

LCG context, needs and deployment strategy

Alessandra Forti PerfSONAR Day 4th April 2013

Layout

- Experiments data access
- WLCG Ops&Tools TEG recommendation
- WLCG perfSONAR Task Force
- Some real life examples from the UK

Atlas

- Originally star topology with a hierarchical structure
 - Evolved towards a flatter data distribution with the introduction of T2D. T2 which can distributed data to other T2
- Runs any activity at any site
- Data transfer partially dynamic (PD2P)
- Working on federated storage based on xrootd (FAX)
 - Access to other sites storage from WNs
 - Copy to scratch

• Direct IO

CMS

- Also originally hierarchical structure
- Runs any activity at any Tier level
 - More flexible than atlas in the atlas transfer cohices
- Actively working on federated storage based also on xrootd (AAA)
 - "Any data, anywhere, anytime"
 - Starting from a regional approach

• Eventually going global with finer grained level of redirectors

LHCb

- · Lhcb data access model is evolving
 - Most of the activities still at T1s.
 - Several T2s that have been and will be used as "co-processing" sites
 - During that time the RAW file will be downloaded from a close T1 and the output uploaded again to T1 storage. Therefore a network monitoring between those sites is essential for the proper operation.
 - In the future it is possible that a selected number of T2s will be even tighter integrated with the execution of more workflows (analysis)
 - The possibility to use federated storage, which will further extend the usage and needs for/of network monitoring.

Alice

- Jobs go where the data are
 - Access the closest SE
 - 216 PB read in 2012
- Use xrootd only
 - Other protocols supported
- Network monitoring provided by Monalisa
 - Information from Monalisa already used to broker jobs.
- Perfsonar might simplify this scheme

http://tinyurl.com/cl3ds73

Motivations for Monitoring

- LHC collaborations are:
 - Data intensive
 - Globally distributed
 - Rely upon the network as a critical part of their infrastructure
- Finding and debugging LHC network problems can be difficult and, in some cases, take months.
 - How can we quickly identify when problems are network problems and help isolate their locations?
 - Experiments might want to blacklist
- We don't want to have a network monitoring system per VO!

MANCHEST

WLCG Ops&Tools TEG R5

- R5: WLCG Network Monitoring: deploy a WLCG-wide and experiment independent monitoring system for network connectivity
 - It is suggested that the PerfSONAR network monitoring system is deployed at all WLCG sites (two boxes, one for throughput and one for latency tests). This should help debug and resolve network-related problems which in the past have sometimes taken a very long time to resolve (many months) and for which the responsibilities have not easily been agreed. [...] The network monitoring metrics should be exposed both programmatically and through a dashboard-like interface. Commonalities with the FTS monitoring should be leveraged in order to provide a unique and complete network and transfers monitoring system.

• WLCG Ops&Tools TEG final report

perfSONAR TF

- Main goal assure that most WLCG sites install perfsonar
- Put together a deployment scenario from experiment models and priorities
 - ATLAS 3 categories of sites: OPN (including T0 and T1s), T2D, T2 (including T2 and T3)
 - Priorities
 - Priority 1: OPN-OPN links
 - Priority 2: Tx-Tx links in the same cloud
 - Priority 3: T1-T2D links (different cloud)
 - Priority 4: T2D-T2D links (different cloud)
 - Priority 5: all other links
 - Experiments deployment scenarios

perfSONAR TF

- Main goal assure that most WLCG sites install perfsonar
- Put together a deployment scenario from experiment models and priorities
 - ATLAS 3 categories of sites: OPN (including T0 and T1s), T2D, T2 (including T2 and T3)
 - Priorities
 - Priority 1: OPN-OPN links
 - Priority 2: Tx-Tx links in the same cloud
 - Priority 3: T1-T2D links (different cloud)
 - Priority 4: T2D-T2D links (different cloud)
 - Priority 5: all other links
 - Experiments deployment scenarios

PerfSONAR TF (2)

- Recommend hardware and setup
 - Location: perfSONAR instances useful if they are local to the storage
 - Networking: network config & hardware should be similar as much as possible to the storage one
 - If you use bonding on one use it also on the other
 - OS: different OS might behave differently
- Simplify perfSONAR configuration for sites
 - At the moment mostly manual and painful
 - Introduced concept of centralized mesh tests, i.e. machines read one or more central configurations.

- Each experiment can have a set of meshes the manage centrally
 - US, IT, UK already have at least a centralised meshes

BNL dashboard

- Each instance of perfsonar gives a site view from that site
- Global view needed

Cloud ATLAS-UK

- Different sites can be arranged in different views
 - Example Atlas UK sites vs some problematic T1

	BNL			ASGC H					KIT	IT TRIUMF UKI-LT2-QMUL UKI-SOUTHGRID-OX-HEP												
UKI-NORTHGRID-MA	№-Н	EP	UK	I-SC	ото	GRII	D-EC	DF		_						_	_	_	_	_		
TLAS-UK Bandwidth Matrix	¢										ATLAS	-UK Packe	t Loss	Matri	x							
	0	1	2	3	4	5	6	7							0	1	2	3	4	5	6	7
0:BNLBNL-Test (Ihcmon.bnl.gov)		0.00 0.01	0.27 0.00	0.28 0.31	0.00 0.73	0.00 0.48	0.00 0.18	0.00 0.68				BNL-Test			0.0 0.0	<mark>3.0</mark> 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0	0.0 0.0	4.0 0.0
1:ASGC (Ihc-bandwidth.twgrid.org)	0.23 0.21		<mark>0.04</mark> 0.00	0.15	0.00 0.25	0.00 0.11	0.00 0.00	0.00 0.00			1:ASC	GC ncy.twgrid.org)			0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0
2:KIT (perfsonar-de-kit.gridka.de)	0.00 0.56	0.00 0.06		0.00 0.32	0.00 0.92	0.00 0.92	0.00 0.52	0.00 0.91			2:KIT (perfson	ar2-de-kit.gridka.	de)		0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 600.0		0.0
3:TRIUMF (ps-bandwidth.lhcopn-mon.triumf.ca)	0.74 0.62	0.01 0.01	<mark>0.29</mark> 0.00		0.00 0.35	0.00 0.00	0.00 0.01	0.00 0.00			3:TRI (ps-later	UMF http://www.incopin-mon.tr	iumf.ca)		0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0
4:UKI-LT2-QMUL (perfsonar-bandwidth.esc.qmul.ac.uk)	0.89 0.00	0.00 0.00	<mark>0.81</mark> 0.00	0.05 0.00		3.93 2.71	0.44 0.55	4.15 3.97				ar-latency.esc.qm			0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	3.0 4.0
5:UKI-NORTHGRID-MAN-HEP (sv220317.tier2.hep.manchester.ac.uk)	0.40 0.00	0.00 0.00	0.62 0.00	0.00 0.00	2.94 3.04		0.67 0.65	3.09 3.12				-NORTHGR 16.tier2.hep.man			0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0	0.0 0.0	0.0 0.0	2.0 5.0
6:UKI-SCOTGRID-ECDF (gridpp-ps-band.ecdf.ed.ac.uk)	0.59 0.00	0.00 0.00	<mark>0.27</mark> 0.00	0.06 0.00	2.54 2.13	5.09 4.82		3.34 2.98				-SCOTGRI			0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0	0.0	0.0	5.0 5.0
7:UKI-SOUTHGRID-OX-HEP	0.63	0.00	0.56	0.00	3.23 3.30	3.84 4.40	0.35					-SOUTHGR		HEP	0.0 0.0	0.0	0.0 0.0	0.0 0.0	1.0	0.0	0.0	0.0

PerfSONAR TF (3)

- Simplify also the installation as much as possible to a out-of-the box style
- Get the perfSONAR services properly handled
 - Publication of each service in GOCDB
 - How to publish perfsonar in GOCDB
 - Handling of downtimes
 - Monitoring of services in nagios/sum tests
 - Only to check services are working
 - Several tests currently used to blacklist or downgrade sites depending on the tests
 - There are no proper low level network tests

UK T2s \rightarrow FZK

- Many UK sites had a problem in the Atlas sonar tests with FZK for several months
- Most UK sites installed perfsonar and perfSonar throughput was also really poor
 - Diagnosed problem with FZK firewall
 - Few sites bypassed firewall and there was a dramatic improvement

RAL T1 experience

- Background was that in October we noted that our perfsonar performance showed a considerable asymmetry between inbound and outbound rates. Was worse as distance increased.
 - First problem we found was assymetric routing from some sites on the OPN to RAL. Identified this using the perfsonar traceroute functionality.Tracked down to a number of Tier-1s not accepting our new prefixes following an enlargement of our OPN subnet. Corrected this problem after dialogue with sites concerned.

- We verified the perfsonar results using iperf and other tests
 - Link aggregation protocol set incorrectly on Nortel to Force10 switch
 - Suspicions raised that Force10 C300 might be losing packets
- Carried out intervention replacing switch and currently running without agregation.
 - Result no packet loss and outbound performance now excellent. Indeed seems better than inbound now.

MANCHESTER

Conclusions

- Experiment models are evolving from a hierarchical with well defined transfer paths to a mesh of transfers with different priorities.
 - Asyncronous transfers more dynamic respect to a couple of years ago
 - Experiment are extending their activities to all type of sites
 - Wide variety of file sizes and type of traffic
 - Introduction of federated storage
 - Future already talking about network on demand appication for both CMS and Atlas
 - Network needs to be monitored
 - Applications need to be instrumented

