Higgs couplings ILC & High Lumi LHC perspectives

Remi Lafaye

On behalf of the SFitter team

What's SFitter?

Goal: measure supersymmetric parameters Higgs couplings

- Map LHC/ILC observables to Higgs couplings
- Taking into account th. and exp. error correlations
- Given Flat" (R-fit scheme) th. errors
- □ Find minimum with Cooling Markov Chains + MINUIT
- Generate 5000 toys/minimum to find 68% CL
- Now: Apply technics developed for SUSY to the Higgs sector

Why?

- Higgs couples to all particles proportional to their masses
- Indirect searches for New Physics

Supersymmetric publications:

SFitter, arXiv:hep-ph/0404282. SFitter, Eur. Phys. J. C54, 617 (2008) E. Turlay and SFitter, J.Phys. G38 (2011) 035003 C. Adam, J.-L Kneur and SFitter, Eur.Phys.J. C71 (2011) 1520

Higgs couplings publications:

Duhrssen and SFitter JHEP0908 (2009) 009 Bock, P. Zerwas and SFitter Phys.Lett. B694 (2010) 44-53 Englert, P. Zerwas and SFitter Phys.Lett. B707 (2012)512-516 Klute and SFitter, Phys.Rev.Lett. 109 (2012) 101801 Klute and SFitter, Europhys.Lett. 101 (2013) 51001

ILC proposals:

J. Brau et al, ILC Collaboration, arXiv:0712.1950 P. Azzi et al, arXiv:1208.1662

(Pseudo-)Data:

- Today: 2012 ICHEP data ATLAS+CMS
- □ ILC 250 fb⁻¹ @ 250 GeV (LC250) + 500 fb⁻¹ @ 500 GeV (LC500)
- High-luminosity LHC: 3000 fb⁻¹ @14 TeV

Klute, Lafaye, Plehn, Rauch, Zerwas

Higgs couplings analysis setup

Higgs couplings definition

□ Factors of the tree-level terms in the Lagrangian

Defined relatively to SM predictions: $g_{xxH} \equiv g_{\gamma} = (1 + \Delta_x) g_x^{SM}$

□ Additional terms for loop induced processes: $g_{\gamma} = (1 + \Delta_{\gamma}^{SM (tree)} + \Delta_{\gamma}) g_{\gamma}^{SM}$

Uncertainties

- Statistical errors Gaussian or Poisson
- Uncertainties can be correlated (luminosity, tagging efficiencies)
- Theoretical errors are taken as flat (Rfit scheme)

Combination with experimental errors: (not a convolution!)

$$\chi^2 = \sum_{\text{measurements}} \begin{cases} 0 & \text{for } |x_{\text{data}} - x_{\text{pred}}| < \sigma_{\text{theo}} \\ \left(\frac{|x_{\text{data}} - x_{\text{pred}}| - \sigma_{\text{theo}}}{\sigma_{\text{exp}}}\right)^2 & \text{for } |x_{\text{data}} - x_{\text{pred}}| \ge \sigma_{\text{theo}} \end{cases}$$

No information inside theory errors \rightarrow flat distribution Not necessarily conservative !

Linearly propagated to observables (not quadratically)

Rfit scheme:

Höcker et al, Eur. Phys. J. C 21, 225 (2001). In Sfitter: Eur. Phys. J. C54, 617 (2008)

Higgs coupling extraction 2012 LHC data

 $\Delta_{\gamma} = -0.22$ No enhanced coupling to $\gamma!$

HL-LHC observables

HL-LHC: 3000 fb⁻¹@14 TeV with detector and machine upgrade

Uncertainties	production	decay
oncertainties	gg ightarrow H	ZZ
5% error on luminosity (2% if improvement assumed)	qqH	ZZ
Statistical errors scaled to luminosity from 14 TeV predictions	gg ightarrow H	WW
	qqH	WW
Systematics unchanged (statistics improves but conditions	$t\bar{t}H$	$WW(3\ell)$
worsen)	$t\bar{t}H$	$WW(2\ell)$
No improvement assumed on theory errors	inclusive	$\gamma\gamma$
	qqH	$\gamma\gamma$
Dominant th. error is on cross section production t	$t\bar{t}H$	$\gamma\gamma$
	WH	$\gamma\gamma$
	ZH	$\gamma\gamma$
Higgs to charm quarks not negligible O(1%) and too challenging to	qqH	$\tau \tau(2\ell)$
measure	qqH	$ au au(1\ell)$
\Box Link to 3 rd generation: $g_c = m_c/m_t \times g_t^{SM}(1 + \Delta_t)$	$t\bar{t}H$	$b\overline{b}$
□ Total Higgs width assumed <2 GeV (larger would be visible)	WH/ZH	$bar{b}$

Total Higgs width assumed <2 GeV (larger would be visible)

HL-LHC scenarios:

cf SFitter Higgs couplings papers Duhrssen et al, Phys. Rev. D 70, 113009 (2004); Zeppenfeld, et al, Phys. Rev. D 62, 013009 (2000)

ILC observables	Observable ILC at 250 GeV with 250	Error
	$\sigma(Zh)$	0.025
II C with 2 phases: $250 \text{ GeV} + 500 \text{ GeV}$	$\sigma(Zh) \cdot BR(b\overline{b})$	0.011
120 Mar 2 phaces. 200 Cov 1 000 Cov	$\sigma(Zh) \cdot BR(c\overline{c})$	0.074
	$\sigma(Zh) \cdot BR(gg)$	0.091
	$\sigma(Zh) \cdot BR(WW)$	0.064
Uncertainties	$\sigma(Zh) \cdot BR(ZZ)$	0.19
	$\sigma(Zh) \cdot BR(\tau^+\tau^-)$	0.042
0.3% error on luminosity	$\sigma(Zh) \cdot BR(\gamma\gamma)$	0.38
	$\sigma(WW) \cdot BR(bb)$	0.105
\Box 0.5% error on ZH, vvH and 1% on ttH productions	$\sigma(Zh) \cdot BR(\text{invisible})$	0.005
Dominant the error is on Higgs width: 4% for quarks	ILC at 500 GeV with 500	fb ⁻¹
	$\sigma(Zh) \cdot BR(bb)$	0.018
2% gluons, 1% others	$\sigma(Zh) \cdot BR(c\overline{c})$	0.12
Error on RR is linear sum of arrors on width	$\sigma(Zn) \cdot BR(gg)$ $\sigma(Zh) = PP(WW)$	0.14
	$\sigma(Zh) \cdot BR(WW)$ $\sigma(Zh) \cdot BR(ZZ)$	0.092 0.25
	$\sigma(Zh) \cdot BR(\tau^+\tau^-)$	0.25 0.054
	$\sigma(Zh) \cdot BR(\gamma\gamma)$	0.38
Total Higgs width indirectly measured from	$\sigma(WW) \cdot BR(b\overline{b})$	0.0066
combination of observables (included in fit)	$\sigma(WW) \cdot BR(c\overline{c})$	0.062
	$\sigma(WW) \cdot BR(gg)$	0.041
(with 10% precision @LC250)	$\sigma(WW) \cdot BR(WW)$	0.026
	$\sigma(WW) \cdot BR(ZZ)$	0.082
/	$\sigma(WW) \cdot BR(\tau^+\tau^-)$	0.14
$\sigma_{\nu\nu bb}/\sigma_{Zbb}$	$\sigma(WW) \cdot BR(\gamma\gamma)$	0.26
$\Gamma_{\rm tot} \leftarrow \times \sigma_{ZH}$	$\sigma(tth) \cdot BR(bb)$	0.25
σ_{ZWW}/σ_{ZH}	ILC observables:	
	Peskin arXiv:1207.2516: Ono and Miyamoto ar	Xiv:1207.0300

ZH inclusive measured from system recoiling against $Z \rightarrow \mu \mu$

Aguilar-Saavedra et al, hep-ph/0106315. Aarons et al, ILC Collaboration, arXiv:0709.1893 Duerig, Master thesis, University Bonn (2012)

Higgs coupling extraction HL-LHC+ILC

Simple SM extension scenarios:

Higgs portal scenario

Strongly interacting extensions

Can be describe from total variation: $\Delta_{\rm H}$

HL-LHC can measure $\Delta_{\rm H}$ @ 4% (th. error limited, from σ errors) LC250 @ 1% (lower th. error from BR)

- HL-LHC precision is 8% (bosons) to 15% (quarks)
- LC250 measurements are statistically limited
- LC500 essential for Δ_t (access to ttH prod)
- HL-LHC+LC dominated by LC precision
- Combination essential for loop induced couplings (Δ_{γ} and Δ_{g}).
 - Δ_{γ} benefits from Δ_{W} impact on $\Delta_{\gamma}^{SM(tree)}$

LHC 2013-data: Extracted couplings show no significant deviation

HL-LHC: can measure couplings with a precision 8-15% ILC: improves precision by an order of magnitude + measurement of Δ_c and direct access to Higgs total width LC@500 GeV needed to accurately measure Δ_t

HL-LHC+ILC combination: essential for loop induced couplings