aMC@NLO: status and new results

Marco Zaro, CP3-UCLouvain
in collaboration with
R. Frederix, S. Frixione, F. Maltoni, P. Torrielli, V. Hirschi and the MadGraph5 team

May 14th, 2013, GDR@Montpellier

Motivations

- Why automation?
- Time: trade time spent to code/debug with time to do physics
- Trust: results from an automatic tool are "correct by definition"
- Easy: automatic tools can be used as black-boxes: no need of highly skilled users

Motivations

- Why automation?
- Time: trade time spent to code/debug with time to do physics
- Trust: results from an automatic tool are "correct by definition"
- Easy: automatic tools can be used as black-boxes: no need of highly skilled users
- Why NLO?
- Reliable prediction of total rates
- Reduction of theoretical uncertainties

Motivations

- Why automation?
- Time: trade time spent to code/debug with time to do physics
- Trust: results from an automatic tool are "correct by definition"
- Easy: automatic tools can be used as black-boxes: no need of highly skilled users
- Why NLO?
- Reliable prediction of total rates
- Reduction of theoretical uncertainties
- Why matching with parton-showers?
- Parton level is not the whole story
- Matching with PS cures observables which are ill-behaved at fixed-order

NLO basics

$$
d \sigma_{N L O}^{n}=\mathcal{B}^{n}+\mathcal{V}^{n}+\int d \Phi_{1} \mathcal{R}^{n+1}
$$

NLO basics

$$
\begin{gathered}
d \sigma_{N L O}^{n}=\mathcal{B}^{n}+\mathcal{V}^{n}+\int d \Phi_{1} \mathcal{R}^{n+1} \\
d \sigma_{N L O}^{n}=\mathcal{B}^{n}+\mathcal{V}^{n}+\int d \Phi_{1} \mathcal{C}+\int d \Phi_{1}\left(\mathcal{R}^{n+1}-\mathcal{C}\right)
\end{gathered}
$$

NLO basics

$$
\begin{gathered}
d \sigma_{N L O}^{n}=\mathcal{B}^{n}+\mathcal{V}^{n}+\int d \Phi_{1} \mathcal{R}^{n+1} \\
d \sigma_{N L O}^{n}=\mathcal{B}^{n}+\mathcal{V}^{n}+\int d \Phi_{1} \mathcal{C}+\int d \Phi_{1}\left(\mathcal{R}^{n+1}-\mathcal{C}\right)
\end{gathered}
$$

To do:

- Generate virtual matrix-element
- Generate real-emission matrix-element (and counterterms)
- Put everything together and integrate (possibly in an efficient way)

Virtual MEs:

Passarino \& Veltman: every loop integral can be written as linear combination of 1 - to 4 -point scalar integrals:

$$
\begin{aligned}
\int \frac{d^{D} q}{2 \pi^{D}} A(q) & =\sum_{i_{0}, i_{1}, i_{2}, i_{3}} d\left(i_{0}, i_{1}, i_{2}, i_{3}\right) D_{0}\left(i_{0}, i_{1}, i_{2}, i_{3}\right) \\
& +\sum_{i_{0}, i_{1}, i_{2}} c\left(i_{0}, i_{1}, i_{2}\right) C_{0}\left(i_{0}, i_{1}, i_{2}\right) \\
& +\sum_{i_{0}, i_{1}} b\left(i_{0}, i_{1}\right) B_{0}\left(i_{0}, i_{1}\right) \\
& +\sum_{i_{0}} a\left(i_{0}\right) A_{0}\left(i_{0}\right) \\
& +R
\end{aligned}
$$

Virtual MEs:

Passarino \& Veltman: every loop integral can be written as linear combination of 1 - to 4 -point scalar integrals:

$$
\begin{aligned}
\int \frac{d^{D} q}{2 \pi^{D}} A(q) & =\sum_{i_{0}, i_{1}, i_{2}, i_{3}} d\left(i_{0}, i_{1}, i_{2}, i_{3}\right) D_{0}\left(i_{0}, i_{1}, i_{2}, i_{3}\right) \\
& +\sum_{i_{0}, i_{1}, i_{2}} c\left(i_{0}, i_{1}, i_{2}\right) C_{0}\left(i_{0}, i_{1}, i_{2}\right) \\
& +\sum_{i_{0}, i_{1}} b\left(i_{0}, i_{1}\right) B_{0}\left(i_{0}, i_{1}\right) \\
& +\sum_{i_{0}} a\left(i_{0}\right) A_{0}\left(i_{0}\right) \\
& +R
\end{aligned}
$$

Do the same at the integrand level!

The OPP method

$$
\begin{aligned}
& A(q)=\frac{N(q)}{D_{0} \ldots D_{m-1}} \\
& N(q)=\sum_{i_{0}, i_{1}, i_{2}, i_{3}}\left[d\left(i_{0}, i_{1}, i_{2}, i_{3}\right)+\tilde{d}\left(i_{0}, i_{1}, i_{2}, i_{3}\right)\right] \prod_{i \neq i_{0}, i_{1}, i_{2}, i_{3}} D_{i} \\
&+ \sum_{i_{0}, i_{1}, i_{2}}\left[c\left(i_{0}, i_{1}, i_{2}\right)+\tilde{c}\left(i_{0}, i_{1}, i_{2}\right)\right] \prod_{i \neq i_{0}, i_{1}, i_{2}} D_{i} \\
&+ \sum_{i_{0}, i_{1}}\left[b\left(i_{0}, i_{1}\right)+\tilde{b}\left(i_{0}, i_{1}\right)\right] \prod_{i \neq i_{0}, i_{1}} D_{i} \\
&+ \sum_{i_{0}}\left[a\left(i_{0}\right)+\tilde{a}\left(i_{0}\right)\right] \prod_{i \neq i_{0}} D_{i} \\
&+ \tilde{P}(q) \prod_{i} D_{i}
\end{aligned}
$$

- The determination of the loop coefficients can be done numerically (CutTools)
- UV renormalization /R2 terms can be added as new Feynman vertices

Real-emission MEs and integration: the FKS subtraction

- Soft/collinear singularities arise in many PS regions
- Find parton pairs i, j that give collinear singularities
- Split the PS into regions with only one collinear singularity:
- Soft singularities are split into the collinear ones

$$
\begin{gathered}
|\mathcal{M}|^{2}=\sum_{i j} S_{i j}|\mathcal{M}|^{2}=\sum_{i j}|\mathcal{M}|_{i j}^{2} \quad \sum_{i j} S_{i j}=1 \\
S_{i j} \rightarrow 1 \text { if } k_{i} \cdot k_{j} \rightarrow 0 \quad S_{i j} \rightarrow 0 \text { if } k_{\neq i} \cdot k_{m \neq j} \rightarrow 0
\end{gathered}
$$

- Integrate each $\mathcal{M}_{i j}$ independently
- Number of contributions $\sim n^{2}$

MadLoop \& MadFKS

- MadLoop (Hirschi et al, arXiv:1103.0621)
- Computes the loop numerator for any given amplitude and feeds it to CutTools
- Adds R2/UV counterterms (process-independent, coded as new vertices)
- MadFKS (Frederix et al, arXiv:0908.4272)
- Generates realand born MEs and counterterms (color- and spin-linked borns)
- Organizer the integration of the n and $n+1$ body cross-section
- Generates events to be showered
- Problem: avoid double counting configurations generated by the real-emission ME and by the PS

MC@NLO basics:
 Matching NLO predictions with PS

- Problem: avoid double counting configurations generated by the real-emission ME and by the PS
- Solution: subtract the real-emission as it is generated by the shower, by means of suitable counterterms:
$\frac{d \sigma_{M C \odot N L O}}{d O}=\left[d \Phi_{n}(\mathcal{B}+\mathcal{V})+\int d \Phi_{1} M C\right] I_{M C}^{n}(O)+\left[d \Phi_{n+1}(\mathcal{R}-M C)\right] \iota_{M C}^{n+1}(O)$
- The MC counterterm is related to the Sudakov of the PS as

$$
\Delta=\exp \left[-\int d \Phi_{1} \frac{M C}{\mathcal{B}}\right]
$$

- NLO normalization is kept
- MC are PS-dependent but process-independent Available for Herwig6, Pythia6, Herwig++

aMC@NLO

aMC@NLO

CutTools

MC@NLO

aMC@NLO

./bin/mg5
> generate p p > t t~a [QCD]
> output my_tta
> launch

Physics!

Latest results (soon in YR3):

- Study of matcihng systematics in VBF (also arXiv:1304.7927)
- Spin correlation in $t \bar{t} H$

Matching systematics in VBF

- Aim: ssess the effect of different PS and matching scheme in VBF
- Included in the Powheg box since some time (arXiv:0911.5299)
- VBF is a non-trivial process because of its peculiar topology
- Possibly hidden matching systematics
- Nice benchmark/validation for aMC@NLO

VBF: results (I)

≥ 2 jets with $p_{T}>20 \mathrm{GeV},|y|<4.5,|\Delta y|>4, m_{j 1, j 2}>600 \mathrm{GeV}$ are required
Both Powheg and aMC@NLO show HW6>PY6>HW++

VBF: results (II)

Overall agreement is found for NLO observables

VBF: results (III)

Larger differences (possibly matching systematics) are present for LO observables

Spin correlations in $t \bar{t} H$

- Spin correlation can be included in any aMC@NLO process with MadSpin, after the event generation
- For $t \bar{t} H$ spin effects are comparable with NLO corrections

MadSpin

Aim:

- For a given event sample include the decay of final state particles
- Keep spin correlation
- Generate decayed unweighted events

MadSpin

Aim:

- For a given event sample include the decay of final state particles
- Keep spin correlation
- Generate decayed unweighted events

Solution

- MadGraph deals extremely well with decay chains
- Read the undecayed event
- Generate the ME including the desired decay
- Generate decay kinematic configuretions until

$$
\left|\mathcal{M}_{P+D}\right|^{2} /\left|\mathcal{M}_{P}\right|^{2}>\operatorname{Rand}() \max \left(\left|\mathcal{M}_{P+D}\right|^{2} /\left|\mathcal{M}_{P}\right|^{2}\right)
$$

- Validated for $t \bar{t}$ and single-top production

Frixione et al. arXiv:hep-ph/0702198

MadSpin with aMC@NLO events

- Spin correlation effects are typically small: include them only at tree level
- For \mathbb{H} events ($n+1$ body), use decayed real-emission ME
- For \mathbb{S} events (n body), use decayed born ME
- Production-related observables (e.g. $p_{T}(t)$ are described at NLO accuracy
- All spin correlations are included for observables related to production + decay

Spin effects can be larger than NLO corrections

Interesting difference in the $\cos \phi$ shape (complementary information for Higgs characterization

Conclusion

- aMC@NLO allows to automatically generate events for any process, at NLO accuracy and matching with PS
- MadSpin allows to include spin-correlation effects at almost zero extra cost, starting from undecayed events
- aMC@NLO + MadSpin are included in MadGraph5 v2.0 (beta 3 version is available)
- More interesting results will come
- Stay tuned on http://amcatnlo.web.cern.ch

