Top polarization in squark decays

Genevieve Bélanger LAPTH, Annecy-le-Vieux

GB, R. Godbole, S. Kraml, S. Kulkarni, arXiv:1304.2987GB, R. Godbole, L. Hartgring, I. Niessen, arXiv:1212.3526 (JHEP)

Montpellier, May 2013

Introduction

- The Higgs discovered at LHC BSM?
- In SUSY, third generation squarks play important role in Higgs sector, mixing is important
- Search for 3rd generation squarks vital to understand the Higgs
- Harder than for light squarks :
 - gg- squark pair production drops rapidly with energy
 - squark/gluino production is much smaller than for light squarks
 - decay involves top quarks, then generic E_Tmiss+jet search not applicable

Current limits

Top polarization

- Useful probe of new physics at collider : sensitive to helicity structure of production process
- SM
 - pair produced tops are unpolarized
 - Single production (polarization -1)

- SUSY
 - Top produced in decay of stops and sbottoms can take any value - depends on squark mixing and neutralino/ chargino content

- At LHC production independent of squark mixing angle. BR and top polarization only way to extract info on mixing
 - squark mixing important for Higgs
 - nature of neutralino/chargino important for dark matter
- Measure of top polarization
 - Correlation between top polar and angular distribution of decay lepton - not affected by QCD corections (Jesabek,Kuhn 1989) or NP in decay (Grzadkowski 2001)
 - Energy fraction of decay leptons (Berger et al 1207.1101)
 - use boosted top and jet substructure

W⁺

Top polarization in $\tilde{t}_1 \rightarrow t \, \tilde{\chi}_i^0$

Polarization

$$P_t(\tilde{t}_1 \to t \, \tilde{\chi}_i^0) = \frac{\left((G_i^R)^2 - (G_i^L)^2 \right) f_1}{(G_i^R)^2 + (G_i^L)^2 - 2G_i^R G_i^L f_2}$$

$$G_{i}^{L} = -\sqrt{2}g_{2}\left(\frac{1}{2}Z_{i2} + \frac{1}{6}\tan\theta_{W}Z_{i1}\right)\cos\theta_{\tilde{t}} - \frac{g_{2}m_{t}}{\sqrt{2}M_{W}\sin\beta}Z_{i4}\sin\theta_{\tilde{t}}$$

$$= 2\sqrt{2}$$

$$g_{2}m_{t}$$

$$G_i^R = \frac{2\sqrt{2}}{3}g_2 \tan \theta_W Z_{i1} \sin \theta_{\tilde{t}} - \frac{g_2 m_{\tilde{t}}}{\sqrt{2}M_W \sin \beta} Z_{i4} \cos \theta_{\tilde{t}},$$

Mass difference

Kinematic effects can reduce significantly polarization, f₁->0 for small ∆m (here in stop rest frame)

Benchmark : LH stop m=520GeV

 Note: for higgsino LSP(μ<M₁), BR for decay tχ₂ is as large as tχ₁ and polarization is about the same

 For higgsino LSP, BR for decay tχ² is similar to tχ¹, so is polarization, however also decay into bχ⁺(proportional top Yukawa) 10

Top polarization in Sbottom -> top+chargino

Top polarization

• For a higgsino-like chargino

$$\mathcal{P}_t = \frac{\left((h_t \,\cos\theta_{\tilde{b}})^2 - (h_b \,\sin\theta_{\tilde{b}})^2\right) f_1}{\left[(h_t \,\cos\theta_{\tilde{b}})^2 + (h_b \,\sin\theta_{\tilde{b}})^2 - h_t \,h_b \,\sin2\theta_{\tilde{b}} \,f_2\right]}$$

• Dependence on sbottom mixing

$$\begin{split} \tilde{b}_L &: & \cos \theta_{\tilde{b}} = 1 \,, \quad \mathcal{P}_t \to +f_1 \\ \tilde{b}_R &: & \cos \theta_{\tilde{b}} = 0 \,, \quad \mathcal{P}_t \to -f_1 \end{split}$$

• For a wino-like chargino : coupling only to LH sbottom and LH top $--> P_t=-1$ for any mixing

Top polarization

 At large tanβ, both Yukawa couplings contribute

Branching ratios

 For µ<M₂, top/chargino dominant everywhere

Numerical analysis

- Many processes lead to tops in final state – sbottom1,2 decays, stop decays etc..
- Sometimes final states hard to distinguish, e.g. in higgsino/wino case (decay of χ^2, χ^+ into LSP lead to soft decay products which can be missed)

• Will compute the net top polarization : include all relevant processes+BR + boost to lab frame

Benchmarks

	bm-2	bm-5	bm-6
$M_{\tilde{Q}_3}$	1300	582	850
$M_{\tilde{D}_3}$	572	1500	601.5
M_1	500	200	500
μ	350	150	350
$m_{\tilde{b}_1}$	650	650	650
$m_{\tilde{b}_2}$	1330	1538	885
$\cos ilde{ heta}_{ ilde{b}}$	0.006	0.999	0.020
$m_{\tilde{t}_1}$	1236	634	820
$\cos \overline{\theta}_{ ilde{t}}$	0.85	0.996	0.96
$m_{\tilde{\chi}_1^-}$	353	144	352
$m_{\tilde{\chi}_1^0}$	343	126	343
$m_{ ilde{\chi}_2^0}$	358	159	357

	bm-2	bm-5	bm-6
$\sigma(pp \to \tilde{b}_1 \tilde{b}_1^*) \text{ [pb]}$	0.137	0.137	0.137
$\sigma(pp \to \tilde{t}_1 \tilde{t}_1^*) \text{ [pb]}$	0.002	0.157	0.033
$BR(\tilde{b}_1 \to t \tilde{\chi}_1^-)$	0.34	0.72	0.32
$\operatorname{BR}(\tilde{b}_1 \to t \tilde{\chi}_2^-)$	_	0.16	_
$\operatorname{BR}(\tilde{t}_1 \to t \tilde{\chi}_1^0)$	0.33	0.27	0.47
$\operatorname{BR}(\tilde{t}_1 \to t \tilde{\chi}_2^0)$	0.35	0.40	0.42
$\mathcal{P}_t(\tilde{b}_1 \to t\tilde{\chi}_1^-)$	-0.92	0.99	-0.98
$\mathcal{P}_t(\tilde{b}_1 \to t\tilde{\chi}_2^-)$	_	-0.29	_
$\mathcal{P}_t \left(\tilde{t}_1 \to t \tilde{\chi}_1^0 \right)$	0.40	0.99	0.94
$\mathcal{P}_t \left(\tilde{t}_1 \to t \tilde{\chi}_2^0 \right)$	0.50	0.99	0.99
$\widehat{\mathcal{P}}_t \left(ext{total} ight)$	-0.73	0.92	0.07
A_{θ_l}	0.14	0.80	0.47
A_{ϕ_l}	0.57	0.92	0.76

$M_2 = 2M_1$

Tools : SoftSUSY, micrOMEGAs, Prospino, MadGraph

Top polarization : impact on lepton distributions

Top polarization : impact on b distributions

Observables

 Asymmetries constructed from lepton angular distributions in the lab frame can probe the top polarization

Observables

Azimuthal asymmetry

Observables sensitive to top polarization

$$z = \frac{E_b}{E_t}, \quad u = \frac{E_l}{E_l + E_b}$$

Conclusion

- Polarization dependent observables can be used to extract information on squark and neutralino/ chargino composition once a signal is observed.
- Taking into account top polarization affects the reach in searches for squarks