CP properties from VH production at LHC

Kirtimaan Mohan
Centre for High Energy Physics
Indian Institute of Science
Bangalore
India
Based on A. Djouadi, R.Godbole, B. Mellado and K.M., 1301.4965
\&
work in preparation with R. Godbole, C. White, D. Miller

GDR Terascale May 2013

Higgs CP properties

- Determination of the nature of HVV couplings requires knowledge of:
- Strength of couplings
- Lorentz structure of the HVV vertex. (Information on spin and CP.)

$$
\Gamma_{H V V}^{\mu \nu}=a g^{\mu \nu}+b p^{\mu} k^{\nu}+c \epsilon^{\mu \nu \alpha \beta} p_{\alpha} k_{\beta}
$$

- Important to determine the nature of the interactions for each of the gauge bosons.
- Can be done from decay and production of H
- $H \rightarrow Z Z-C P$ and spin both
- $H \rightarrow W W$ - spin only
- VBF - spin and CP (talk by Dorival)
- VH - spin and CP

VH versus VBF

- VBF :
- Sensititive to spin and CP properties
- Not possible to differentiate contribution from Z and W separately.
- Acceptance to the SM VBF like cuts is weak. The BSM vertex tends to populate regions of phase space that have stronger backgrounds.
- VH :
- Low cross-section and swamped in background
- possible to distinguish between W and Z
- Jet-Substructure can alleviate the problem of backgrounds in VH .

Jet Substructure

(3) Select events with exactly 1 hard isolated lepton ($p_{T}>30 \mathrm{GeV}$ and $|\eta|<2.5$). Veto on events with more or less of such a lepton.
(3) Presence of a fat jet with radius $R=1.2$ and $p_{T}>200 \mathrm{GeV}$. After applying the filtering procedure ${ }^{1}$, require no more than three subjets with $p_{T}>20$ $\mathrm{GeV},|\eta|<2.5$, and radius $R_{\text {sub }}=\min \left(0.3, R_{b b}\right)$, where $R_{b b}$ is the separation of the two hardest subjets, both of which must be b-tagged.
(3) Demand that the reconstructed W has a $p_{T}>150 \mathrm{GeV}$
(-) $\Delta \phi(h, W)>1.2$
(0) Veto for additional jet activity with $p_{T}^{j e t}>30 \mathrm{GeV},|\eta|<3$ (to suppress $t \bar{t}$ and Single Top backgrounds).

[^0]
VH acceptance

Channel	$V H_{S M}$	V+jets	$t \bar{t}$	Single top	$V H_{B S M}^{0^{+}}$	$V H_{B S M}^{0-}$
ZH	0.153	0.416	0	0	0.61	0.93
WH	0.455	0.33	0.16	0.06	1.86	2.74

Table: cross-sections (femtobarn) evaluated at leading order for 14 TeV LHC after applying all cuts.

Acceptance of non SM vertex about $4 \sim 6$ times larger than $S M$.

$\mathcal{L}_{V V H}=\mathcal{L}_{S M}+g_{W}^{2} \frac{c_{1}}{2 \Lambda_{1}^{2}} \Phi^{\dagger} \Phi W_{\mu \nu} W^{\mu \nu}+g_{W}^{2} \frac{c_{2}}{2 \Lambda_{2}^{2}} \Phi^{\dagger} \Phi \tilde{W}_{\mu \nu} W^{\mu \nu}$,

Angular discriminants

Angles suggested ${ }^{2}$. Cannot distinguish BSM CP even and CP odd

[^1]
Angular discriminants for CP

- $\cos \theta^{*}=\frac{\vec{p}_{l_{1}}^{(V)} \cdot \vec{p}_{V}}{\left|\vec{p}_{l_{1}}^{(V)}\right|\left|\vec{p}_{V}\right|}$
- $\quad \cos \delta^{+}=\frac{\vec{p}_{1}^{(V)} \cdot\left(\vec{p}_{V} \times \vec{p}_{H}\right)}{\left|\vec{p}_{l_{1}}^{(V)}\right|\left|\vec{p}_{V} \times \vec{p}_{H}\right|}$
- $\cos \delta^{-}=\frac{\left(\vec{p}_{1}^{(H-)} \times \vec{p}_{l_{2}}^{(H-)}\right) \cdot \vec{p}_{V}}{\left|\left(\vec{p}_{l_{1}}^{(H-)} \times \vec{p}_{l_{2}}^{(H-)}\right)\right|\left|\vec{p}_{V}\right|}$

One can use these angles to differentiate between BSM CP odd and CP even

Angular discriminants for CP

\cos (theta)Z(lab)l(Z-rest)

Asymmetries

Asymmetries	$Z H_{S M}$	$Z H_{B S M}^{0-}$	$Z H_{B S M}^{0+}$	Z+jets
$A\left(\cos \theta^{*}\right)$	0.35	-0.05	-0.02	0.07
$A\left(\cos \delta^{+}\right)$	-0.207	-0.262	0.088	-0.188
$A\left(\cos \delta^{-}\right)$	-0.209	-0.435	-0.103	-0.321

Table: Asymmetries constructed from the angles for ZH production

Asymetries

Asymmetries WH

Asymmetries	$W H_{S M}$	$W H_{B S M}^{0-}$	$W H_{B S M}^{0+}$	$\mathrm{W}+$ jets
$A\left(\cos \theta^{*}\right)$	$0.396_{0.411}^{0.413}$	$0.073_{0.060}^{0.082}$	$0.100_{0.095}^{0.096}$	$0.142_{0.132}^{0.152}$
$A\left(\cos \delta^{+}\right)$	$-0.150_{-0.161}^{-0.024}$	$-0.284_{-0.289}^{-0.342}$	$0.142_{0.141}^{0.093}$	$-0.138_{-0.138}^{-0.189}$
$A\left(\cos \delta^{-}\right)$	$-0.058_{-0.059}^{-0.104}$	$-0.353_{-0.367}^{-0.403}$	$0.042_{0.030}^{-0.0003}$	$-0.118_{-0.135}^{-0.173}$

Table: Asymmetries for WH production the numbers are written as follows $B T_{B S}^{M C T}$, where $B S, M C T$ and $B T$ are the three ways the neutrino momentum is reconstructed.

Summary

- Determination of HVV vertex lorentz structure is important for both W and Z bosons separately.
- This is difficult to do from $H \rightarrow W W$ decays.
- VBF does not differentiate between W and Z and the BSM contributions populate areas of phase space that have stronger contributions from background
- VH can do this, but needs jet substructure.
- The larger boost in the VH system from BSM terms means increased acceptance to the BSM contributions.
- Possible to construct angular correlations that determine the lorentz structure of the interactions entirely.

[^0]: ${ }^{1}$ Butterworth,Davison,Rubin,Salam, 2008

[^1]: ${ }^{2}$ Englert, Goncalves-Netto,Mawatari, Plehn, 2012

