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Measurement of the spin of the newly observed resonance
with Atlas and CMS*

» Introduction
» Models
» Analyses and results

» Conclusions and prospects

“this question carries a similar potential
for surprise as a football game between Brazil and Tonga"

* Nothing from Tevatron, yet
(ask Jean-Frangois...)
Do not expect a clear visual impression
Prejudices help !
And... in statistics we trust...



Is this really the “SM Higgs” boson ?

% Mass ~ 125 GeV/c? very much consistent with the preferred values
from EW fits and theoretical prejudices

% Is it a neutral boson ? Yes : observation ofe.g. H = vy v
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% Does it couple to other SM particles o« mass ? 9
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Very consistent with SM...



Introduction

» The low mass region is not very favourable for J* measurement
many information in H — ZZ — 41 but tiny yield
relatively large yield in H — WW — Ivlv but final state not fully reconstructed (2 neutrinos)
relatively large yield in H — vy, but huge background

» Try to disentangle the SM Higgs boson from a singly produced spin J resonance
v" No look at spin higher than 2 for simplicity
v" Spin 1 forbidden™ by the Landau/Yang theorem and the observation of X — yy

(For a massive particle of spin J, J, = M and momentum p, decaying to 2 photons
the properly symmetrized 2-photon (helicity A, A,) state is |®> = |p,J,M,A,A,> + (-1)’ |p,J, M, A >
with [A-A,| = J. ForJ =1, A,= A, and |®> = 0)

v" Associated productions (especially VBF) for the future

» The WW and ZZ observations already suggest J* = 0" as being likely
(exclude pure CP odd)

» The signal yield is a nuisance parameter,
forget about the fact that u is not so far away from the SM expectation...

One should keep in mind that if it’s not something close to the SM Higgs boson,
it is a very smart impostor

) can still try to exclude spin 1 (vector or pseudo-vector)
with ZZ/WW alone, assuming at least two different particles
produce the VV and yy final states. Too exotic for me...



Models

Parameterising the most general X,— VV decay amplitude :

AX 5 VV)=v" ( Om2 eres + gl f20 pr@hmv  g0) (). £x(2) q,;\qz

A = overall scale,
fv =€.0y- €4, f,~=12¢

wv uv" uvaf3

fob

= 4 complex coupling constants

(in fact using only polarisation vectors, only three independent terms, see later)

= For a 0" particle, g, , ; (g,) are parity conserving (violating)

NPT f*(2>,;w)

For Hgy,, @ tree level, g, = 1, g, ;, = 0. For a pure pseudo-scalar g, =1, g,,,=0

From an effective Lagrangian point of view, g, (g, , and g,) would originate

from a dimension 3 (5 and 7) operator



Parameterising the most general X,— VV decay amplitude :

— * x p* rvro chq * Q px vV q q * vV px = vV p*x
AX > WVVa) = A1 [ggp)twf (Dua px(2) +2g§2)t,w—2"”f (Dua px@wp | T 9 o tor (f Wpv @) 4 =2 uc(zl))

*(1)ax *(2 * *u q Qo L3 7 Ye" *QY X1 §#~V * %
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+ 3 A2 /,wf faﬁ +mv 9 A2 Euupael 62 q + Teuupaq q (61 (q62) +62 (qel)) ’ (18)
q~=q; -9,
t,w ~ X, wave function

= 10 complex coupling constants

(in fact using only polarisation vectors, only seven independent terms)
=> for the gg — X,— vy channel : “only” 5 relevant

=> For a 2" particle, g, , (g5 ,,) are parity conserving (violating)

Parameterising the most general X,— qq decay amplitude :

~ MqGuqy
A(Xj—p —q]) = —t"” (vﬂqu (p?) - p&z)vs) + "X;‘ z (p§2) + P§2)75)> Vg



Too many degrees of freedom to study spin model-independently :
concentrate on the most simple, well motivated model

a spin 2 particle 2°  with minimal coupling, inspired from Gravitation :
— replacing the Planck scale by the Electroweak scale
— assigning a mass ~ 126 GeV to the graviton
(e.g. the first graviton KK excitation in Randall-Sundrum type models)

=> Keep only the term « g,/A

For a “true” minimal model, p,/A 1s fixed once g,/A 1s (there is a single gravitational constant)
= 0(qq — X,)/0(gg — X,) ~ 0.042 (@ L0y, and using CTEQ6L1)

In Atlas, the fraction of events produced via qq annihilation has been scanned

This minimal coupling scenario is in fact already excluded at a high confidence level
from the coupling analysis, since it predicts e.g.

v T'(gg) = 8T'(yy) whereas HCP data = I'(gg) ~ (29+13) T'(yy)

v Ky ~O(35) x, whereas HCP data = «, ~ (175£25) K,
(in RS type models)



The different benchmarks :

Type couplings channels Experiment comments
0, g, 77 CMS
0 g, 77 Atlas/CMS
2" , Minimal ling if
m S8 |77/ WWhy | Atlas/CMS nimal coupling if
(almost-minimal) P, (qq = X)/(gg — X) ~ 4%
2 g, @ prod. Strange !
(hybrid pseudo- 8¢, Eo @ 77 Atlas Test analysis sensitivity to
tensor) decay non minimal couplings
1* 7Z7Z/WW Atlas/CMS(ZZ) (pseudo)vector

% The simulation of X production and decay is done with a LO generator (JHUgen)

¥ Do not care about the absolute signal yield prediction (profiled away)

(however it plays an important role in the sensitivity !)

¥ Might care about the p; spectrum of X, that could imply shape distortions

w.r.t. LO production (p; = 0)

= NLO (real) correction ? Not known but for SM Higgs boson

Using accurate SM Higgs boson p; prediction for the resonance p;
(Only for gluon fusion; use py from parton shower for X produced in qq annihilation)




Side remark : the resonance transverse momentum

» Justifying the MC spin 2 reweighting to Powheg MC :
assume the p; generation comes mainly from ISR-type processes,
With same argument could use N"LO corrections to Drell-Yan to reweigh the spectrum
from qq annihilation...

» In Atlas we scan the qq annihilation fraction (i.e. P, (~K,), g (~ k) are independent parameters)
In the minimal “tensor structure” scenario this leads to highly distorted p; spectra
from an absence of cancellation in the amplitude :

~ fg(glaglagl)

; . 9 g, 9 9
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) 2 g x2
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i 9 ~1,(P1-01,81)
I >< >-< q\M1» lag]
u 9 Y g u
10 E Mean  21.28

— RMS 34.99
Kq Kg

Mean 384.2

_ RMS 324.5
K, =100k,

NLO real corrections
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Need to think a little bit more
about all these problematics...
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A word on statistical interpretation

» Always compare two hypotheses and determine the more likely given the data :
use the (logarithm of the) Likelihood Ratio to rank the outcome of an experiment, typically

L(Hg)
L(H )

where H,, 1s the SM hypothesis and H ,,, 1s the alternative (e.g. 2" from gluon fusion)
(the likelihoods are in general simple products of Poisson probabilities over bins of discriminating variable distributions)

qg=In

» Determine the g distribution under the two hypotheses (e.g. from toy experiments) and
compute the probabilities (p-values)

To get the sensitivities, replace g,
»  Dobs by the median of the distributions.

£ - SM hypothesis

—— Alt. hypothesis

¥ p,=p-value for Hy,, 1fX 1s indeed H,,, the result of
an ideal experiment with
two sigma sensitivities would be
p, = p-value for H ,, PSP = p,°*P = p,°b = 4.55%
pOobs =50%
Any large deviation from 50%
is a sign of a tension between the data
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9 and the tested hypothesis

The exclusion of the Alt. hypothesis in favour of the SM one is quantified by
CL (Alt) =p,/ (1-py)



Analyses and results All analyses in Atlas (CMS) use a resonance mass of 125 (126) GeV/c?, but very small impact
(except for the combination...)

The golden four lepton channel (if only its yields were larger !)

4 body final state, fully reconstructed = many clean variables to disentangle hypotheses
3 angles from the Z() decays (0,,0,,®), 2 angles for Z(*) production/dec. (8%, ®,), two masses

Not very sensitive to SM vs 27 yet
but powerful for parity

(Flat for SM) (Almost flat for 27 )
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Both experiments combine the 7 (but not ®, and 6* for SM vs 0-) variables in a single discriminant :
P(Hsn)

P(Hswm) + P(H air)

where P is the probability density function for (6,,0,,®, 8%, ®,, m,,, m,,) for a given hypothesis

corrected for acceptance and detector effects

D;r = JP-MELA =

Atlas has also independent analyses using BDT to combine the variables



Example for SM vs 0- : the most relevant variables are ®, cos6, and m,,
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Do = 0.11%, P, b = 0.22%, pey® = 40.00%
= CLS(O') = 0.4% (2.2% for BDT analysis)



CMS uses a 2D analysis : Dy, to separate signal and background and Dy, for the JP discrimination

CMS preliminary \s=7TeV,L=51fb"'\s=8TeV,L=196fb"

Events

(48 events with
106 <m, < 141 GeV/c?)
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=> In both experiment the pure pseudo-scalar is disfavoured with CL higher than 99.6%
(97.8% CL for the BDT analysis in Atlas)



Results for the different benchmark cases :

JP pzexp pzobs poobs CLs (%)

0", -/ ~4.46 -/ ~4.46 -/50 -/8.1

0 0.11/047| 0.22/0.05 | 0.4/69.2 04/0.16
2" gg—X 6.4/3.6 11.0/0.35 [38.0/78.8| 182/1.5

(qq = X) - /4.46 - /0.003| - /964 - /<0.1

2" 0.32/- 11.0/- 8.0/- 11.6/-

1- 0.10/0.26 2.70/<0.003 11.0/91.9 3.1/<0.1

1" 0.31/1.07 0.28 /<0.003 51.0/95.6 0.6/<0.1

ATLAS / CMS
(similar results for
Atlas BDT analyses)

Atlas sensitivities profit from the fact that the measured yield is higher than the SM expectation i = 1.7533 @ my = 124.3GeV/c?
It is the reverse situation for CMS 2 = 0917535 @ my = 125.8GeV /c?

For 2™,

Atlas separation as a function

of qq initial state fraction f :
flat expectation : separation
independent of the initial state
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= Against these models, the data
favours the SM hypothesis



Starting to investigate mixed parity scalar state (CMS) : CP violation in the scalar sector

Rewrite the general amplitude with the 3 independent terms :

AX - WV,) = v_le’{“eg” (algwmi + a2 quqy + a3€uv08 (I?qg)
=A A TA;

SM Higgs boson (tree) : a, = 1, a, = a; = 0, pure pseudo-scalar : a, =1,a,=a, =0
Investigate mixed state by measuring £, = |A;> / (|A > + |A,|? + |A5]?)

(a potential interference between A, and A; was found to have negligible impact on the yields or discriminating variable shapes)

f . 1s *not* the fraction of parity-even and parity-odd states,
it is only a fraction in the decay amplitude

CMS Preliminary Vs=7TeV,L=51fb";{s=8TeV,L=19.6 fb"
CT T T T T T T T T T T T T T 1

10 /
N — CMS Data / :
oY M Expected

= f,; <0.58 @ 95% CL : I
(0.75 expected) i R

Use D, and neglect A, :

2A InL




A higher statistic but low S/B channel : X — WW Only for 2*

In Atlas the scalar nature of the Higgs boson is used in the discovery analysis

4

N/ /4 wnvz  Charged leptons close-by in space
. o 'w* — small azimuthal separation A¢,,
wn U v/ ! b
- » S & o1 — small di-lepton mass m,,
ll/(/ 1 _ A
Y £ o2 => Change analysis strategy to exploit this kind

- of variables without selection bias

Atlas uses only X — evuv + 0 jet channel

other channels (SF leptons, + jets) bring to many background events with the looser cuts
needed to stay as model independent as possible)

CMS uses X — evuv + 0/1 jet channels (no shape analysis for the SF final states)

In both experiments, the m variable is used to discriminate signal and background
and some other variables are used to disentangle the different spin hypotheses.
The most powerful spin analysers are m;; and A¢,,

mr = \/Qp‘szT(l — CoS A¢E~T[£)



CMS uses a fit to 2D templates (my,m,)) Background

CMS preliminary L=19.5fb B (8TeV)

M, (GeV)

Example in the 0-jet bin :

Background template
(same as the one used
for the discovery analysis)

2. (125 GeV)
CMS preliminary L =19.5fb B (8TeV)

M, = 125 GeV
CMS preliminary L =19.5fb 5 (8TeV)

PRI R
100 110 120
M, (GeV)
M, (GeV)

= Adding the 0 and 1 jet bins :
CL, = 14%, very slight preference for the SM



Atlas a bit more complicated... : also a 2D template fit (BDT,,, BDT,)
where BDT, (BDT,) combines 4 discriminating variables (my, Ad,;, py;;, my) and is trained
with SM (27 ) as signal

Example of input var.
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Fit results : projection of BDT,, for background subtracted data

140
120

Events /0.1

100
80
60
40
20

-20
-40

Separation vs £,
increases with qu

10

27 (£

= 0. 25) hypothesis

ATLAS Prellmlnary —¢— Bkg. subtraced Data
\s=8TeV,| Ldt=20.7 fb"
HAWW(')—>evuv/uvev + 0 jets

D H2* [125]

SM hypothesm
LA ILALILE ILL | | | AL B B — 140
-~ ATLAS Prellmlnary —+— Bkg. sublracted Data ] % 120
C \s=8TeV,J Ldt=2071b" [_] Ho'rres] E 5 100
- HAWW(')—>evuv/uvev +0 jets ] o
- - 80
— = 60
— - 40
- - 20
| : o
J 3 -20
|||||| Lev o b b vy by |: -40

O 8 0 6 0 4 0 2 0 0.2 04 06 08 1
BDT,

2 T T T | T T T | T T T | T T T

il [ ATLAS Preliminary eData Spin0]

N 20__ H-ww - evuv/uvev Signal hypothesis [ 16 __

T° [ \s=8Tev,[Lat=207f"  eJ;=0" [Jao]

g P ot

~ [ ] J =2

(@) H

8 15 '

_L_IIIIIIIII|III|III|III|III|III|III

0.8 -06 -04 -02 O

_k-lllllllIII|III|III|III|IIIIIIII1]

I BT B B R
02 04 06 038
BDT,

= CL{ < 5% whatever f |

The fitted yield for the SM hypothesis
is ~ 1.4 higher than in the discovery analysis,
still OK (compatibility ~ 1.60)



What does H — yy has to say ? (Atlas only, 2012 data)

Despite large bkg and little information, might contribute where WW/ZZ are less sensitive
Relevant variable : photon production angle 6

whose distributions are easily obtained from the helicity formalism

dgé\ge (gg) ~

C\.
SoNo Doy
Cx
SoNe Dyg

S1Re D1y +
3R Dro

+ dfﬁg(ﬂ) ~

N, S are constants linked to the decay and production polarisation configuration
(a priori different for gg and qq)

: : : J=2 2
D;; are sums of squared (little) Wigner matrices : Dz-j ~ Z |dz] (9) |

In the minimal coupling scenario, X, =0 and ?SO = 0 (no coupling of X, to polarisation 0) =>

dN/dcos6* ~ 1 + 6 cos?6* + cos*O* (gg)
~ 1 - cos*O* (qq)

Example of expected distributions at p ;= 0:
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With p.> 25 GeV/c (and 1 cut)
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0.1 0.2 0.3 04 0.5 06 0.7 0.8

For pr; =0, my = 125 GeV/c?,
pr,>25GeV/c

=> coshAn <11.5

= |cosf*| < 0.92



» Standard H — yy selection except for the pr, cut:
from absolute (pr > 30/40 GeV/c) to relative p; > 0.25/0.35 m,

remove most of the correlations between m,, and cos6* for the background
allowing a better control of the shape

» The signal region (SR) is defined as m,, € [122,130] GeV/c?:
= 94471 selected events, 14982 in SR, ~ 385 signal events from SM expectation

Main challenge : measure the cos@* distribution of ~ 690 signal events (for u ~ 1.8)
on top of ~ 15 K background events

m,, : main handle for bkg rejection cosf* : main handle for spin measurement

2200
2000 -

1600 ::¢—;,=+Iﬁ+

I i

1200

1000
800
600
400
200

2 4000
C]

= 3500

3000

..........

2500

2000

1500
e Data, SR
— S+B, SR

1000

500

_]III|IIII]IIIIIIIII|III[IIIII|II[I|II

c_lllllIllllllllllllllllllllll

150 160 0.1 0.2 03 04 05 06 07 08 09 1

110 120 130 140 o*
m,, [GeV] |cos 6%



2* with 100% gg fusion
Fit the data for the two hypotheses
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Combination

Atlas and CMS combined the WW and ZZ channels (and yy for Atlas)
to improve the sensitivity for the SM vs 2% separation

CMS separation, for f, =0

CMS preliminary ¥s=7TeV,L=51fb" ys=8TeV,L=19.6fb"

LI (N L L L L L |
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Atlas, as a function of qu
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Conclusion

» The SM hypothesis is favoured against all tested alternative models

» People willing to continue on spin measurements should take some time

to define relevant (spin 2) models not already excluded by coupling measurement...

» The fermionic channels will also bring information,
e.g. in the VX associated production, with X — bb, the mass of the VX system
might be a very good discriminator for SM vs 0-, 2 hypotheses

» The delicate issue of the p; spectrum should be clarify

» For the futur, CP asymmetries seem more important to look at
e.g. in the di-photon channel, the VBF production seems promising

2 S

1

Diagram very similar to the golden channel H — ZZ* — 4]
=> look for angular correlations in the di-jet system



Another side remark on p, but for outgoing partons in VBF processes :

% No “good” spin 2 model : using an effective lagrangian
=> violation of unitarity above a certain scale.
Need form factors (FF) to regularize the cross-sections...

% Choices of couplings also relevant from the really beginning :
the couplings X-Z%y and X-y-y exist and can spoil the typical VBF signature
(relatively high p; (~ m,,/2) forward jets)

Strong contribution ——
from photon exchange :

= low pr jets

F. Kiss setup

No form factor

Entries 25801
Mean 50.42
RMS 47.43

Entries 78079
Mean 398
RMS 268.1
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10"
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Frank et al. setup

Entries 44286
Mean 104.3
RMS 54.24
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spectrum

Trying to get closer to
SM Higgs boson VBF spectra
by decreasing photon contribution






CMS WW data, 0-jet bin
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v Signal :

— The interference between the processes gg — X — yy and gg — vy (box)

Do nothing for qq initiated process, e.g.

depends on cosf* and distort the shape s OFTTTTTTTTTTTTTTTTTT T
g F E
e TN
Only done for the SM : reduction of signal yield. oF N
large at high cos6* : correct and use the full correction DS N N A O O A
as the uncertainty. 1ob | SO N T W ]
i 42_ S WS AU AU SO SRS SN S SUR SO
(the computation for the spin 2 model used here is available 161~ 1
since last week (effect with opposite sign and smaller)) B T -
R B R B Y- Je o B
— No computation of the p spectrum for spin 2. However can impact the cos&* shape, "
especially at high cos6* (only populated thanks to non zero p;)
As “reasonable” guess, assume it is the same as the SM Higgs boson (for gg fusion)
= reweigh spin 2 MC (gg fusion) to SM Powheg ggH p;
use full correction as systematics (why ?? HSG7 strange prescription...)
g T s, pythias) ] g 12 TTTTT YT
FET 2 T e :
g d o gg— Hg, (Powheg+Pythia8) E = 1- f'.ﬂ : 0. R
< 10t E : ]
; ; 0_8: AR é 0. :
103 - B ]
8 \\“\._, : 06 ]
- Powheg + Pythia8 " - : ]
'E VS e 0.4 1
" Pythia8 ] 't gg weight ]
0%~ ""50 " ""T00 1t ~ 250 0.2k BB BN R R pers
1 10 10° 10°
pt[GeV]

the model for p; is defined by Pythia8



Remark : assuming a scalar particle, the parity is very difficult to determine from
the H — yy decay

— Correlation in the linear polarisation of the two photons : obviously not in Atlas
(t® — vy was used to measure the neutral pion parity)

— From the p y spectrum distortion of 0~ vs 07
(due to the gluon polarisation inside the proton, hep-ph/1304.2654)

The Collins-Soper cos&* definition :

" gl

sinh(n.,, — 2plp)?
cos 0* = (7771 77)’2) . pszT

(o \/ 1+ (P%y/ mw)2 "

= sinh(An) / (cosh(An) + 1) at pr ;=0

» expected to minimise the impact of ISR
» shown to give the best discrimination (?)



The nominal (default) analysis : (to be given up ?)

Main hypothesis : decorrelation between m,, and cos&*
pdf(m,,,cos6%) = pdf(m,,) x pdf(cos6*)

In principle, true for the signal (up to small resolution effects due to different photon kinematic in different cos@* bins)

» In the SR, 2D fit to pdf(m,.,cos6%)
the bkg cos@* pdf is extracted from side band (SB)

» In the SB, 1D fit to pdf(m,,), which is identical to the SR mass pdf
= constrain Ny, in the SR

The decorrelation is checked on the data and high stat MC sample by comparing the

expected number of events in a (m,,,cos6*) bin assuming decorrelation to the observed one :

=n°b[cos 6*] =n"*[m,)

D n[m J[cos 6] )" n[my,][cos 6]

x m;y cos 0’
n“*?[my,][cos "] =

ntot

1 1 1
(O'e"p [myy][cos 9*])2 = n“F[myy]lcos 6] + ("exp [myy]lcos 9*])2 . (n"bs [y ] * n°s[cos 6*] * "’m)
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With absolute p; cuts (used for HCP analysis) a strong correlation is observed :
this would require a true 2D bkg pdf (very intricate...) or the use of an “averaged” 1D cos8* pdf (choice for HCP)
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The mass pdfs (analytical functions) :

v bkg : a five order polynomial (5 + 1 nuisance parameters (NP)) + spurious signal (1 NP)

v’ signal : a standard Crystal-Ball + Gaussian parameterisation used for all cos6*
(including ESS and resolution systematic uncertainties : 6+1 NP)

The cos&* pdfs (10 bin histograms) :

v bkg : from the full SB (m,, € [105,122] U ]130,160] GeV/c?)
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Each bin is assigned a nuisance parameter with a Gaussian constrain (10 NP) :
- for the finite statistics in the SB
- to account for the remaining correlation observed in the high stat. MC

High stat. MC SB/ SR Final systematics per bin
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From ~ 1 to ~ 4% systematic uncertainty depending on cos&*



Fitted bkg subtracted data

Nominal analysis Category analysis
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Nominal analysis

Category analysis

— S L L L L = A UL L B IR RLEL
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S S
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Enforcing decorrelation in the Category analysis gives results similar

to the nominal analysis
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The category (alternative) analysis :
Do a simultaneous fit to the data invariant mass distributions in 10 cos&* bins : 10 categories

The mass pdfs (analytical functions) :

v’ bkg : 1 shape / cosG* bin (9 exponentials of degree 2 polynomial + 1 degree 3 polynome)
21 (shape) + 10 (normalisation) + 10 (spurious signal, constrained) = 41 NP

v’ signal : can cope with the slighly varying resolution as a function of cos6*
by using 10 different CB + Gaussian shapes (7 standard ESS and resolution NP)

The cos@* information :

v’ signal : use the predicted relative yield / cos6* bin
same systematics as for the inclusive analysis, treated as bin to bin migrations
v" bkg : the shape is an outcome of the fit

% Main drawbacks :
many NP for the bkg mass shapes, needs spurious signal studies

% Main advantage :
can deal with signal mass shape varying as a function of cos*
no bkg cos@* pdf, no decorrelation assumption needed

The decorrelation can be enforced by using the same bkg mass shape (same parameters)
in all bins (still keeping a spurious signal NP / bin ?)



As a function of qq annihilation fraction (f,)

Arbitrary unit
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to a slightly lower fraction at the production level
due to a higher efficiency in the qq annihilation process)

Smaller discrimination at high £,
minimal separation @ f , ~25%



