

Is this really the "SM Higgs" boson ?

 Mass ~ 125 GeV/c² very much consistent with the preferred values from EW fits and theoretical prejudices

 $\frac{1}{2}$ Is it a neutral boson ? Yes : observation of e.g. H → γγ ✓

$$rac{}{}$$
 Is it J^{CP} = 0⁺⁺ ? (H → γγ ⇒ C = +)

Coupling to V = $g_V = 2 \frac{m_V^2}{v}$ Coupling to fermion = $\lambda_f = \sqrt{2} \frac{m_f}{v}$

Try that ansatz (SM :
$$M = v$$
, $\varepsilon = 0$)

$$\lambda'_f = \sqrt{2} \left(\frac{m_f}{M}\right)^{1+\epsilon}$$
$$g'_V = 2 \frac{m_V^{2(1+\epsilon)}}{M^{1+2\epsilon}}$$

Fit (M, ε) with available data M = 244±15 GeV/c², ε = -0.022±0.030

Very consistent with SM...

Introduction

- ➤ The low mass region is not very favourable for J^P measurement many information in H → ZZ → 4l but tiny yield relatively large yield in H → WW → lvlv but final state not fully reconstructed (2 neutrinos) relatively large yield in H → γγ, but huge background
- > Try to disentangle the SM Higgs boson from a singly produced spin J resonance

 \checkmark No look at spin higher than 2 for simplicity

✓ Spin 1 forbidden^(*) by the Landau/Yang theorem and the observation of $X \rightarrow \gamma\gamma$

(For a massive particle of spin J, $J_z = M$ and momentum p, decaying to 2 photons the properly symmetrized 2-photon (helicity λ_1, λ_2) state is $|\Phi\rangle = |p,J,M,\lambda_1,\lambda_2\rangle + (-1)^J |p,J,M,\lambda_2,\lambda_1\rangle$ with $|\lambda_1-\lambda_2| \le J$. For J = 1, $\lambda_1 = \lambda_2$ and $|\Phi\rangle = 0$)

- ✓ Associated productions (especially VBF) for the future
- The WW and ZZ observations already suggest J^P = 0⁺ as being likely (exclude pure CP odd)

The signal yield is a nuisance parameter, forget about the fact that μ is not so far away from the SM expectation...

One should keep in mind that if it's not something close to the SM Higgs boson, it is a *very smart impostor*

> (*) can still try to exclude spin 1 (vector or pseudo-vector) with ZZ/WW alone, assuming at least two different particles produce the VV and γγ final states. Too exotic for me...

Models

Parameterising the most general $X_0 \rightarrow VV$ decay amplitude :

$$A(X \to VV) = v^{-1} \left(g_1^{(0)} m_V^2 \epsilon_1^* \epsilon_2^* + g_2^{(0)} f_{\mu\nu}^{*(1)} f^{*(2),\mu\nu} + g_3^{(0)} f^{*(1),\mu\nu} f_{\mu\alpha}^{*(2)} \frac{q_\nu q^\alpha}{\Lambda^2} + g_4^{(0)} f_{\mu\nu}^{*(1)} \tilde{f}^{*(2),\mu\nu} \right)$$

$$Λ = \text{overall scale},fμν = εμqν - ενqμ, fμν ~ = 1/2 εμναβfαβ$$

\Rightarrow 4 complex coupling constants

(in fact using only polarisation vectors, only three independent terms, see later)

 \Rightarrow For a 0⁺ particle, $g_{1,2,3}(g_4)$ are parity conserving (violating)

For H_{SM} , @ tree level, $g_1 = 1$, $g_{2,3,4} = 0$. For a pure pseudo-scalar $g_4 = 1$, $g_{1,2,3} = 0$

From an effective Lagrangian point of view, $g_1 (g_{2,4} \text{ and } g_3)$ would originate from a dimension 3 (5 and 7) operator

Parameterising the most general $X_2 \rightarrow VV$ decay amplitude :

$$\begin{aligned} A(X \to V_{1}V_{2}) &= \Lambda^{-1} \left[2g_{1}^{(2)}t_{\mu\nu}f^{*(1)\mu\alpha}f^{*(2)\nu\alpha} + 2g_{2}^{(2)}t_{\mu\nu}\frac{q_{\alpha}q_{\beta}}{\Lambda^{2}}f^{*(1)\mu\alpha}f^{*(2)\nu\beta} + g_{3}^{(2)}\frac{\tilde{q}^{\beta}\tilde{q}^{\alpha}}{\Lambda^{2}}t_{\beta\nu} \left(f^{*(1)\mu\nu}f^{*(2)}_{\mu\alpha} + f^{*(2)\mu\nu}f^{*(1)}_{\mu\alpha} \right) \right. \\ &+ g_{4}^{(2)}\frac{\tilde{q}^{\nu}\tilde{q}^{\mu}}{\Lambda^{2}}t_{\mu\nu}f^{*(1)\alpha\beta}f^{*(2)}_{\alpha\beta} + m_{V}^{2} \left(2g_{5}^{(2)}t_{\mu\nu}\epsilon^{*\mu}_{1}\epsilon^{*\nu}_{2} + 2g_{6}^{(2)}\frac{\tilde{q}^{\mu}q_{\alpha}}{\Lambda^{2}}t_{\mu\nu}\left(\epsilon^{*\nu}_{1}\epsilon^{*\alpha}_{2} - \epsilon^{*\alpha}_{1}\epsilon^{*\nu}_{2}\right) + g_{7}^{(2)}\frac{\tilde{q}^{\mu}\tilde{q}^{\nu}}{\Lambda^{2}}t_{\mu\nu}\epsilon^{*}_{1}\epsilon^{*}_{2} \right) \\ &+ g_{8}^{(2)}\frac{\tilde{q}_{\mu}\tilde{q}_{\nu}}{\Lambda^{2}}t_{\mu\nu}f^{*(1)\alpha\beta}\tilde{f}^{*(2)}_{\alpha\beta} + m_{V}^{2} \left(g_{9}^{(2)}\frac{t_{\mu\alpha}\tilde{q}^{\alpha}}{\Lambda^{2}}\epsilon_{\mu\nu\rho\sigma}\epsilon^{*\nu}_{1}\epsilon^{*\rho}_{2}q^{\sigma} + \frac{g_{10}^{(2)}t_{\mu\alpha}\tilde{q}^{\alpha}}{\Lambda^{4}}\epsilon_{\mu\nu\rho\sigma}q^{\rho}\tilde{q}^{\sigma}\left(\epsilon^{*\nu}_{1}\left(q\epsilon^{*}_{2}\right) + \epsilon^{*\nu}_{2}\left(q\epsilon^{*}_{1}\right)\right) \right) \right], \tag{18}$$

$$q \sim = q_1 - q_2$$

 $t_{\mu\nu} \sim X_2$ wave function

 \Rightarrow 10 complex coupling constants

(in fact using only polarisation vectors, only seven independent terms)

 \Rightarrow for the gg \rightarrow X₂ \rightarrow $\gamma\gamma$ channel : "only" 5 relevant

 \Rightarrow For a 2⁺ particle, g_{1-7} (g_{8-10}) are parity conserving (violating)

Parameterising the most general $X_2 \rightarrow q\bar{q}$ decay amplitude :

$$A(X_{J=2} \to q\bar{q}) = \frac{1}{\Lambda} t^{\mu\nu} \bar{u}_{q_1} \left(\gamma_{\mu} \tilde{q}_{\nu} \left(\rho_1^{(2)} + \rho_2^{(2)} \gamma_5 \right) + \frac{m_q \tilde{q}_{\mu} \tilde{q}_{\nu}}{\Lambda^2} \left(\rho_3^{(2)} + \rho_4^{(2)} \gamma_5 \right) \right) v_{q_2}$$

Too many degrees of freedom to study spin model-independently : concentrate on the most simple, well motivated model

a spin 2 particle 2⁺_m with minimal coupling, inspired from Gravitation :
→ replacing the Planck scale by the Electroweak scale
→ assigning a mass ~ 126 GeV to the graviton
(e.g. the first graviton KK excitation in Randall-Sundrum type models)

 \Rightarrow Keep only the term $\propto g_1/\Lambda$

For a "true" minimal model, ρ_1/Λ is fixed once g_1/Λ is (there is a single gravitational constant) $\Rightarrow \sigma(\bar{qq} \rightarrow X_2)/\sigma(gg \rightarrow X_2) \sim 0.042$ (@ LO_{QCD} and using CTEQ6L1)

In Atlas, the fraction of events produced via $q\overline{q}$ annihilation has been scanned

This *minimal coupling* scenario is in fact already excluded at a high confidence level from the coupling analysis, since it predicts e.g.

✓ $\Gamma(gg) = 8\Gamma(\gamma\gamma)$ whereas HCP data ⇒ $\Gamma(gg) \sim (29\pm13) \Gamma(\gamma\gamma)$

✓ $\kappa_{\rm V} \sim O(35) \kappa_{\gamma}$ whereas HCP data ⇒ $\kappa_{\rm V} \sim (175\pm25) \kappa_{\gamma}$ (in RS type models)

The different benchmarks :

Туре	couplings	channels	Experiment	comments
0^{+}_{h}	g_2	ZZ	CMS	
0-	g ₄	ZZ	Atlas/CMS	
2 ⁺ _m (almost-minimal)	g_1, g_5 ρ_1	ZZ/WW/үү	Atlas/CMS	Minimal coupling if $(qq \rightarrow X)/(gg \rightarrow X) \sim 4\%$
2- (hybrid pseudo- tensor)	$g_1 @ prod.$ $g_8, g_9 @$ decay	ZZ	Atlas	Strange ! Test analysis sensitivity to non minimal couplings
1 [±]		ZZ/WW	Atlas/CMS(ZZ)	(pseudo)vector

☞ The simulation of X production and decay is done with a LO generator (JHUgen)

- Do not care about the absolute signal yield prediction (profiled away) (however it plays an important role in the sensitivity !)
- ✓ Might care about the p_T spectrum of X, that could imply shape distortions w.r.t. LO production (p_T = 0)
 ⇒ NLO (real) correction ? Not known but for SM Higgs boson

Using accurate SM Higgs boson p_T prediction for the resonance p_T (Only for gluon fusion; use p_T from parton shower for X produced in qq annihilation)

Side remark : the resonance transverse momentum

0

200

400

➢ Justifying the MC spin 2 reweighting to Powheg MC :

assume the p_T generation comes mainly from ISR-type processes, With same argument could use NⁿLO corrections to Drell-Yan to reweigh the spectrum from qq annihilation...

► In Atlas we scan the qq annihilation fraction (*i.e.* $\rho_1 (\sim \kappa_q)$, $g_1 (\sim \kappa_g)$ are independent parameters) In the minimal "tensor structure" scenario this leads to highly distorted p_T spectra from an absence of cancellation in the amplitude :

[GeV/c]

A word on statistical interpretation

Always compare two hypotheses and determine the more likely given the data : use the (logarithm of the) Likelihood Ratio to rank the outcome of an experiment, typically

$$q = \ln \frac{\mathcal{L}(H_{SM})}{\mathcal{L}(H_{Alt})}$$

where H_{SM} is the SM hypothesis and H_{Alt} is the alternative (e.g. 2⁺_m from gluon fusion) (the likelihoods are in general simple products of Poisson probabilities over bins of discriminating variable distributions)

Determine the q distribution under the two hypotheses (e.g. from toy experiments) and compute the probabilities (p-values)

To get the sensitivities, replace q_{obs} by the median of the distributions.

If X is indeed H_{SM} , the result of an ideal experiment with two sigma sensitivities would be $p_0^{exp} = p_2^{exp} = p_2^{obs} = 4.55\%$ $p_0^{obs} = 50\%$ Any large deviation from 50% is a sign of a tension between the data and the tested hypothesis

The exclusion of the Alt. hypothesis in favour of the SM one is quantified by $CL_s(Alt) = p_2 / (1-p_0)$

Analyses and results

The golden four lepton channel (if only its yields were larger !)

4 body final state, fully reconstructed \Rightarrow many clean variables to disentangle hypotheses 3 angles from the Z^(*) decays (θ_1, θ_2, Φ), 2 angles for Z^(*) production/dec. (θ^*, Φ_1), two masses

Both experiments combine the 7 (but not Φ_1 and θ^* for SM vs 0⁻) variables in a single discriminant :

$$D_{J^P} = J^P$$
-MELA $= rac{\mathcal{P}(H_{SM})}{\mathcal{P}(H_{SM}) + \mathcal{P}(H_{Alt})}$

where *P* is the probability density function for $(\theta_1, \theta_2, \Phi, \theta^*, \Phi_1, m_{Z1}, m_{Z2})$ for a given hypothesis corrected for acceptance and detector effects

Atlas has also independent analyses using BDT to combine the variables

Example for SM vs 0⁻ : the most relevant variables are Φ , $\cos\theta_1$ and m_{Z2}

 $\Rightarrow CL_s(0^-) = 0.4\%$ (2.2% for BDT analysis)

CMS uses a 2D analysis : D_{bkg} to separate signal and background and D_{JP} for the J^P discrimination

⇒ In both experiment the pure pseudo-scalar is disfavoured with CL higher than 99.6% (97.8% CL for the BDT analysis in Atlas)

Results for the different benchmark cases :

JP	p ₂ ^{exp}	p_2^{obs}	p_0^{obs}	CL _s (%)
0^{+}_{h}	- / ~4.46	- / ~4.46	- / 50	- / 8.1
0-	0.11 / 0.47	0.22 / 0.05	0.4 / 69.2	0.4 / 0.16
$2^+_m, gg \rightarrow X$	6.4 / 3.6	11.0 / 0.35	38.0 / 78.8	18.2 / 1.5
$(qq \rightarrow X)$	- / 4.46	- / 0.003	- / 96.4	- /<0.1
2-	0.32 / -	11.0 / -	8.0 / -	11.6 / -
1-	0.10 / 0.26	2.70 / < 0.003	11.0 / 91.9	3.1 / < 0.1
1+	0.31 / 1.07	0.28 / < 0.003	51.0 / 95.6	0.6 / < 0.1

ATLAS / CMS (similar results for Atlas BDT analyses)

Atlas sensitivities profit from the fact that the measured yield is higher than the SM expectation $\hat{\mu} = 1.7^{+0.5}_{-0.4} @ m_{\rm H} = 124.3 \text{GeV}/c^2$ It is the reverse situation for CMS $\hat{\mu} = 0.91^{+0.30}_{-0.24} \otimes m_{\rm H} = 125.8 \text{GeV}/c^2$

Spin 0

_ 2σ

log(L(H₀)/L(H₁)) ATLAS Preliminary Data H→ZZ^(*)→4I Signal hypothesis $\sqrt{s} = 7 \text{ TeV}: \int Ldt = 4.6 \text{ fb}^{-1}$ For 2^+_{m} , √s = 8 TeV: ∫Ldt = 20.7 fb⁻¹ • $J_{H_0}^P = 0^+$ 6 J^P-MELA analysis • $J_{H_1}^{P} = 2_m^+$ Atlas separation as a function of qq initial state fraction f_{qq} : flat expectation : separation independent of the initial state 25

0

 \Rightarrow Against these models, the data favours the SM hypothesis

100

75

50

qq Fraction (%)

Starting to investigate mixed parity scalar state (CMS) : CP violation in the scalar sector

Rewrite the general amplitude with the 3 independent terms :

$$\begin{aligned} A(X \to V_1 V_2) &= v^{-1} \epsilon_1^{*\mu} \epsilon_2^{*\nu} \left(a_1 g_{\mu\nu} m_X^2 + a_2 \, q_\mu q_\nu + a_3 \epsilon_{\mu\nu\alpha\beta} \, q_1^{\alpha} q_2^{\beta} \right) \\ &= A_1 + A_2 + A_3 \end{aligned}$$

SM Higgs boson (tree) : $a_1 = 1$, $a_2 = a_3 = 0$, pure pseudo-scalar : $a_3 = 1$, $a_2 = a_1 = 0$ Investigate mixed state by measuring $f_{a3} = |A_3|^2 / (|A_1|^2 + |A_2|^2 + |A_3|^2)$

(a potential interference between A₁ and A₃ was found to have negligible impact on the yields or discriminating variable shapes)

 f_{a3} is **not** the fraction of parity-even and parity-odd states, it is only a fraction in the decay amplitude

A higher statistic but low S/B channel : $X \rightarrow WW$

In Atlas the scalar nature of the Higgs boson is used in the discovery analysis

Atlas uses only $X \rightarrow ev\mu v + 0$ jet channel other channels (SF leptons, + jets) bring to many background events with the looser cuts needed to stay as model independent as possible)

CMS uses $X \rightarrow ev\mu v + 0/1$ jet channels (no shape analysis for the SF final states)

In both experiments, the m_T variable is used to discriminate signal and background and some other variables are used to disentangle the different spin hypotheses. The most powerful spin analysers are m_{μ} and $\Delta \phi_{\mu}$

$$m_T = \sqrt{2p_T^{\ell\ell} \not\!\!\! E_T (1 - \cos \Delta \phi_{\not\!\!\! E_T \ell \bar{\ell}})}$$

 \Rightarrow Adding the 0 and 1 jet bins :

 $CL_s = 14\%$, very slight preference for the SM

Atlas a bit more complicated... : also a 2D template fit (BDT₀, BDT₂) where BDT₀ (BDT₂) combines 4 discriminating variables (m_{ll} , $\Delta \phi_{ll}$, $p_{T,ll}$, m_T) and is trained with SM (2⁺_m) as signal

Shape of BDT outputs ($f_{qq} = 25\%$) : BDT₀ more discriminating but BDT₂ still helps, especially at higher f_{qq} (retrained for each f_{qq})

Fit results : projection of BDT_0 for background subtracted data

What does $H \rightarrow \gamma \gamma$ has to say ?

Despite large bkg and little information, might contribute where WW/ZZ are less sensitive Relevant variable : photon production angle θ^*

whose distributions are easily obtained from the helicity formalism

$$\frac{dN}{d\cos\theta}(gg) \sim \begin{array}{ccc} \Im_2 \aleph_2 D_{22} & + \\ \Im_0 \aleph_2 D_{02} & + \end{array} \begin{array}{ccc} \Im_2 \aleph_0 D_{20} & + \end{array} \begin{array}{ccc} \Im_0 \aleph_0 D_{00} \end{array} \qquad \begin{array}{ccc} \frac{dN}{d\cos\theta}(q\overline{q}) & \sim & \Im_1 \aleph_2 D_{12} & + \\ & \Im_1 \aleph_0 D_{10} \end{array}$$

 \aleph , \Im are constants linked to the decay and production polarisation configuration (a priori different for gg and qq)

 D_{ij} are sums of squared (little) Wigner matrices : $D_{ij} \sim \sum |d_{ij}^{J=2}(\theta)|^2$

In the minimal coupling scenario, $\aleph_0 = 0$ and $\Im_0 = 0$ (no coupling of X₂ to polarisation 0) \Rightarrow

$$\frac{dN}{d\cos\theta^*} \sim 1 + 6\cos^2\theta^* + \cos^4\theta^* \quad (gg)$$

$$\sim 1 - \cos^4\theta^* \qquad (qq)$$

Example of expected distributions at $p_{T,H} = 0$:

Standard H $\rightarrow \gamma\gamma$ selection except for the $p_{T,\gamma}$ cut : from absolute ($p_T > 30/40$ GeV/c) to relative $p_T > 0.25/0.35$ m_{$\gamma\gamma$} remove most of the correlations between m_{$\gamma\gamma$} and cos θ^* for the background allowing a better control of the shape

≻ The signal region (SR) is defined as $m_{\gamma\gamma} \in [122, 130]$ GeV/c²:

 \Rightarrow 94471 selected events, 14982 in SR, ~ 385 signal events from SM expectation

Main challenge : measure the $\cos\theta^*$ distribution of ~ 690 signal events (for $\mu \sim 1.8$) on top of ~ 15 K background events

2^+_{m} with 100% gg fusion Fit the data for the two hypotheses

$$P_{2+m}^{exp} = 0.5\%, p_{2+m}^{obs} = 0.3\%, p_{SM}^{obs} = 58.8\%$$

$$\Rightarrow CL_{s}(0^{-}) = 0.7\% \text{ (10.6\% for alternative analysis...)}$$

Scan of the qq annihilation fraction in the initial state (sensitivity degraded at high f_{qq} since SM and 2^+_m shapes more similar \Rightarrow complementarity with WW channel) \Rightarrow Data in better agreement with SM hypothesis than 2^+_m whatever f_{aa}

Combination

Atlas and CMS combined the WW and ZZ channels (and $\gamma\gamma$ for Atlas) to improve the sensitivity for the SM vs 2^+_m separation

 $\Rightarrow 2^{+}_{m}(gg)$ disfavoured with CL = 99.4% CL

Atlas, as a function of f_{aa}

at more than 99.9% CL whatever \boldsymbol{f}_{qq}

Conclusion

- > The SM hypothesis is favoured against all tested alternative models
- People willing to continue on spin measurements should take some time to define relevant (spin 2) models not already excluded by coupling measurement...
- ➤ The fermionic channels will also bring information, e.g. in the VX associated production, with X → bb, the mass of the VX system might be a very good discriminator for SM vs 0⁻, 2 hypotheses
- \blacktriangleright The delicate issue of the p_T spectrum should be clarify
- For the futur, CP asymmetries seem more important to look at e.g. in the di-photon channel, the VBF production seems promising

Diagram very similar to the golden channel $H \rightarrow ZZ^* \rightarrow 4l$ \Rightarrow look for angular correlations in the di-jet system Another side remark on p_T but for outgoing partons in VBF processes :

- ✤ No "good" spin 2 model : using an effective lagrangian
 ⇒ violation of unitarity above a certain scale.
 Need form factors (FF) to regularize the cross-sections...
- Solution Gradient Schwarz Gradien Schwarz Gradient Schwarz (1990) Schwarz (199

CMS WW data, 0-jet bin

✓ Signal :

→ The interference between the processes $gg \rightarrow X \rightarrow \gamma\gamma$ and $gg \rightarrow \gamma\gamma$ (box) depends on $\cos\theta^*$ and distort the shape

Only done for the SM : reduction of signal yield. large at high $\cos\theta^*$: correct and use the full correction as the uncertainty.

(the computation for the spin 2 model used here is available since last week (effect with opposite sign and smaller))

→ No computation of the p_T spectrum for spin 2. However can impact the $\cos\theta^*$ shape, $^{|\cos\theta^*|}$ especially at high $\cos\theta^*$ (only populated thanks to non zero p_T) As "reasonable" guess, assume it is the same as the SM Higgs boson (for gg fusion)

 \Rightarrow reweigh spin 2 MC (gg fusion) to SM Powheg ggH p_T

use full correction as systematics (why ?? HSG7 strange prescription...)

Remark : assuming a scalar particle, the parity is very difficult to determine from the H $\rightarrow \gamma \gamma$ decay

- -> Correlation in the linear polarisation of the two photons : obviously not in Atlas $(\pi^0 \rightarrow \gamma \gamma \text{ was used to measure the neutral pion parity})$
- \rightarrow From the p_{T.H} spectrum distortion of 0⁻ vs 0⁺ (due to the gluon polarisation inside the proton, hep-ph/1304.2654)

The Collins-Soper $\cos\theta^*$ definition :

$$s \theta^* = \frac{\sinh(\eta_{\gamma_1} - \eta_{\gamma_2})}{\sqrt{1 + \left(p_T^{\gamma\gamma}/m_{\gamma\gamma}\right)^2}} \cdot \frac{2p_T^{\gamma_1} p_T^{\gamma_2}}{m_{\gamma\gamma}^2}$$

= sinh(
$$\Delta \eta$$
) / (cosh($\Delta \eta$) + 1) at p_{T,H} = 0

 \triangleright expected to minimise the impact of ISR \succ shown to give the best discrimination (?) The nominal (default) analysis :

(to be given up ?)

Main hypothesis : decorrelation between $m_{\gamma\gamma}$ and $\cos\theta^*$ $pdf(m_{\gamma\gamma},\cos\theta^*) = pdf(m_{\gamma\gamma}) \times pdf(\cos\theta^*)$ In principle, true for the signal (up to small resolution effects due to different photon kinematic in different $\cos\theta^*$ bins)

> In the SR, 2D fit to $pdf(m_{\gamma\gamma}, \cos\theta^*)$ the bkg $\cos\theta^*$ pdf is extracted from side band (SB)

➤ In the SB, 1D fit to pdf($m_{\gamma\gamma}$), which is identical to the SR mass pdf ⇒ constrain N_{bkg} in the SR

The decorrelation is checked on the data and high stat MC sample by comparing the expected number of events in a $(m_{\gamma\gamma}, \cos\theta^*)$ bin assuming decorrelation to the observed one :

$$n^{exp}[m_{\gamma\gamma}][\cos\theta^*] = \frac{\sum_{m'_{\gamma\gamma}} n^{obs}[m'_{\gamma\gamma}][\cos\theta^*]}{n^{tot}} \cdot \underbrace{\sum_{\cos\theta^{*'}} n^{obs}[m_{\gamma\gamma}][\cos\theta^{*'}]}_{n^{tot}}$$

$$\left(\sigma^{exp}[m_{\gamma\gamma}][\cos\theta^*]\right)^2 = n^{exp}[m_{\gamma\gamma}][\cos\theta^*] + \left(n^{exp}[m_{\gamma\gamma}][\cos\theta^*]\right)^2 \cdot \left(\frac{1}{n^{obs}[m_{\gamma\gamma}]} + \frac{1}{n^{obs}[\cos\theta^*]} + \frac{1}{n^{tot}}\right)$$

With absolute p_T cuts (used for HCP analysis) a strong correlation is observed : this would require a true 2D bkg pdf (very intricate...) or the use of an "averaged" 1D cos θ^* pdf (choice for HCP)

The mass pdfs (analytical functions) :

 \checkmark bkg : a five order polynomial (5 + 1 nuisance parameters (NP)) + spurious signal (1 NP)

✓ signal : a standard Crystal-Ball + Gaussian parameterisation used for all $\cos\theta^*$ (including ESS and resolution systematic uncertainties : 6+1 NP)

The $\cos\theta^*$ pdfs (10 bin histograms) :

✓ bkg : from the full SB ($m_{\gamma\gamma} \in [105, 122[U] 130, 160]$ GeV/c²)

Each bin is assigned a nuisance parameter with a Gaussian constrain (10 NP) :

- for the finite statistics in the SB
- to account for the remaining correlation observed in the high stat. MC

From ~ 1 to ~ 4% systematic uncertainty depending on $\cos\theta^*$

Fitted bkg subtracted data

Nominal analysis

Category analysis

Analysis	Hypothesis	N _S	p-values (%)		$CI_{(2^+)}(0/2)$
			expected	observed	$\operatorname{CL}_{\mathrm{S}}(2^{\circ})(70)$
Nominal	SM	690±150	1.2	58.8	0.7
	2+	620±160	0.5	0.3	
Categories	SM	570±120	1.9	21.1	10.6
	2+	590±130	1.7	8.4	10.0

Enforcing decorrelation in the Category analysis gives results similar to the nominal analysis

The category (alternative) analysis :

Do a simultaneous fit to the data invariant mass distributions in $10 \cos \theta^*$ bins : 10 categories

The mass pdfs (analytical functions) :

✓ bkg : 1 shape / $\cos\theta^*$ bin (9 exponentials of degree 2 polynomial + 1 degree 3 polynome) 21 (shape) + 10 (normalisation) + 10 (spurious signal, constrained) = 41 NP

✓ signal : can cope with the slightly varying resolution as a function of $\cos\theta^*$ by using 10 different CB + Gaussian shapes (7 standard ESS and resolution NP)

The $\cos\theta^*$ information :

 ✓ signal : use the predicted relative yield / cosθ* bin same systematics as for the inclusive analysis, treated as bin to bin migrations
 ✓ bkg : the shape is an outcome of the fit

☞ Main drawbacks :

many NP for the bkg mass shapes, needs spurious signal studies

☞ Main advantage :

can deal with signal mass shape varying as a function of $\cos\theta^*$ no bkg $\cos\theta^*$ pdf, no decorrelation assumption needed

The decorrelation can be enforced by using the same bkg mass shape (same parameters) in all bins (still keeping a spurious signal NP / bin ?)

Pdf as a function of the fraction of f_{qq}

(fraction in the selected sample, corresponding to a slightly lower fraction at the production level due to a higher efficiency in the $q\bar{q}$ annihilation process)

Smaller discrimination at high f_{qq} minimal separation @ $f_{qq} \sim 25\%$