# ATLAS & CMS measurements of jets and heavy flavour produced in association with a W or Z boson

Jean-Baptiste Sauvan Laboratoire Leprince-Ringuet







**GDR Terascale - 14/05/2013** 

# W/Z+jets measurements

- Highlights of the most recent measurements
  - This talk is not a complete summary, only some of the results based on the 2011 dataset are presented here
  - References to all the measurements can be found at the end of the talk
- Z + light jets
  - Studies of many observables
    - e.g., angular variables, event shapes
  - Studies in various phase space regions
    - e.g., boosted objects, forward jets (including electroweak production)
- W + 1 or 2 b jets

## Motivations

- W/Z + jets events are background to many measurements and searches:
  - e.g., Higgs, SUSY
  - Specific regions are selected where generators have never been tested
  - Jet vetoes or categories based on jet multiplicity are often used to improve S/B
    - It is therefore important to understand the scaling of jet multiplicity
- Improving Monte-Carlo generators
- Testing pQCD
- Probing the content of the proton (I won't talk much about this here)
  - Strange content (poorly constrained)
  - Heavy flavour content



# Available predictions

- Event generators (fully exclusive):
  - Leading order (LO) matrix element (ME) + parton shower (PS)
    - Pythia, Herwig
  - - Alpgen, Sherpa, Madgraph
  - - Powheg, MC@NLO
  - **L** MENLOPS
    - Sherpa



- Fixed order pQCD calculation (at NLO):
  - ▶ Parton level: needs to be corrected for soft QCD effects (UE. hadronization)
    - MCFM
    - BlackHat+Sherpa → W(Z) + up to 5(4) partons



# Main experimental uncertainties

- Jet energy scale (JES)
  - Determined using simulation & in situ measurements
  - Uncertainties from
    - In situ measurements, pile-up, close-by jets, flavour response and composition (quark, gluon, HF)
  - Large uncertainties at low p
    - Region important e.g. for jet counting/veto
  - Also larger uncertainties in the forward region
    - Important for electroweak production
- Jet energy resolution
- b-tagging efficiency (for measurements involving b-jets)





# Z+jets

- Large jet multiplicity (≥ 7 jets)
  - Limits of ME+PS generators are reached (e.g., Alpgen generates up to 5 partons with ME, higher multiplicities come from parton shower)
- Large jet (and Z)  $p_{T}$ , for which both missing higher order QCD and EWK contributions can become large
- Forward jets → background to VBF Higgs



# Z+jets, inclusive $p_{\tau}$ sum $(H_{\tau})$



- Important for searches (e.g., Meff =  $\Sigma p_{T}$  + MET in SUSY searches)
- BlackHat+Sherpa fails to describe the high H<sub>+</sub> regime
  - Due to missing contributions from events with 3 or more partons
  - Let Can be cured by performing a sum of exclusive 1 jet + ≥ 2 jets predictions

# Z+1 single jet, rapidity distributions

- Transformed Z and jet rapidities into 2 quantities
  - $|Y_z-Y_{jet}|/2$  and  $|Y_z+Y_{jet}|/2$
- Clear differences between Sherpa and Madgraph
  - Attributed to differences in the merging procedure (CKKW vs MLM)
  - Sherpa (CKKW) tends to reproduce the data better



# Z+jets, event shapes

Topological structure of Z+jets events is probed using the transverse thrust variable:

$$\tau_{T} = 1 - \max_{\vec{n_{\tau}}} \frac{\sum |\vec{p_{T,i}} \cdot \vec{n_{\tau}}|}{\sum p_{T,i}}$$

- Less sensitive to large jet multiplicities
- Measurement performed for events with a boosted  $Z(p_{\tau}(Z) > 150 \text{ GeV})$ 
  - More jets → more spherical events
  - Too small values predicted by Pythia and Sherpa
    - Too large proportion of back-to-back Z + 1 jet events
  - Good agreement of Powheg Z + 1 jet and Madgraph with the data



# Z+jets, exclusive jet multiplicity scaling

- Scaling patterns can be probed at different energy scales
  - Democratic jet selection: Staircase scaling
  - Large scale separation: Poisson scaling (Abelian limit of QCD)
- Evolution compatible with theoretical expectations



# Z+jets, electroweak production

- Events containing a Z and two forward-backward jets
  - Probe for anomalous triple gauge boson couplings
  - Background to VBF Higgs signal
- Capability to extract a process compatible in cross-section and topologically with the SM Higgs produced by VBF
- Use of a quark-gluon likelihood discriminator
  - Signal jets are exclusively initiated by quarks
- Signal extracted using a BDT
  - Makes use of jets  $p_{T}$ , Δη(leading jets), dijet mass,...
- Measured cross section in agreement with NLO cross section





## W+b

- Background to the Higgs associated production WH(→bb)
  - Important for the study of couplings to fermions
- Test predictions using different flavour number schemes
  - Including or not b-quarks in the initial state
- 1 jet and 2 jet final states are studied
- Measurements also done differentially
  - Function of the b-jet p<sub>1</sub>
- Everything is consistent within 1.5 σ with NLO predictions





# W+bb

- Events with exactly 2 jets passing btagging requirement
- Same physical interests as W+b
- But suffers from more tt background compared to W+b
  - Constrained by simultaneous fits in signal and control regions
- Measured cross section in agreement with SM prediction
- W+bb kinematic also studied
  - L Dijet system mass, dijet p₁, etc.





# Summary & Conclusion

- Many analyses based on the 2011 dataset have been performed (more in the pipeline), which extended significantly the probed phase space of W/Z + jets events
  - Growing list of observables since 2010
  - Events with boosted objects, forward jets, ...
- Enable testing of predictions based on very recent tools (huge progress made recently)
  - Measurements will serve to improve them
- Precision measurements of W/Z+heavy flavour, including differential cross sections
- Data recorded in 2012 still to be analysed
  - Statistically limited results (e.g., very high jet or Z p,) could be improved
  - We can also expect a reduction of the systematics (in particular for the JES)

#### List of results

#### CMS

- http://arxiv.org/abs/1110.3226
- http://arxiv.org/abs/1204.1643
- https://cdsweb.cern.ch/record/1428117
- http://arxiv.org/abs/1301.1646
- https://cdsweb.cern.ch/record/1524190
- https://cdsweb.cern.ch/record/1525727
- https://cdsweb.cern.ch/record/1528578
- http://cdsweb.cern.ch/record/1493475

### List of results

#### ATLAS

- http://arxiv.org/abs/1108.4908
- http://arxiv.org/abs/1109.1470
- http://arxiv.org/abs/1109.1403
- http://arxiv.org/abs/1201.1276
- http://arxiv.org/abs/1302.2929
- http://arxiv.org/abs/1304.7098