Mass Hierarchy, Muon Disappearance and Artificial Neutrino Beams

Francesco Vissani, INFN -- LNGS & GSSI with Giulia Pagliaroli and Carolina Lujan-Peschard. Based on arXiv:1301.4577

Before the measurement of thetal3...

- Few theories with large theta13, e.g.:
- those with random Yukawa entries --just a "setup"
- supersymmetric SO(10) -not a complete theory

- Few studies of hierarchy in this case:
- Antares, IceCUBE
- Monolith
- Mton Argon Detector
 (Hyper-ICARUS)

Present attempts to know the mass hierarchy...

- MO, 50kton of magnetized iron
- IceCUBE PINGU
- Antares/Nemo/Km3NET.... ORCA

PINGU and ORCA in evolution, with the aim of optimizing the physics potential for the discrimination of mass hierarchy, especially using atmospheric neutrinos -- this workshop.

WHY NOT ARTIFICIAL NEUTRINOS?

- Now that theta13 is know, planning an ideal experiment for mass hierarchy is possible.
- The matter effect indicates 6-8 GeV as optimal energy.
- A large enough oscillation phase dictates distances of 6000-8000 km as optimal.
- Let us have a close look to the oscillation probabilities!

NORMAL HIERARCHY, 7000 km

http://pcbat1.mi.infn.it/~battist/cgi-bin/oscil/index.r

INVERSE HIERARCHY, 7000 km

http://pcbat1.mi.infn.it/~battist/cgi-bin/oscil/index.r

First: Formulate the Idea

- The matter effect implies also large muon disappearance.
- o A Distance of 6000-8000 km amplifies this effect.
- Present experiments have Distance~700-800 km & Mass~few kton. The events scale as Mass/Distance²: thus, we need more mass.
- Moreover, we want to identify muons of a few GeV. Thus, the telescope must be sufficiently `fine grained'.

Practical Questions Follow...

Consider a muon detector of 1 Mton able to see 10-40 meters tracks --- 1 GeV is about 4 meters.

Check whether some existing neutrino source and neutrino detector could fit the desired distance.

Take a conventional muon neutrino beam, from pion decay --- E(nu) is about E(p)/20.

Calculate the number of muon events, assuming to know only E(mu), or also E(had) -- i.e., E(nu).

Source-detector distances

	Fermilab	CERN	J-Parc
South-Pole	11600 km	11800 km	11400 km
Sicily	7800 km	1200 km	9100 km
Baikal Lake	8700 km	6300 km	3300 km

E.g.: Tsukuba-Sicily is too large, 9100 km; moreover, the energy of the beam is low.

http://www.daftlogic.com/projects-google-maps-distance-calculator.htm

Published NUMI Beams - ME & HE

rescaled to a distance of 7800 km

Cross Section for Muon Production: QEL+Pelta+PIS

ANSWER / RESULTS

- ... 950 events for normal hierarchy...
- ... and 1300 events for inverted hierarchy.
- 30% difference, as expected: bunched in time, directional, with a "hard" spectrum.

The neutrino spectrum

(assume that hadrons are measured)

Summary and Prospect

- Present experiments not optimized for mass hierarchy. But now, we have enough information to safely plan the next steps.
- 10²⁰ p.o.t. give 1000 events in one Mton detector; 30% less muon events for normal hierarchy -- a big difference.
- Events are well characterized; no need to see also the hadrons.
 Various possible options for the locations.
- Inverting the polarity, the matter effect works the other way round.

If you like the idea, feel free to use it; there is no copyright, for us it was enough to have fun by exploring it.

News from Gran Sasso

New PhD School on Astroparticle Physics at L'Aquila: http://www.gssi.infn.it/

New APPEC Center for theoretical Particle Physics: Gran Sasso+ APC + DESY

DISCUSSION

AFTER THE WORKSHOP

I thank various colleagues (Brunner, De Jong, Palomares-Ruiz and many more) for the stimulating discussions, and in the hope to make my answers more precise, I added some slides in the following pages:

- Slide 19: Oscillogram of P(e e) from my presentation at La Thuile 2003.
- Slides 20-24: Variation of P(mu mu) within the ranges of Lisi et al 2012.
- Slide 25: Plot of the cross section over energy.
- Slide 26: Opinion of Gran Sasso Engineers on a tunnel inclined at 30°.

Pee in the Earth = 0.3, 0.5, 0.7 (La Thuile 2003)

P(mu mu) if theta(23)= $37.2^{\circ}-39.8^{\circ}$

(I sigma range of hep-ph/1205,5254, Lisi et al)

P(mu mu) if theta(13)= 8.5° - 9.4°

(I sigma range of hep-ph/1205,5254, Lisi et al)

P(mu mu) if $Dm^2_{23} = (2.29 - 2.45)*10^{-3} eV^2$

(I sigma range of hep-ph/1205,5254, Lisi et al)

P(mu mu) varying CP phase=0⁰,90⁰,180⁰,270⁰

Stability of the Expected Number of Muons

- 3% variation with theta(23) and theta(13) (NH), less with Delta m²(23), using the present I sigma ranges.
- If 90% of the electrons are rejected, contamination for NH is 40 events, i.e., 4%.
- The number of taus decaying leptonically into mu is 26 events for NH, 24 for IH: No significant impact.

Cross Section for Muon Production

QEL+
Delta+
DIS

Total, 0<Emu<Enu Partial, 2 GeV< Emu<12 GeV Partial, 4 GeV<Emu<6 GeV

 $\sigma_{
u}/E_{
u}\, [{
m cm}^{\scriptscriptstyle 2}/{
m GeV}]$

AN ENGINEERGING ISSUE

- The ~20 GeV neutrino beam of CERN has a tunnel of about 1 km; its approximate diameter is 3 m, its cost is 10 Meuro/km.
- We need to launch a neutrino beam with 30° inclination and with an energy 3 times smaller.
- I asked Gran Sasso engineers whether a 0.5 km tunnel with such inclination (reaching 250 m depth from beginning) is conceivable.
- Answer: TBM (Mechanical Moles) with tracks can do this at speed of about Im/hour; one can consider stairs in the tunnel.