

2. Mass $\sim 125 \mathrm{GeV} / \mathrm{c}^{2}$ very much consistent with the preferred values from EW fits and theoretical prejudices

Is it a neutral boson? Yes : observation of e.g. H $\rightarrow \gamma \gamma \checkmark$
\% Is it $\mathrm{JCP}^{\mathrm{CP}}=0^{++}$? $(\mathrm{H} \rightarrow \gamma \gamma \Rightarrow \mathrm{C}=+)$

Does it couple to other SM particles \propto mass ?

Coupling to $\mathrm{V} \quad=g_{V}=2 \frac{m_{V}^{2}}{v}$
Coupling to fermion $=\lambda_{f}=\sqrt{2} \frac{m_{f}}{v}$
Try that ansatz $(\mathrm{SM}: \mathrm{M}=\mathrm{v}, \varepsilon=0)$

$$
\begin{aligned}
& \lambda_{f}^{\prime}=\sqrt{2}\left(\frac{m_{f}}{M}\right)^{1+\epsilon} \\
& g_{V}^{\prime}=2 \frac{m_{V}^{2(1+\epsilon)}}{M^{1+2 \epsilon}}
\end{aligned}
$$

Fit (M, ε) with available data $\mathrm{M}=244 \pm 15 \mathrm{GeV} / \mathrm{c}^{2}, \varepsilon=-0.022 \pm 0.030$

Very consistent with SM...

Introduction

$>$ The low mass region is not very favourable for J^{P} measurement many information in $\mathrm{H} \rightarrow \mathrm{ZZ} \rightarrow 41$ but tiny yield
relatively large yield in $\mathrm{H} \rightarrow \mathrm{WW} \rightarrow$ lvlv but final state not fully reconstructed (2 neutrinos) relatively large yield in $\mathrm{H} \rightarrow \gamma \gamma$, but huge background

Try to disentangle the SM Higgs boson from a singly produced spin J resonance
\checkmark No look at spin higher than 2 for simplicity
\checkmark Spin 1 forbidden ${ }^{*}$ by the Landau/Yang theorem and the observation of $\mathrm{X} \rightarrow \gamma \gamma$
(For a massive particle of spin $\mathrm{J}, \mathrm{J}_{\mathrm{z}}=\mathrm{M}$ and momentum p , decaying to 2 photons
the properly symmetrized 2-photon (helicity λ_{1}, λ_{2}) state is $\left|\Phi>=\left|\mathrm{p}, \mathrm{J}, \mathrm{M}, \lambda_{1}, \lambda_{2}>+(-1)^{\mathrm{J}}\right| \mathrm{p}, \mathrm{J}, \mathrm{M}, \lambda_{2}, \lambda_{1}\right\rangle$ with $\left|\lambda_{1}-\lambda_{2}\right| \leq J$. For $\mathrm{J}=1, \lambda_{1}=\lambda_{2}$ and $\mid \Phi>=0$)
\checkmark Associated productions (especially VBF) for the future
$>$ The WW and ZZ observations already suggest $\mathrm{J}^{\mathrm{P}}=0^{+}$as being likely (exclude pure CP odd)
$>$ The signal yield is a nuisance parameter, forget about the fact that μ is not so far away from the SM expectation...

One should keep in mind that if it's not something close to the SM Higgs boson, it is a very smart impostor

Models

Parameterising the most general $\mathrm{X}_{0} \rightarrow \mathrm{VV}$ decay amplitude :

$$
\begin{gathered}
A(X \rightarrow V V)=v^{-1}\left(g_{1}^{(0)} m_{V}^{2} \epsilon_{1}^{*} \epsilon_{2}^{*}+g_{2}^{(0)} f_{\mu \nu}^{*(1)} f^{*(2), \mu \nu}+g_{3}^{(0)} f^{*(1), \mu \nu} f_{\mu \alpha}^{*(2)} \frac{q_{\nu} q^{\alpha}}{\Lambda^{2}}+g_{4}^{(0)} f_{\mu \nu}^{*(1)} \tilde{f}^{*(2), \mu \nu}\right) \\
\Lambda=\text { overall scale, } \\
\mathrm{f}_{\mu \nu}=\varepsilon_{\mu} \mathrm{q}_{v}-\varepsilon_{v} \mathrm{q}_{\mu}, \mathrm{f}_{\mu \nu} \sim=1 / 2 \varepsilon_{\mu \nu \alpha \beta} \mathrm{f}^{\alpha \beta}
\end{gathered}
$$

$\Rightarrow 4$ complex coupling constants
(in fact using only polarisation vectors, only three independent terms, see later)
\Rightarrow For a 0^{+}particle, $g_{1,2,3}\left(g_{4}\right)$ are parity conserving (violating)

For H_{SM}, @ tree level, $\mathrm{g}_{1}=1, \mathrm{~g}_{2,3,4}=0$. For a pure pseudo-scalar $\mathrm{g}_{4}=1, \mathrm{~g}_{1,2,3}=0$

From an effective Lagrangian point of view, $g_{1}\left(g_{2,4}\right.$ and $\left.g_{3}\right)$ would originate from a dimension 3 (5 and 7) operator

Parameterising the most general $\mathrm{X}_{2} \rightarrow \mathrm{VV}$ decay amplitude :

$$
\begin{align*}
& A\left(X \rightarrow V_{1} V_{2}\right)=\Lambda^{-1}\left[2 g_{1}^{(2)} t_{\mu \nu} f^{*(1) \mu \alpha} f^{*(2) \nu \alpha}+2 g_{2}^{(2)} t_{\mu \nu} \frac{q_{\alpha} q_{\beta}}{\Lambda^{2}} f^{*(1) \mu \alpha} f^{*(2) \nu \beta}+g_{3}^{(2)} \frac{\tilde{q}^{\beta} \tilde{q}^{\alpha}}{\Lambda^{2}} t_{\beta \nu}\left(f^{*(1) \mu \nu} f_{\mu \alpha}^{*(2)}+f^{*(2) \mu \nu} f_{\mu \alpha}^{*(1)}\right)\right. \\
& +g_{4}^{(2)} \frac{\tilde{q}^{\nu} \tilde{q}^{\mu}}{\Lambda^{2}} t_{\mu \nu} f^{*(1) \alpha \beta} f_{\alpha \beta}^{*(2)}+m_{V}^{2}\left(2 g_{5}^{(2)} t_{\mu \nu} \epsilon_{1}^{* \mu} \epsilon_{2}^{* \nu}+2 g_{6}^{(2)} \frac{\tilde{q}^{u} q_{\alpha}}{\Lambda^{2}} t_{\mu \nu}\left(\epsilon_{1}^{* \nu} \epsilon_{2}^{* \alpha}-\epsilon_{1}^{* \alpha} \epsilon_{2}^{* \nu}\right)+g_{7}^{(2)} \frac{\tilde{q}^{\mu} \tilde{q}^{\nu}}{\Lambda^{2}} t_{\mu \nu} \epsilon_{1}^{*} \epsilon_{2}^{*}\right) \\
& \left.+g_{8}^{(2)} \frac{\tilde{q}_{\mu} \tilde{q}_{\nu}}{\Lambda^{2}} t_{\mu \nu} f^{*(1) \alpha \beta} \tilde{f}_{\alpha \beta}^{*(2)}+m_{V}^{2}\left(g_{9}^{(2)} \frac{t_{\mu \alpha} \tilde{q}^{\alpha}}{\Lambda^{2}} \epsilon_{\mu \nu \rho \sigma} \epsilon_{1}^{* \nu} \epsilon_{2}^{* \rho} q^{\sigma}+\frac{g_{10}^{(2)} t_{\mu \mu} \tilde{q}^{\alpha}}{\Lambda^{4}} \epsilon_{\mu \nu \rho \sigma} q^{\rho} \tilde{q}^{\sigma}\left(\epsilon_{1}^{* \nu}\left(q \epsilon_{2}^{*}\right)+\epsilon_{2}^{* \nu}\left(q \epsilon_{1}^{*}\right)\right)\right)\right] \tag{18}\\
& \mathrm{q} \sim=\mathrm{q}_{1}-\mathrm{q}_{2} \\
& \mathrm{t}_{\mu \nu} \sim \mathrm{X}_{2} \text { wave function }
\end{align*}
$$

$\Rightarrow 10$ complex coupling constants
(in fact using only polarisation vectors, only seven independent terms)
\Rightarrow for the $g g \rightarrow X_{2} \rightarrow \gamma \gamma$ channel : "only" 5 relevant
\Rightarrow For a 2^{+}particle, $g_{1-7}\left(g_{8-10}\right)$ are parity conserving (violating)
Parameterising the most general $\mathrm{X}_{2} \rightarrow \mathrm{q} \bar{q}$ decay amplitude :

$$
A\left(X_{J=2} \rightarrow q \bar{q}\right)=\frac{1}{\Lambda} t^{\mu \nu} \bar{u}_{q_{1}}\left(\gamma_{\mu} \tilde{q}_{\nu}\left(\rho_{1}^{(2)}+\rho_{2}^{(2)} \gamma_{5}\right)+\frac{m_{q} \tilde{q}_{\mu} \tilde{q}_{\nu}}{\Lambda^{2}}\left(\rho_{3}^{(2)}+\rho_{4}^{(2)} \gamma_{5}\right)\right) v_{q_{2}}
$$

Too many degrees of freedom to study spin model-independently : concentrate on the most simple, well motivated model
a spin 2 particle $2^{+}{ }_{\mathrm{m}}$ with minimal coupling, inspired from Gravitation :
\rightarrow replacing the Planck scale by the Electroweak scale
\rightarrow assigning a mass $\sim 126 \mathrm{GeV}$ to the graviton (e.g. the first graviton KK excitation in Randall-Sundrum type models)
\Rightarrow Keep only the term $\propto g_{1} / \Lambda$
For a "true" minimal model, ρ_{1} / Λ is fixed once g_{1} / Λ is (there is a single gravitational constant)

$$
\Rightarrow \sigma\left(\overline{\mathrm{qq}} \rightarrow \mathrm{X}_{2}\right) / \sigma\left(\mathrm{gg} \rightarrow \mathrm{X}_{2}\right) \sim 0.042\left(@ \mathrm{LO}_{\mathrm{QcD}} \text { and using CTEQ6L1 }\right)
$$

In Atlas, the fraction of events produced via $q \bar{q}$ annihilation has been scanned
This minimal coupling scenario is in fact already excluded at a high confidence level from the coupling analysis, since it predicts e.g.
$\checkmark \Gamma(\mathrm{gg})=8 \Gamma(\gamma \gamma)$ whereas HCP data $\Rightarrow \Gamma(\mathrm{gg}) \sim(29 \pm 13) \Gamma(\gamma \gamma)$
$\underset{(\text { in RS type models })}{\kappa_{\mathrm{V}} \sim \mathrm{O}(35) \kappa_{\gamma}}$ whereas HCP data $\Rightarrow \kappa_{\mathrm{V}} \sim(175 \pm 25) \kappa_{\gamma}$

The different benchmarks :

Type	couplings	channels	Experiment	comments
$0^{+}{ }_{\text {h }}$	g_{2}	ZZ	CMS	
0 -	g_{4}	ZZ	Atlas/CMS	
$\begin{gathered} 2_{\mathrm{m}}^{+} \\ \text {(almost-minimal) } \end{gathered}$	$\begin{gathered} g_{1}, g_{5} \\ \rho_{1} \end{gathered}$	ZZ/WW/ $\gamma \gamma$	Atlas/CMS	$\begin{gathered} \text { Minimal coupling if } \\ (\mathrm{qq} \rightarrow \mathrm{X}) /(\mathrm{gg} \rightarrow \mathrm{X}) \sim 4 \% \end{gathered}$
```2- (hybrid pseudo- tensor)```	$\mathrm{g}_{1} @$ prod. $\mathrm{g}_{8}, \mathrm{~g}_{9}$ @ decay	ZZ	Atlas	Strange !   Test analysis sensitivity to non minimal couplings
$1^{ \pm}$		ZZ/ww	Atlas/CMS(ZZ)	(pseudo)vector

The simulation of X production and decay is done with a LO generator (JHUgen)
2. Do not care about the absolute signal yield prediction (profiled away)
(however it plays an important role in the sensitivity !)
2. Might care about the $\mathrm{p}_{\mathrm{T}}$ spectrum of X , that could imply shape distortions w.r.t. LO production $\left(p_{T}=0\right)$
$\Rightarrow$ NLO (real) correction? Not known but for SM Higgs boson
Using accurate $S M$ Higgs boson $p_{T}$ prediction for the resonance $p_{T}$ (Only for gluon fusion; use $\mathrm{p}_{\mathrm{T}}$ from parton shower for X produced in qq annihilation)

Side remark : the resonance transverse momentum
$>$ Justifying the MC spin 2 reweighting to Powheg MC :
assume the $\mathrm{p}_{\mathrm{T}}$ generation comes mainly from ISR-type processes, With same argument could use $\mathrm{N}^{\mathrm{n}} \mathrm{LO}$ corrections to Drell-Yan to reweigh the spectrum from qq annihilation...
$>$ In Atlas we scan the qq annihilation fraction (i.e. $\rho_{1}\left(\sim \kappa_{\mathrm{q}}\right), \mathrm{g}_{1}\left(\sim \kappa_{\mathrm{g}}\right)$ are independent parameters) In the minimal "tensor structure" scenario this leads to highly distorted $\mathrm{p}_{\mathrm{T}}$ spectra from an absence of cancellation in the amplitude :


A word on statistical interpretation
$>$ Always compare two hypotheses and determine the more likely given the data : use the (logarithm of the) Likelihood Ratio to rank the outcome of an experiment, typically

$$
q=\ln \frac{\mathcal{L}\left(H_{S M}\right)}{\mathcal{L}\left(H_{A l t}\right)}
$$

where $H_{S M}$ is the SM hypothesis and $H_{A l t}$ is the alternative (e.g. $2^{+}{ }_{\mathrm{m}}$ from gluon fusion)
(the likelihoods are in general simple products of Poisson probabilities over bins of discriminating variable distributions)
$>$ Determine the $q$ distribution under the two hypotheses (e.g. from toy experiments) and compute the probabilities (p-values)


To get the sensitivities, replace $q_{o b s}$ by the median of the distributions.

If X is indeed $H_{S M}$, the result of an ideal experiment with two sigma sensitivities would be

$$
\begin{gathered}
\mathrm{p}_{0}{ }^{\exp }=\mathrm{p}_{2}{ }^{\exp }=\mathrm{p}_{2}{ }^{\mathrm{obs}}=4.55 \% \\
\mathrm{p}_{0}{ }^{\text {obs }}=50 \%
\end{gathered}
$$

Any large deviation from 50\% is a sign of a tension between the data and the tested hypothesis

The exclusion of the Alt. hypothesis in favour of the SM one is quantified by

$$
\mathrm{CL}_{\mathrm{s}}(\mathrm{Alt})=\mathrm{p}_{2} /\left(1-\mathrm{p}_{0}\right)
$$

The golden four lepton channel (if only its yields were larger !)
4 body final state, fully reconstructed $\Rightarrow$ many clean variables to disentangle hypotheses 3 angles from the $Z^{(*)}$ decays $\left(\theta_{1}, \theta_{2}, \Phi\right), 2$ angles for $Z^{(*)}$ production/dec. ( $\theta^{*}, \Phi_{1}$ ), two masses


Not very sensitive to SM vs $2^{+}$yet but powerful for parity
(Flat for SM)

(Almost flat for $2^{+}{ }_{\mathrm{m}}$ )


Both experiments combine the 7 (but not $\Phi_{1}$ and $\theta^{*}$ for SM vs $0^{-}$) variables in a single discriminant :

$$
D_{J^{P}}=J^{P}-\mathrm{MELA}=\frac{\mathcal{P}\left(H_{S M}\right)}{\mathcal{P}\left(H_{S M}\right)+\mathcal{P}\left(H_{A l t}\right)}
$$

where $P$ is the probability density function for $\left(\theta_{1}, \theta_{2}, \Phi, \theta^{*}, \Phi_{1}, \mathrm{~m}_{\mathrm{Z} 1}, \mathrm{~m}_{\mathrm{z} 2}\right)$ for a given hypothesis corrected for acceptance and detector effects
Atlas has also independent analyses using BDT to combine the variables

Example for SM vs $0^{-}$: the most relevant variables are $\Phi, \cos \theta_{1}$ and $\mathrm{m}_{\mathrm{Z} 2}$





$$
\begin{aligned}
& \mathrm{p}_{0-}{ }^{\exp }=0.11 \%, \mathrm{p}_{0-}{ }^{\text {obs }}=0.22 \%, \mathrm{p}_{\mathrm{SM}}{ }^{\mathrm{obs}}=40.00 \% \\
& \quad \Rightarrow \mathrm{CL}_{\mathrm{s}}\left(0^{-}\right)=0.4 \%(2.2 \% \text { for BDT analysis })
\end{aligned}
$$

CMS uses a 2D analysis : $\mathrm{D}_{\mathrm{bkg}}$ to separate signal and background and $\mathrm{D}_{\mathrm{JP}}$ for the $\mathrm{J}^{\mathrm{P}}$ discrimination

$\Rightarrow$ In both experiment the pure pseudo-scalar is disfavoured with CL higher than $99.6 \%$ ( $97.8 \%$ CL for the BDT analysis in Atlas)

Results for the different benchmark cases :

$\mathrm{J}^{\mathrm{P}}$	$\mathrm{p}_{2}{ }^{\exp }$	$\mathrm{p}_{2}{ }^{\text {obs }}$	$\mathrm{p}_{0}{ }^{\text {obs }}$	$\left.\mathrm{CL}_{\mathrm{s}} \mathrm{\%} \%\right)$
$0_{\mathrm{h}}^{+}$	$-/ \sim 4.46$	$-/ \sim 4.46$	$-/ 50$	$-/ 8.1$
$0^{-}$	$0.11 / 0.47$	$0.22 / 0.05$	$0.4 / 69.2$	$0.4 / 0.16$
$2^{+}{ }_{\mathrm{m}}, \mathrm{gg} \rightarrow \mathrm{X}$   $(\mathrm{qq} \rightarrow \mathrm{X})$	$6.4 / 3.6$	$11.0 / 0.35$	$38.0 / 78.8$	$18.2 / 1.5$
$2^{-}$	$0.32 / 4.46$	$-/ 0.003$	$-/ 96.4$	$-/<0.1$
$1^{-}$	$0.10 / 0.26$	$2.70 /<0.003$	$11.0 / 91.9$	$3.1 /<0.1$
$1^{+}$	$0.31 / 1.07$	$0.28 /<0.003$	$51.0 / 95.6$	$0.6 /<0.1$

ATLAS / CMS (similar results for Atlas BDT analyses)

Atlas sensitivities profit from the fact that the measured yield is higher than the SM expectation $\hat{\mu}=1.7_{-0.4}^{+0.5} @ m_{\mathrm{H}}=124.3 \mathrm{GeV} / \mathrm{c}^{2}$ It is the reverse situation for CMS $\hat{\mu}=0.91_{-0.24}^{+0.30} @ m_{\mathrm{H}}=125.8 \mathrm{GeV} / c^{2}$

For $2^{+}{ }_{m}$,
Atlas separation as a function of qq initial state fraction $f_{q q}$ : flat expectation : separation independent of the initial state

Starting to investigate mixed parity scalar state (CMS) : CP violation in the scalar sector
Rewrite the general amplitude with the 3 independent terms:

$$
\begin{aligned}
A\left(X \rightarrow V_{1} V_{2}\right) & =v^{-1} \epsilon_{1}^{* \mu} \epsilon_{2}^{* \nu}\left(a_{1} g_{\mu \nu} m_{X}^{2}+a_{2} q_{\mu} q_{\nu}+a_{3} \epsilon_{\mu \nu \alpha \beta} q_{1}^{\alpha} q_{2}^{\beta}\right) \\
& =\mathrm{A}_{1}+\mathrm{A}_{2}+\mathrm{A}_{3}
\end{aligned}
$$

SM Higgs boson (tree) : $\mathrm{a}_{1}=1, \mathrm{a}_{2}=\mathrm{a}_{3}=0$, pure pseudo-scalar: $\mathrm{a}_{3}=1, \mathrm{a}_{2}=\mathrm{a}_{1}=0$ Investigate mixed state by measuring $\mathrm{f}_{\mathrm{a} 3}=\left|\mathrm{A}_{3}\right|^{2} /\left(\left|\mathrm{A}_{1}\right|^{2}+\left|\mathrm{A}_{2}\right|^{2}+\left|\mathrm{A}_{3}\right|^{2}\right)$
(a potential interference between $\mathrm{A}_{1}$ and $\mathrm{A}_{3}$ was found to have negligible impact on the yields or discriminating variable shapes)
$\mathrm{f}_{\mathrm{a} 3}$ is *not* the fraction of parity-even and parity-odd states,
it is only a fraction in the decay amplitude
Use $\mathrm{D}_{0-}$ and neglect $\mathrm{A}_{2}$ :

$$
\begin{array}{r}
\Rightarrow \mathrm{f}_{\mathrm{a} 3}<0.58 @ 95 \% \mathrm{CL} \\
\quad(0.75 \text { expected })
\end{array}
$$



In Atlas the scalar nature of the Higgs boson is used in the discovery analysis


Charged leptons close-by in space
$\rightarrow$ small azimuthal separation $\Delta \phi_{11}$
$\rightarrow$ small di-lepton mass $\mathrm{m}_{11}$
$\Rightarrow$ Change analysis strategy to exploit this kind of variables without selection bias

Atlas uses only $\mathrm{X} \rightarrow \mathrm{e} v \mu \nu+0$ jet channel
other channels (SF leptons, + jets) bring to many background events with the looser cuts needed to stay as model independent as possible)

CMS uses $\mathrm{X} \rightarrow \mathrm{e} \nu \mu \nu+0 / 1$ jet channels (no shape analysis for the SF final states)

In both experiments, the $\mathrm{m}_{\mathrm{T}}$ variable is used to discriminate signal and background and some other variables are used to disentangle the different spin hypotheses.
The most powerful spin analysers are $m_{11}$ and $\Delta \phi_{11}$

$$
m_{T}=\sqrt{2 p_{T}^{\ell \ell} E_{T}\left(1-\cos \Delta \phi_{\vec{Z}_{T \vec{\ell}}}\right)}
$$

CMS uses a fit to 2 D templates $\left(\mathrm{m}_{\mathrm{T}}, \mathrm{m}_{11}\right)$
CMS preliminary $\mathrm{L}=19.5 \mathrm{fb}^{-1}(8 \mathrm{TeV})$
Example in the 0-jet bin :
Background template (same as the one used for the discovery analysis)


To be added to :



$\Rightarrow$ Adding the 0 and 1 jet bins :
$\mathrm{CL}_{\mathrm{s}}=14 \%$, very slight preference for the SM

Atlas a bit more complicated... : also a 2D template fit $\left(\mathrm{BDT}_{0}, \mathrm{BDT}_{2}\right)$ where $\mathrm{BDT}_{0}\left(\mathrm{BDT}_{2}\right)$ combines 4 discriminating variables $\left(\mathrm{m}_{11}, \Delta \phi_{11}, \mathrm{p}_{\mathrm{T}, 11}, \mathrm{~m}_{\mathrm{T}}\right)$ and is trained with $\mathrm{SM}\left(2^{+}{ }_{\mathrm{m}}\right)$ as signal

Example of input var.
$\Delta \phi_{11}$



Shape of BDT outputs ( $\mathrm{f}_{\mathrm{qq}}=25 \%$ ): $\mathrm{BDT}_{0}$ more discriminating but $\mathrm{BDT}_{2}$ still helps, especially at higher $\mathrm{f}_{\mathrm{qq}}$ (retrained for each $\mathrm{f}_{\mathrm{qq}}$ )



Fit results : projection of $\mathrm{BDT}_{0}$ for background subtracted data


Despite large bkg and little information, might contribute where WW/ZZ are less sensitive Relevant variable : photon production angle $\theta^{*}$
whose distributions are easily obtained from the helicity formalism

$$
\begin{aligned}
& \frac{d N}{d \cos \theta}(g g) \sim \Im_{2} \aleph_{2} D_{22}+ \\
& \Im_{0} \aleph_{2} D_{02}+\Im_{2} \aleph_{0} D_{20}+\Im_{0} \aleph_{0} D_{00} \frac{d N}{d \cos \theta}(\mathrm{q} \overline{\mathrm{q}}) \sim \Im_{1} \aleph_{2} D_{12} \quad+ \\
& \Im_{1} \aleph_{0} D_{10}
\end{aligned}
$$

$\aleph, \Im$ are constants linked to the decay and production polarisation configuration (a priori different for gg and qq)
$D_{\mathrm{ij}}$ are sums of squared (little) Wigner matrices: $\quad D_{i j} \sim \sum\left|d_{i j}^{J=2}(\theta)\right|^{2}$
In the minimal coupling scenario, $\mathfrak{\aleph}_{0}=0$ and $\mathfrak{J}_{0}=0\left(\right.$ no coupling of $X_{2}$ to polarisation 0$) \Rightarrow$

$$
\begin{array}{rlr}
\mathrm{dN} / \mathrm{d} \cos \theta^{*} & \sim 1+6 \cos ^{2} \theta^{*}+\cos ^{4} \theta^{*} & (\mathrm{gg}) \\
& \sim 1-\cos ^{4} \theta^{*} \tag{qq}
\end{array}
$$

Example of expected distributions at $\mathrm{p}_{\mathrm{T}, \mathrm{H}}=0$ :



For $\mathrm{p}_{\mathrm{T}, \mathrm{H}}=0, \mathrm{~m}_{\mathrm{H}}=125 \mathrm{GeV} / \mathrm{c}^{2}$, $\mathrm{p}_{\mathrm{T}, \gamma}>25 \mathrm{GeV} / \mathrm{c}$
$\Rightarrow \cosh \Delta \eta<11.5$
$\Rightarrow\left|\cos \theta^{*}\right|<0.92$
$>$ Standard $\mathrm{H} \rightarrow \gamma \gamma$ selection except for the $\mathrm{p}_{\mathrm{T}, \gamma}$ cut:
from absolute ( $\mathrm{p}_{\mathrm{T}}>30 / 40 \mathrm{GeV} / \mathrm{c}$ ) to relative $\mathrm{p}_{\mathrm{T}}>0.25 / 0.35 \mathrm{~m}_{\gamma \gamma}$ remove most of the correlations between $\mathrm{m}_{\gamma \gamma}$ and $\cos \theta^{*}$ for the background allowing a better control of the shape
$>$ The signal region $(\mathrm{SR})$ is defined as $\mathrm{m}_{\gamma \gamma} \in[122,130] \mathrm{GeV} / \mathrm{c}^{2}$ :
$\Rightarrow 94471$ selected events, 14982 in SR, $\sim 385$ signal events from SM expectation
Main challenge : measure the $\cos \theta^{*}$ distribution of $\sim 690$ signal events (for $\mu \sim 1.8$ ) on top of $\sim 15 \mathrm{~K}$ background events

$\cos \theta^{*}$ : main handle for spin measurement

$2^{+}{ }_{\mathrm{m}}$ with $100 \% \mathrm{gg}$ fusion
Fit the data for the two hypotheses


$$
\begin{aligned}
& \mathrm{P}_{2+\mathrm{m}}{ }^{\exp }=0.5 \%, \mathrm{p}_{2+\mathrm{m}}{ }^{\mathrm{obs}}=0.3 \%, \mathrm{p}_{\mathrm{SM}}{ }^{\mathrm{obs}}=58.8 \% \\
& \Rightarrow \mathrm{CL}_{\mathrm{s}}\left(0^{-}\right)=0.7 \%(10.6 \% \text { for alternative analysis } \ldots)
\end{aligned}
$$

## Scan of the qq annihilation fraction

 in the initial state(sensitivity degraded at high $\mathrm{f}_{\mathrm{qq}}$ since
SM and $2^{+}{ }_{\mathrm{m}}$ shapes more similar
$\Rightarrow$ complementarity with WW channel)
$\Rightarrow$ Data in better agreement with SM hypothesis than $2^{+}{ }_{\mathrm{m}}$ whatever $\mathrm{f}_{\mathrm{qq}}$


## Combination

Atlas and CMS combined the WW and ZZ channels (and $\gamma \gamma$ for Atlas)
to improve the sensitivity for the SM vs $2^{+}{ }_{\mathrm{m}}$ separation


	ZZ	WW	Combined
$\mathrm{p}_{0}{ }^{\text {obs }}(\%)$	81.6	33.0	63.3
$\mathrm{p}_{2}{ }^{\text {obs }}(\%)$	0.245	9.3	0.2256
$\mathrm{CL}_{\mathrm{s}}(\%)$	1.4	14.0	0.6

$\Rightarrow 2^{+}{ }_{\mathrm{m}}(\mathrm{gg})$ disfavoured with $\mathrm{CL}=99.4 \% \mathrm{CL}$

Atlas, as a function of $\mathrm{f}_{\mathrm{qq}}$

$\Rightarrow$ Compared to $\mathrm{SM}, 2^{+}{ }_{\mathrm{m}}$ disfavoured at more than $99.9 \%$ CL whatever $\mathrm{f}_{\mathrm{qq}}$

Conclusion
$>$ The SM hypothesis is favoured against all tested alternative models
$>$ People willing to continue on spin measurements should take some time to define relevant (spin 2 ) models not already excluded by coupling measurement...
> The fermionic channels will also bring information, e.g. in the VX associated production, with $\mathrm{X} \rightarrow \mathrm{b} \overline{\mathrm{b}}$, the mass of the VX system might be a very good discriminator for SM vs 0 , 2 hypotheses
> The delicate issue of the $\mathrm{p}_{\mathrm{T}}$ spectrum should be clarify
$>$ For the futur, CP asymmetries seem more important to look at e.g. in the di-photon channel, the VBF production seems promising


Diagram very similar to the golden channel $\mathrm{H} \rightarrow \mathrm{ZZ} * \rightarrow 41$
$\Rightarrow$ look for angular correlations in the di-jet system

Another side remark on $\mathrm{p}_{\mathrm{T}}$ but for outgoing partons in VBF processes :
No "good" spin 2 model : using an effective lagrangian $\Rightarrow$ violation of unitarity above a certain scale.
Need form factors (FF) to regularize the cross-sections...

Whoices of couplings also relevant from the really beginning : the couplings $X-Z^{0}-\gamma$ and $X-\gamma-\gamma$ exist and can spoil the typical VBF signature (relatively high $\mathrm{p}_{\mathrm{T}}\left(\sim \mathrm{m}_{\mathrm{V}} / 2\right)$ forward jets)


Strong contribution from photon exchange : $\Rightarrow$ low $\mathrm{p}_{\mathrm{T}}$ jets


CMS WW data, 0-jet bin


## $\checkmark$ Signal:

$\rightarrow$ The interference between the processes $g g \rightarrow X \rightarrow \gamma \gamma$ and $g g \rightarrow \gamma \gamma$ (box) depends on $\cos \theta^{*}$ and distort the shape

Only done for the SM : reduction of signal yield. large at high $\cos \theta^{*}$ : correct and use the full correction as the uncertainty.
(the computation for the spin 2 model used here is available since last week (effect with opposite sign and smaller))

$\rightarrow$ No computation of the $\mathrm{p}_{\mathrm{T}}$ spectrum for spin 2 . However can impact the $\cos \theta^{*}$ shape, especially at high $\cos \theta^{*}$ (only populated thanks to non zero $\mathrm{p}_{\mathrm{T}}$ )
As "reasonable" guess, assume it is the same as the SM Higgs boson (for gg fusion)
$\Rightarrow$ reweigh spin 2 MC (gg fusion) to SM Powheg $g g \mathrm{H}_{\mathrm{T}}$ use full correction as systematics (why ?? HSG7 strange prescription...)



Do nothing for qq initiated process, e.g. the model for $\mathrm{p}_{\mathrm{T}}$ is defined by Pythia8

Remark : assuming a scalar particle, the parity is very difficult to determine from the $\mathrm{H} \rightarrow \gamma \gamma$ decay
$\rightarrow$ Correlation in the linear polarisation of the two photons : obviously not in Atlas ( $\pi^{0} \rightarrow \gamma \gamma$ was used to measure the neutral pion parity)
$\rightarrow$ From the $\mathrm{p}_{\mathrm{T}, \mathrm{H}}$ spectrum distortion of $0^{-}$vs $0^{+}$
(due to the gluon polarisation inside the proton, hep-ph/1304.2654)

The Collins-Soper $\cos \theta^{*}$ definition :


$$
\begin{aligned}
\cos \theta^{*} & =\frac{\sinh \left(\eta_{\gamma_{1}}-\eta_{\gamma_{2}}\right)}{\sqrt{1+\left(p_{\mathrm{T}}^{\gamma \gamma} / m_{\gamma \gamma}\right)^{2}}} \cdot \frac{2 p_{\mathrm{T}}^{\gamma_{1}} p_{\mathrm{T}}^{\gamma_{2}}}{m_{\gamma \gamma}^{2}} \\
= & \sinh (\Delta \eta) /(\cosh (\Delta \eta)+1) \text { at } \mathrm{p}_{\mathrm{T}, \mathrm{H}}=0
\end{aligned}
$$

> expected to minimise the impact of ISR $>$ shown to give the best discrimination (?)

Main hypothesis : decorrelation between $\mathrm{m}_{\gamma \gamma}$ and $\cos \theta^{*}$
$\operatorname{pdf}\left(\mathrm{m}_{\gamma \gamma}, \cos \theta^{*}\right)=\operatorname{pdf}\left(\mathrm{m}_{\gamma \gamma}\right) \times \operatorname{pdf}\left(\cos \theta^{*}\right)$
In principle, true for the signal (up to small resolution effects due to different photon kinematic in different $\cos \theta^{*}$ bins)
$>$ In the $\mathrm{SR}, 2 \mathrm{D}$ fit to $\operatorname{pdf}\left(\mathrm{m}_{\gamma \gamma}, \cos \theta^{*}\right)$ the bkg $\cos \theta^{*} \mathrm{pdf}$ is extracted from side band (SB)
$>$ In the $\mathrm{SB}, 1 \mathrm{D}$ fit to $\operatorname{pdf}\left(\mathrm{m}_{\gamma \gamma}\right)$, which is identical to the SR mass pdf $\Rightarrow$ constrain $\mathrm{N}_{\mathrm{bkg}}$ in the SR

The decorrelation is checked on the data and high stat MC sample by comparing the expected number of events in a $\left(\mathrm{m}_{\gamma \gamma}, \cos \theta^{*}\right)$ bin assuming decorrelation to the observed one :

$$
\begin{gathered}
n^{e x p}\left[m_{\gamma \gamma}\right]\left[\cos \theta^{*}\right]=\frac{\overbrace{\sum_{m_{\gamma \gamma}^{\prime}} n^{o b s}\left[m_{\gamma \gamma}^{\prime}\right]\left[\cos \theta^{*}\right]}^{=n^{o b s}\left[\cos \theta^{*}\right]} \cdot \overbrace{\sum_{\cos \theta^{* \prime}} n^{o b s}\left[m_{\gamma \gamma}\right]\left[\cos \theta^{* \prime}\right]}^{=n^{o b s}\left[m_{\gamma \gamma}\right]}}{n^{t o t}} \\
\left(\sigma^{e x p}\left[m_{\gamma \gamma}\right]\left[\cos \theta^{*}\right]\right)^{2}=n^{e x p}\left[m_{\gamma \gamma}\right]\left[\cos \theta^{*}\right]+\left(n^{e x p}\left[m_{\gamma \gamma}\right]\left[\cos \theta^{*}\right]\right)^{2} \cdot\left(\frac{1}{n^{o b s}\left[m_{\gamma \gamma}\right]}+\frac{1}{n^{o b s}\left[\cos \theta^{*}\right]}+\frac{1}{n^{t o t}}\right)
\end{gathered}
$$

And use the pull : $\left(\mathrm{n}_{\mathrm{obs}}-\mathrm{n}_{\mathrm{exp}}\right) / \sigma_{\text {nexp }}$



With absolute $\mathrm{p}_{\mathrm{T}}$ cuts (used for HCP analysis) a strong correlation is observed :
this would require a true 2 D bkg pdf (very intricate...) or the use of an "averaged" $1 \mathrm{D} \cos \theta^{*}$ pdf (choice for HCP )



The mass pdfs (analytical functions) :
$\checkmark$ bkg : a five order polynomial $(5+1$ nuisance parameters (NP)) + spurious signal (1 NP)
$\checkmark$ signal : a standard Crystal-Ball + Gaussian parameterisation used for all $\cos \theta^{*}$ (including ESS and resolution systematic uncertainties : $6+1 \mathrm{NP}$ )

The $\cos \theta^{*}$ pdfs (10 bin histograms) :
$\checkmark \mathrm{bkg}:$ from the full $\mathrm{SB}\left(\mathrm{m}_{\gamma \gamma} \in[105,122[\mathrm{U}] 130,160] \mathrm{GeV} / \mathrm{c}^{2}\right)$


Each bin is assigned a nuisance parameter with a Gaussian constrain (10 NP) :

- for the finite statistics in the SB
- to account for the remaining correlation observed in the high stat. MC

High stat. MC SB / SR


Final systematics per bin


From $\sim 1$ to $\sim 4 \%$ systematic uncertainty depending on $\cos \theta^{*}$

Fitted bkg subtracted data


Nominal analysis


Category analysis


Analysis	Hypothesis	$\mathrm{N}_{\mathrm{S}}$	p-values (\%)   expected   observed		$\mathrm{CL}_{\mathrm{S}}\left(2^{+}\right)(\%)$
			1.2	58.8	0.7
	$2^{+}$	$620 \pm 160$	0.5	0.3	
Categories	SM	$570 \pm 120$	1.9	21.1	10.6
	$2^{+}$	$590 \pm 130$	1.7	8.4	

Enforcing decorrelation in the Category analysis gives results similar to the nominal analysis

## The category (alternative) analysis :

Do a simultaneous fit to the data invariant mass distributions in $10 \cos \theta^{*}$ bins : 10 categories
The mass pdfs (analytical functions) :
$\checkmark$ bkg : 1 shape $/ \cos \theta^{*}$ bin ( 9 exponentials of degree 2 polynomial +1 degree 3 polynome)
21 (shape) +10 (normalisation) +10 (spurious signal, constrained) $=41 \mathrm{NP}$
$\checkmark$ signal : can cope with the slighly varying resolution as a function of $\cos \theta^{*}$
by using 10 different $\mathrm{CB}+$ Gaussian shapes ( 7 standard ESS and resolution NP)

## The $\cos \theta^{*}$ information :

$\checkmark$ signal : use the predicted relative yield $/ \cos \theta^{*}$ bin
same systematics as for the inclusive analysis, treated as bin to bin migrations
$\checkmark$ bkg : the shape is an outcome of the fit

* Main drawbacks :
many NP for the bkg mass shapes, needs spurious signal studies
Main advantage :
can deal with signal mass shape varying as a function of $\cos \theta^{*}$
no bkg $\cos \theta^{*} \mathrm{pdf}$, no decorrelation assumption needed
The decorrelation can be enforced by using the same bkg mass shape (same parameters) in all bins (still keeping a spurious signal NP / bin ?)



## Pdf as a function of the fraction of $\mathrm{f}_{\mathrm{qq}}$

(fraction in the selected sample, corresponding to a slightly lower fraction at the production level due to a higher efficiency in the $\mathrm{q} \overline{\mathrm{q}}$ annihilation process)

Smaller discrimination at high $\mathrm{f}_{\text {qq }}$ minimal separation @ $\mathrm{f}_{\mathrm{qq}} \sim 25 \%$

