Probing new physics through Higgs couplings

Based on arXiv:1210.8120, 10.1007/JHEP03(2013)029, G.Cacciapaglia, A.Deandrea, G.Drieu La Rochelle, J-B.F.

Jean-Baptiste Flament

IPNL

May 13th, 2013

Higgs couplings and New Physics

- Higgs sector is a affected by many BSM theories
 - Important modifications can occur (4th generation, 2 Higgs Doublets Model ...)
 - ► Impact is different according to production/decay mode
 - → Variety of signatures
 - → Higgs phenomenology is a right place to look for New Physics

- Even if the Higgs ends up standard-like, we can still derive bounds on New Physics that are competitive with direct searches.
 - → This requires a full recast of the SM searches.

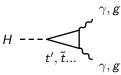
BSM exploration in Higgs phenomenology

There are two approaches to the search for NP effects :

- Study the effects of a specific model
 - ► Choose a UV completion with new particles (W', vector-like fermions, etc...)
 - → can provide a reasonable fit with few parameters
- Model-independent
 - ► EFT (Effective Field Theory) : keep SM particle spectrum add higher-order operators
 - → Accounts for most cases of heavy new physics.

Specialised Parametrisation

- Our aim : New Physics models contributing mostly via loop-induced couplings
 - ▶ It is a broad class (extra dimensions, vector-like fermions, top partners ...)



- ▶ Keep only a few parameters
- ► Allow for tree-level couplings modification

Effective parametrisation $\kappa_{gg}, \kappa_{\gamma\gamma}$

- ▶ Generic parameterisation $\kappa_g^2 = \frac{\Gamma_{H \to gg}}{\Gamma_{H \to gg}^{SM}}, \ \kappa_\gamma^2 = \frac{\Gamma_{H \to \gamma\gamma}}{\Gamma_{H \to \gamma\gamma}^{SM}}$
 - ► Hide interferences with SM particles

$$ightharpoonup \Gamma \propto |A(W) + A(t) + A(NP)|^2$$

Effective parametrisation $\kappa_{gg}, \kappa_{\gamma\gamma}$

- ▶ Generic parameterisation $\kappa_g^2 = \frac{\Gamma_{H \to gg}}{\Gamma_{H \to gg}^{SM}}, \ \kappa_\gamma^2 = \frac{\Gamma_{H \to \gamma\gamma}}{\Gamma_{H \to \gamma\gamma}^{SM}}$
 - ► Hide interferences with SM particles

$$ightharpoonup \Gamma \propto |A(W) + A(t) + A(NP)|^2$$

"top-inspired" parameterisation :

$$\Gamma_{gg} \propto \left| C_t^g A_t (1 + \kappa_{gg}) \right|^2$$

 $\Gamma_{\gamma\gamma} \propto \left| A_w + \frac{4}{9} C_t^{\gamma} A_t (1 + \kappa_{\gamma\gamma}) \right|^2$

Effective parametrisation $\kappa_{gg}, \kappa_{\gamma\gamma}$

- ▶ Generic parameterisation $\kappa_g^2 = \frac{\Gamma_{H \to gg}}{\Gamma_{H \to gg}^{SM}}, \ \kappa_\gamma^2 = \frac{\Gamma_{H \to \gamma\gamma}}{\Gamma_{H \to \gamma\gamma}^{SM}}$
 - ► Hide interferences with SM particles

$$ightharpoonup \Gamma \propto |A(W) + A(t) + A(NP)|^2$$

"top-inspired" parameterisation :

$$\Gamma_{gg} \propto \left| C_t^g A_t (1 + \kappa_{gg}) \right|^2$$

 $\Gamma_{\gamma\gamma} \propto \left| A_w + \frac{4}{9} C_t^{\gamma} A_t (1 + \kappa_{\gamma\gamma}) \right|^2$

Easy interpretation for top partners

$$\kappa_{gg} = \kappa_{\gamma\gamma} = f(1/M)$$

▶ Avoids correlations if tree-level parameters κ_V , κ_b , ... are introduced.

Theoretical motivation

- Contribution of a new particle depends on
 ⇒ charge (Q), color, loop form factor, Higgs coupling
- ▶ Usually loop form factor is asymptotic if $2m_X^2 > m_H^2$:

$$\begin{array}{ll} \mathcal{F}=1 & \text{ spin } 1/2 \\ \mathcal{F}=-\frac{21}{4} & \text{ spin } 1 \\ \mathcal{F}=\frac{1}{4} & \text{ spin } 0 \end{array}$$

- $g_{HXX} = g_{HXX}(1/M)$: decoupling limit
- Correlations

$$\frac{\kappa_{\gamma\gamma}}{\kappa_{gg}} = \frac{3}{8} \frac{N_c Q^2}{C_{\text{color}}}$$

Testing compatibility Model v.s. Data

The statistical treatment is the following:

$$\mathcal{L}(\mathsf{data}|\mathsf{model}) \quad \boldsymbol{\rightarrow} \qquad \boxed{ \begin{array}{c} \mathsf{Test} \; \mathsf{Statistic} \\ \chi^2, \; \Delta \chi^2 \end{array} } \quad \boldsymbol{\rightarrow} \quad \mathsf{p-value}$$

- ▶ p-value ≡ compatibility
 - ▶ $p_X > 1 0.68 \Leftrightarrow \text{model X compatible at } 1\sigma \text{ level}$
 - $p_X > 1 0.95 \Leftrightarrow \text{model X compatible at } 2\sigma \text{ level...}$
- Choice of the test statistics
 - \rightarrow It is customary to take $\Delta \chi^2$, but in some cases it is not the best choice.

Extracting $\mathcal{L} \equiv \chi^2$

▶ Input : Set of measured cross-sections.

Usually
$$\hat{\mu}_i = \frac{\sigma_{pp \to h \to X_i}}{\sigma_{pp \to h \to X_i}^{SM}}$$
, 1σ error band $[\hat{\mu}_i - \sigma_-, \hat{\mu}_i + \sigma_+]$.

• Using a gaussian approximation for χ^2 in channel i

$$\chi^2 = \left(\frac{\mu_i \mid_{\mathsf{model}} - \hat{\mu}_i}{\sigma_i}\right)^2$$

- ▶ Valid if $n_{\rm obs} \sim n_{\rm exp}$.
- ▶ True in most channels except ZZ and some $\gamma\gamma$ subchannels.
- ▶ Using a decorrelated approximation, the full χ^2 is

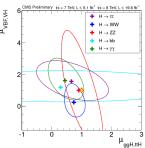
$$\chi^2 = \sum_i \chi_i^2$$

▶ Valid if statistical errors dominate. (Still the case ?)

χ^2 extraction

▶ Instead of giving all subchannels, give the χ^2 as a function of the production modes.

$$\begin{array}{c} (\hat{\mu}_{WW}, \sigma_{WW}) \\ \downarrow \\ (\hat{\mu}_{WW}^{0j}, \sigma_{WW}^{0j}), (\hat{\mu}_{WW}^{1j}, \sigma_{WW}^{1j}) \dots \\ + \epsilon_{0j}^{\mathsf{ggh}}, \epsilon_{0j}^{\mathsf{VBF}}, \dots \end{array}$$



▶ 2D gaussian approximation

$$\chi^2 = \begin{pmatrix} \mu_{\rm ggh,tth} \\ \mu_{\rm VBF,VH} \end{pmatrix}^T V^{-1} \begin{pmatrix} \mu_{\rm ggh,tth} \\ \mu_{\rm VBF,VH} \end{pmatrix}$$

χ^2 extraction (II)

- ▶ Requires that 4 production modes $(gg \rightarrow h, \bar{t}th, VBF, VH)$ can be related to 2 parameters $(\mu_{ggh,tth}, \mu_{VBF,VH})$
 - If custodial symmetry is preserved VBF and VH are rescaled in the same way.

$$R_{VBF} = R_{VH}$$

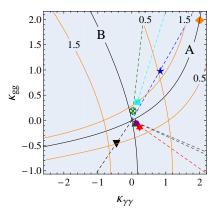
▶ So far $\bar{t}th$ production not crucial → $\sigma_{\bar{t}th}$ can be neglected, except for $h \to \bar{b}b$, where $gg \to h$ does not contribute.

▶ It yields χ^2 only up to an additive constant.

Specific realisations

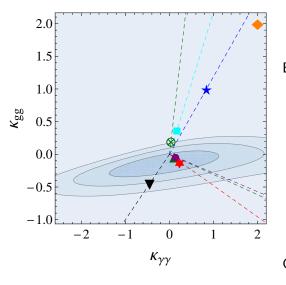
- Models to be tested:
 - Extra-dimensional models
 5D-UED (⊗),6D-UED (★),Brane Higgs (▼,♠)
 - ► Colour octect (■)
 - Minimal Composite Higgs model (•)
 - ▶ Little Higgs model Littlest Higgs (*), Simplest Little Higgs (▲)
 - ▶ 4th generation (♦)
- All models lie on a line starting at SM point, except 4th generation.

Specific realisations



► All models lie on a line starting at SM point, except 4th generation.

Excluding New Physics

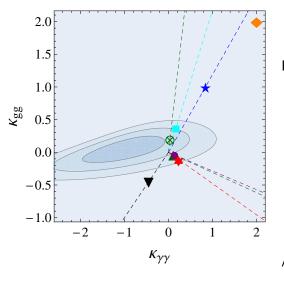


Excluded at 95% C.L.

- ▶ 4th generation
- other models up to some parameter value

CMS

Excluding New Physics

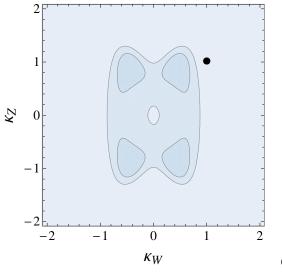


Excluded at 95% C.L.

- ▶ 4th generation
- other models up to some parameter value

ATLAS

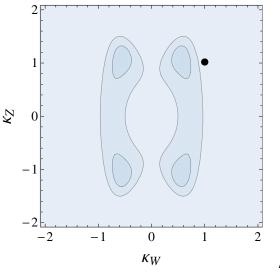
Other frameworks: Fermiophobic Higgs model



- ▶ 4σ and 5σ contours
- ► Dot = Fermiophobic SM

CMS

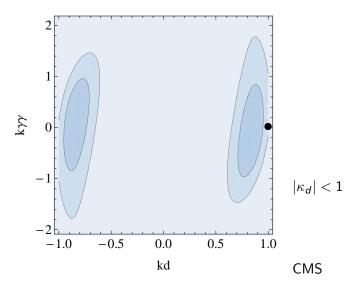
Other frameworks: Fermiophobic Higgs model



- ▶ 4σ and 5σ contours
- ► Dot = Fermiophobic SM

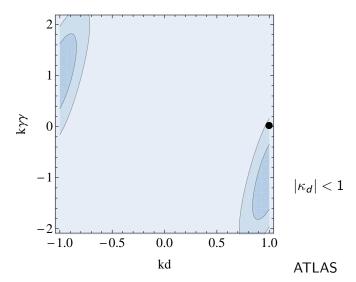
ATLAS

Other frameworks: Dilaton model



- 4 ロ ト 4 個 ト 4 差 ト 4 差 ト - 差 - かくぐ

Other frameworks: Dilaton model



- 4 ロ ト 4 個 ト 4 差 ト 4 差 ト - 差 - かくぐ

Conclusion

- Summary
 - Parametrisation with few parameters, but covering many models.
 - ► Advocate for such a fit by ATLAS and CMS collaborations.
 - ▶ This is a powerful way to set limits on new heavy particles.

- Development
 - ► Compare with bounds from direct searches

Add-Ons

Add-Ons

Check of the ellipse fit

After extracting the points from plots from the collaborations, we can superpose them with fitted ellipses to check the validity of the gaussian hypothesis:

