SuSpect 3: status and roadmap

A.Djouadi, J-L.Kneur, G.Moultaka, M.Ughetto, D.Zerwas

LPT (Orsay), L2C (Montpellier), CPPM (Marseille), LAL (Orsay)

May 24, 2013

SuSpect 2 & Co.

SuSpect 2

- SUSY spectrum calculator
- Authors: A.Djouadi, J-L.Kneur and G.Moultaka
- Fortran code
- MSSM spectrum, supports "mSUGRA", AMSB and GMSB (custom versions exists for heavy scalars, no-scale, right-handed sneutrinos, . . .)

SuSpect 3

- SuSpect 2 has reached its limits in terms of flexibility
- ► C++ code, OOP design
- ROOT output option, SLHA IO support
- ► Flexible structure through usage of polymorphism, inheritance properties and interfaces

Standard Case: *MSSM

MSSM = SM-gauged theory with a broken SUSY and a minimal field content

- 105 parameters
- 22 parameters when:
 - SUSY breaking terms are real
 - Trilinear coupling matrices are diagonal
 - ▶ Differences between first and second generations are negligible
- ▶ 5 parameters in "mSUGRA": m_0 , $m_{1/2}$, A_0 , tan β and sgn (μ)

Let's review the spectrum calculation in this specific case

Ingredients

In the "mSUGRA" case:

- ▶ A way to evolve parameters through energy scales: RGEs
- Boundary conditions for these ODEs
 - MZ scale: SM inputs
 - GUT scale: assumptions on soft breaking terms, ie universality in "mSUGRA" case
 - ► EWSB scale: minimization equations for the scalar potential, tadpole contributions
- Mass matrices, radiative corrections

Typical Algorithm

Typical algorithm

Step 1: Low energy input

$$\alpha(M_Z), \alpha_S(M_Z), \ M_t^{\mathrm{pole}}, \ M_\tau^{\mathrm{pole}}, m_b^{\overline{\mathrm{MS}}}(m_b), \ M_Z^{\mathrm{pole}}$$
, etc.
Translation to $\overline{\mathrm{DR}}$

Step 2: One— or two–loop RGEs running

RGEs with choice: $g_1 = g_2 \cdot \sqrt{3/5} \ M_{\rm GUT} \sim 2 \cdot 10^{16} {\rm ~GeV}$

Step 3: Choice of SUSY-breaking model

mSUGRA, GMSB, AMSB, or pMSSM. Choice of high-energy input, eg: mSUGRA: m_0 , $m_{1/2}$, A_0 , $\mathrm{sign}(\mu)$ and $\tan\beta$

Step 4: EWSB

Run down all parameters to m_Z and $M_{\rm EWSB}$ scales Calculate μ^2 , $\mu B = F(m_{H_U}, m_{H_d}, \tan \beta, V_{\rm loop})$

Step 5: Testing EWSB

Check of consistent EWSB (μ convergence, no tachyons, simple CCB/UFB, etc.)

Step 6: Masses and corrections

Diagonalization of mass matrices and calculation of masses/couplings

Radiative corrections to the physical Higgs, sfermions, gauginos masses

mSUGRA implementation for end-user

2 possibilities, a standard SLHA card, or initialize SuSpect directly in memory:

```
SUSPECT::SLHA4suspect *mySLHA = new SUSPECT::SLHA4suspect();
mySLHA->setMODSEL(1,1);
mySLHA->setMINPAR(1,100);
mySLHA->setMINPAR(2,250);
mySLHA->setMINPAR(3,10);
mySLHA->setMINPAR(4,1);
mySLHA->setMINPAR(5,-100);
SUSPECT::suspect aSuspectCalculation;
aSuspectCalculation.Initialize(mySLHA);
```

It's as simple as the SLHA convention

Right now...

SuSpect 3 supports:

- mSUGRA (3 scales)
- ► AMSB (3 scales)
- GMSB (4 scales)
- ► Low-Scale pMSSM (2 scales) (no running to GUT, boundary conditions given at EWSB scale)
- ► Bottom-up pMSSM (3 scales) (Running to GUT, boundary conditions given at EWSB scale)
- High-Scale MSSM (3 scales) (Non-universal boundary conditions at GUT scale)
- Compressed-SUSY (3 scales) (example of non-universal gauginos soft-breaking terms)

SuSpect 2 and 3 used for a mutual cross-checking...

SuSpect2–SuSpect3 comparison

Example of differences for the light-higgs mass

- ightharpoonup tan $\beta=20$
- μ > 0
- ▶ $A_0 = -1 \text{ TeV}$
- ▶ $m_0, m_{1/2} \in [0, 4]$ TeV

SuSpect versions compared in plenty of situations:

- ► All S2-supported models cross-checked
- \triangleright extreme case with $\mathcal{O}(100 \text{ TeV})$ breaking terms checked
- relative difference typically of $\mathcal{O}(10^{-3})$

Agreement is more than reasonable

Roadmap

- 1. New RGEs
 - ► Full-MSSM (FV, RPV but CPC)
- 2. New boundary conditions
 - true-mSUGRA
 - No-scale type
 - Yukawa unification
- New EWSB algorithm (started)
 - No-scale
- 4. New field content
 - NMSSM (started)

Prototypes of generator with SARAH/Feynrules

Newton-Raphson for EWSB implemented

Basic draft exists

Interfaces Principle

SuSpect 3 can pick up an external definition of the following elements:

- Model (Initialization, Boundary conditions, ...)
- RGEs (RGEs, set of variables, unification criterion)
- ▶ Particle content (eigenstates and associated RC)
- ► EWSB (way to know if EWSB is realized and consistent)

A more elaborated case: EWSB

Usually, one uses minimization conditions of the scalar potential to evaluate μ at EWSB scale.

But:

- very specific to MSSM
- recursive algorithm
- ▶ the equations are constrained along the "minimization" process by an *a priori* knowledge of M_Z and gauge couplings

Interfaces enable:

- customization of the scalar potential
- customization of the minimization algorithm

Newton-Raphson method implemented and being tested...

Conclusions

- S2-supported models validated and cross-checked
- Reference paper started

Conclusions

- S2-supported models validated and cross-checked
- ► Reference paper started
- ▶ All lights are green for an alpha-release

Conclusions

- S2-supported models validated and cross-checked
- Reference paper started
- ▶ All lights are green for an alpha-release

How to get:

- http://www.coulomb.univ-montp2.fr/perso/jeanloic.kneur/Suspect/suspect3-alpha.tar.gz
- tar xvzf suspect3-0.1.tar.gz
- ./configure
- make
- see examples/*.in for example files and ./suspect3 -h for basic help

You have comments/questions regarding the code/plans/interfaces please contact us 2