

aMC@NLO: status and new results

Marco Zaro, CP3-UCLouvain
in collaboration with
R. Frederix, S. Frixione, F. Maltoni, P. Torrielli, V. Hirschi
and the MadGraph5 team

May 14th, 2013, GDR@Montpellier

Motivations

- Why automation?
 - ► Time: trade time spent to code/debug with time to do physics
 - ► Trust: results from an automatic tool are "correct by definition"
 - Easy: automatic tools can be used as black-boxes: no need of highly skilled users

Motivations

- Why automation?
 - ► Time: trade time spent to code/debug with time to do physics
 - ► Trust: results from an automatic tool are "correct by definition"
 - Easy: automatic tools can be used as black-boxes: no need of highly skilled users
- Why NLO?
 - Reliable prediction of total rates
 - Reduction of theoretical uncertainties

Motivations

- Why automation?
 - ► Time: trade time spent to code/debug with time to do physics
 - ► Trust: results from an automatic tool are "correct by definition"
 - Easy: automatic tools can be used as black-boxes: no need of highly skilled users
- Why NLO?
 - Reliable prediction of total rates
 - Reduction of theoretical uncertainties
- Why matching with parton-showers?
 - Parton level is not the whole story
 - Matching with PS cures observables which are ill-behaved at fixed-order

NLO basics

$$d\sigma_{NLO}^n = \mathcal{B}^n + \mathcal{V}^n + \int d\Phi_1 \mathcal{R}^{n+1}$$

NLO basics

$$\begin{split} d\sigma_{NLO}^n &= \mathcal{B}^n + \mathcal{V}^n + \int d\Phi_1 \mathcal{R}^{n+1} \\ d\sigma_{NLO}^n &= \mathcal{B}^n + \mathcal{V}^n + \int d\Phi_1 \mathcal{C} + \int d\Phi_1 \left(\mathcal{R}^{n+1} - \mathcal{C}\right) \end{split}$$

NLO basics

$$d\sigma_{NLO}^{n} = \mathcal{B}^{n} + \mathcal{V}^{n} + \int d\Phi_{1}\mathcal{R}^{n+1}$$
 $d\sigma_{NLO}^{n} = \mathcal{B}^{n} + \mathcal{V}^{n} + \int d\Phi_{1}\mathcal{C} + \int d\Phi_{1}\left(\mathcal{R}^{n+1} - \mathcal{C}\right)$

To do:

- Generate virtual matrix-element
- Generate real-emission matrix-element (and counterterms)
- Put everything together and integrate (possibly in an efficient way)

Virtual MEs:

Passarino & Veltman: every loop integral can be written as linear combination of 1- to 4-point scalar integrals:

$$\int \frac{d^{D}q}{2\pi^{D}} A(q) = \sum_{i_{0},i_{1},i_{2},i_{3}} d(i_{0},i_{1},i_{2},i_{3}) D_{0}(i_{0},i_{1},i_{2},i_{3})
+ \sum_{i_{0},i_{1},i_{2}} c(i_{0},i_{1},i_{2}) C_{0}(i_{0},i_{1},i_{2})
+ \sum_{i_{0},i_{1}} b(i_{0},i_{1}) B_{0}(i_{0},i_{1})
+ \sum_{i_{0}} a(i_{0}) A_{0}(i_{0})
+ R$$

4

Virtual MEs:

Passarino & Veltman: every loop integral can be written as linear combination of 1- to 4-point scalar integrals:

$$\int \frac{d^{D}q}{2\pi^{D}} A(q) = \sum_{i_{0},i_{1},i_{2},i_{3}} d(i_{0},i_{1},i_{2},i_{3}) D_{0}(i_{0},i_{1},i_{2},i_{3})
+ \sum_{i_{0},i_{1},i_{2}} c(i_{0},i_{1},i_{2}) C_{0}(i_{0},i_{1},i_{2})
+ \sum_{i_{0},i_{1}} b(i_{0},i_{1}) B_{0}(i_{0},i_{1})
+ \sum_{i_{0}} a(i_{0}) A_{0}(i_{0})
+ R$$

Do the same at the integrand level!

The OPP method

Ossola, Papadopoulos, Pittau, arXiv:hep-pt/0609007 and arXiv:0711.3596

$$A(q) = rac{N(q)}{D_0 \dots D_{m-1}}$$
 $N(q) = \sum_{i_0, i_1, i_2, i_3} [d(i_0, i_1, i_2, i_3) + \tilde{d}(i_0, i_1, i_2, i_3)] \prod_{i \neq i_0, i_1, i_2, i_3} D_i$
 $+ \sum_{i_0, i_1, i_2} [c(i_0, i_1, i_2) + \tilde{c}(i_0, i_1, i_2)] \prod_{i \neq i_0, i_1, i_2} D_i$
 $+ \sum_{i_0, i_1} [b(i_0, i_1) + \tilde{b}(i_0, i_1)] \prod_{i \neq i_0, i_1} D_i$
 $+ \sum_{i_0} [a(i_0) + \tilde{a}(i_0)] \prod_{i \neq i_0} D_i$
 $+ \tilde{P}(q) \prod_i D_i$

- The determination of the loop coefficients can be done numerically (CutTools)
- ► UV renormalization /R2 terms can be added as new Feynman vertices

Real-emission MEs and integration: the FKS subtraction

Frixione, Kunszt, Signer, arXiv:hep-ph/9512328

- ► Soft/collinear singularities arise in many PS regions
- \blacktriangleright Find parton pairs i, j that give collinear singularities
- ▶ Split the PS into regions with only one collinear singularity:
 - Soft singularities are split into the collinear ones

$$|\mathcal{M}|^2 = \sum_{ij} S_{ij} |\mathcal{M}|^2 = \sum_{ij} |\mathcal{M}|_{ij}^2 \quad \sum_{ij} S_{ij} = 1$$
 $S_{ij} \to 1 \text{ if } k_i \cdot k_i \to 0 \qquad S_{ij} \to 0 \text{ if } k_{l \neq i} \cdot k_{m \neq i} \to 0$

- ▶ Integrate each \mathcal{M}_{ij} independently
- ▶ Number of contributions $\sim n^2$

MadLoop & MadFKS

- ▶ MadLoop (Hirschi et al, arXiv:1103.0621)
 - Computes the loop numerator for any given amplitude and feeds it to CutTools
 - Adds R2/UV counterterms (process-independent, coded as new vertices)
- MadFKS (Frederix et al, arXiv:0908.4272)
 - Generates realand born MEs and counterterms (color- and spin-linked borns)
 - ▶ Organizer the integration of the n and n+1 body cross-section
 - Generates events to be showered

MC@NLO basics: Matching NLO predictions with PS

► Problem: avoid double counting configurations generated by the real-emission ME and by the PS

MC@NLO basics:

Matching NLO predictions with PS

- ► Problem: avoid double counting configurations generated by the real-emission ME and by the PS
- Solution: subtract the real-emission as it is generated by the shower, by means of suitable counterterms:

$$\frac{d\sigma_{MC@NLO}}{dO} = \left[d\Phi_n(\mathcal{B} + \mathcal{V}) + \int d\Phi_1 MC\right] I_{MC}^n(O) + \left[d\Phi_{n+1}(\mathcal{R} - MC)\right] I_{MC}^{n+1}(O)$$

▶ The MC counterterm is related to the Sudakov of the PS as

$$\Delta = \exp\left[-\int d\Phi_1 rac{MC}{\mathcal{B}}
ight]$$

- NLO normalization is kept
- ► MC are PS-dependent but process-independent Available for Herwig6, Pythia6, Herwig++

aMC@NLO

aMC@NLO

- ./bin/mg5
- > generate p p > t t~ a [QCD]
- > output my_tta
- > launch

Physics!

Latest results (soon in YR3):

- Study of matching systematics in VBF (also arXiv:1304.7927)
- ▶ Spin correlation in $t\bar{t}H$

Matching systematics in VBF

- Aim: ssess the effect of different PS and matching scheme in VBF
- ► Included in the Powheg box since some time (arXiv:0911.5299)
- ▶ VBF is a non-trivial process because of its peculiar topology
 - Possibly hidden matching systematics
 - Nice benchmark/validation for aMC@NLO

VBF: results (I)

 \geq 2 jets with $p_T >$ 20GeV, |y| < 4.5, $|\Delta y| >$ 4, $m_{j1,j2} >$ 600GeV are required

Both Powheg and aMC@NLO show HW6>PY6>HW++

VBF: results (II)

Overall agreement is found for NLO observables

VBF: results (III)

Larger differences (possibly matching systematics) are present for LO observables

Spin correlations in $t\bar{t}H$

- Spin correlation can be included in any aMC@NLO process with MadSpin, after the event generation
- ▶ For $t\bar{t}H$ spin effects are comparable with NLO corrections

MadSpin

Artoisenet et al, arXiv:12123460

Aim:

- For a given event sample include the decay of final state particles
- Keep spin correlation
- Generate decayed unweighted events

MadSpin

Artoisenet et al, arXiv:12123460

Aim:

- For a given event sample include the decay of final state particles
- Keep spin correlation
- Generate decayed unweighted events

Solution

- MadGraph deals extremely well with decay chains
- Read the undecayed event
- Generate the ME including the desired decay
- Generate decay kinematic configurations until

$$\left|\mathcal{M}_{P+D}\right|^2/\left|\mathcal{M}_{P}\right|^2>\mathrm{Rand}()\max\left(\left|\mathcal{M}_{P+D}\right|^2/\left|\mathcal{M}_{P}\right|^2
ight)$$

► Validated for $t\bar{t}$ and single-top production Frixione et al. arXiv:hep-ph/0702198

MadSpin with aMC@NLO events

- Spin correlation effects are typically small: include them only at tree level
- ▶ For \mathbb{H} events (n+1 body), use decayed real-emission ME
- ▶ For S events (n body), use decayed born ME
- ▶ Production-related observables (e.g. $p_T(t)$ are described at NLO accuracy
- ▶ All spin correlations are included for observables related to production + decay

Spin effects can be larger than NLO corrections

Interesting difference in the $\cos\phi$ shape (complementary information for Higgs characterization

Conclusion

- aMC@NLO allows to automatically generate events for any process, at NLO accuracy and matching with PS
- MadSpin allows to include spin-correlation effects at almost zero extra cost, starting from undecayed events
- aMC@NLO + MadSpin are included in MadGraph5 v2.0 (beta 3 version is available)
- ▶ More interesting results will come
- Stay tuned on http://amcatnlo.web.cern.ch