hep-ph/0506298

Neutrino-muon conversions in rocksis calculatedaccording toErkoca, Reno, Sarcevic 2009

 Upward and contained and muon fluxes are computed

Higgs decays

- Higgs at 126 GeV at LHC
- Decay modes : bb,WW*,ZZ*,gg,yy
- Include
 - 3 body decays
 - loop-induced decays
- Experimental results give signal strength

$$R_{gg}^{h_i}(X) \equiv \frac{\Gamma(h_i \to gg) \operatorname{BR}(h_i \to X)}{\Gamma(h_{\mathrm{SM}} \to gg) \operatorname{BR}(h_{\mathrm{SM}} \to X)}, \quad R_{\mathrm{VBF}}^{h_i}(X) \equiv \frac{\Gamma(h_i \to WW) \operatorname{BR}(h_i \to X)}{\Gamma(h_{\mathrm{SM}} \to WW) \operatorname{BR}(h_{\mathrm{SM}} \to X)}$$
15

Loop induced Higgs decays

• Introduce effective operators $-\lambda h F_{\mu\nu} F^{\mu\nu}$ (CP-even) $\lambda' h F_{\mu\nu} F^{\mu\nu}$ (CP-odd)

$$\mathcal{L} = g_{h\psi\psi}\bar{\psi}\psi h + ig'_{h\psi\psi}\bar{\psi}\gamma_5\psi h + g_{h\phi\phi}M_{\phi}h\phi\phi + g_{hVV}M_VhV_{\mu}V^{\mu}$$

$$\lambda = \frac{\alpha}{8\pi} \left[g_{h\psi\psi}f_{\psi}^c q_{\psi}^2 \frac{1}{M_{\psi}}A_{1/2}(\frac{M_h^2}{4M_{\psi}^2}) - g_{hVV}f_V^c q_V^2 \frac{1}{2M_V}A_1(\frac{M_h^2}{4M_V^2}) + g_{h\phi\phi}f_{\phi}^c q_{\phi}^2 \frac{1}{2M_{\phi}}A_0(\frac{M_h^2}{4M_{\phi}^2}) \right]$$

Add QCD corrections

- e.g. for gluons
$$\lambda = -R \left[A_{htt}^{LO} C_t + (A_{hbb}^{LO} + A_{hcc}^{LO}) C_q + \sum_{\tilde{q}} A_{h\tilde{q}\tilde{q}}^{LO} C_{\tilde{q}} \right]$$

micrOMEGAS packages contains Passarino-Veltman functions needed for H->gg, H-> $\chi\chi$ and tabulated functions for QCD corrections for H-> $\chi\chi$ amplitudes.

At the level of LanHEP package it was implemented an option to extract couplings of Higgs->X,X interaction and convert them to Hgg, HXX vertexes off effective Lagrangian.

A good agreement with HDECAY for MSSM Higgses was obtained, although some special SUSY effects can not be included in this way.

Files with **BSM/SM** coupling rates is **HIGGBOUNDS** format is generated.

Generalization of relic density calculation

Three-body processes

- Annihilation into 3-body final state can be as large. Example is IDM where annihilation DM,DM-> fermions is suppressed and processes with vitrual W are important before WW threshold (Yaguna, arXiv: 1003.2730)
- About 5% correction in MSSM (close to threshold)
- Problems:

I) As we know from Higgs decay calculation that 4-body kinematics needs. But it is very slow.

a) calculate $Dm,Dm \rightarrow W+,e,v$

b) assume Breit-Wigner structure of 4-body reaction

and calculate for it K-factor 3-body/4-body

II) Dm,Dm-> W+,e,v contains not resonance diagrams, but resonance ones are not gauge invariant.

Select diagrams with at least one virtual gauge boson ¹⁹

Example : MSSM

• bino/higgsino LSP, μ =150GeV, M₂=2M₁

Semi-annihilation

- Discrete remnant of some broken gauge group, in general does not have to be Z_2 consider Z_N
- Impact for dark matter :
 - New processes
 - semi-annihilation : processes involving different number of "odd particles" xx --> x* SM
 - T. Hambye, 0811.0172, T. Hambye, M. Tytgat, 0907.1007
 - More than one DM candidate
 - Assisted freeze-out/DM conversion : interaction between particles from different dark sectors

» $X_1X_1 < --> X_2X_2$

The Z₃ case

• Number density (x : dark sector X: SM)

$$\frac{dn}{dt} = -v\sigma^{xx^* \to XX} \left(n^2 - \overline{n}^2\right) - \frac{1}{2}v\sigma^{xx \to x^*X} \left(n^2 - n\overline{n}\right) - 3Hn.$$

$$\sigma_v \equiv v \sigma^{xx^* \to XX} + \frac{1}{2} v \sigma^{xx \to x^*X} \quad \text{and} \quad \alpha = \frac{1}{2} \frac{\sigma_v^{xx \to x^*X}}{\sigma_v}$$

$$3H\frac{dY}{ds} = \sigma_v \left(Y^2 - \alpha Y\overline{Y} - (1 - \alpha)\overline{Y}^2\right).$$

• Modified equation solved numerically. At low temperatures standard freeze-out pictures is expected ($Y=Y_{eq}+\Delta Y$)

$$3H \frac{d\overline{Y}}{ds} = \sigma_v \overline{Y} \Delta Y (2 - \alpha)$$

Asymmetric DM

- The case where DM is not self-conjugate (e.g. Dirac fermion, complex scalar)
- Y⁺(Y⁻): abundance of DM particle(anti-)

$$\frac{dY^{\pm}}{ds} = \frac{2 < \sigma v >}{3H} \left(Y^{+}Y^{-} - Y^{+}_{eq}Y^{-}_{eq} \right)$$

• $\Delta Y = Y^+ - Y^-$ is constant

• Define Y= 2(Y⁺Y⁻)^{1/2}
$$\frac{dY}{ds} \equiv \frac{\langle \sigma v \rangle}{3H} (Y^2 - Y_{eq}^2) \sqrt{1 + \left(\frac{\Delta Y}{Y}\right)^2}$$

• Equation is solved numerically. No freeze-out for large ΔY

• Relic density

$$\Omega h^2 = \frac{8\pi}{3H_{100}^2} \frac{m_{\chi}}{M_{\rm Planck}} \frac{\sqrt{Y_0^2 + \Delta Y^2}}{s_0}$$

• For each specie

$$Ω_{\pm}h^2 = \frac{Ωh^2}{1 + e^{\mp \delta_{DM}}}$$

- DM asymmetry always increase relic abundance
- Example : neutrino DM
- deltaY global parameter taken into account for DD (always compute DMnucleon and antiDM-nucleon) and indirect detection

$$Q = \frac{1}{2} \langle \sigma v \rangle \frac{\rho_{\chi} \rho_{\bar{\chi}}}{m_{\chi}^2} \frac{dN_a}{dE}$$

Monochromatic gamma-rays

- Monochromatic gamma rays (γγ,γZ) are loop-induced (suppressed) BUT lead to very distinctive signal
 - C. Weniger, 1204.2797, T.Bringmann et al, 1203.1312
 (signal in Fermi-LAT?)

In generic models only Higgs contribution are known.

- Available in micrOMEGAs for SUSY models (MSSM,NMSSM,CPVMSSM) and Z3M
 - Computed with SloopS, a code for computation of one-loop processes in the SM,MSSM and some extensions
 - F. Boudjema, A. Semenov, D. Temes, hep-ph/0507127
 - G. Chalons, A. Semenov, arXiv:1110.2064

Can be extended for any model.

NEW

Conclusion

- To understand the nature of dark matter clearly need information and cross checks from cosmology, direct and indirect detection as well as from collider physics
- micrOMEGAs is tool to perform these analyses in a generic model