



# Double-Pionic Fusion to He nuclei

#### Elena Pérez del Río Meeting on two pion production in the HADES and WASA experiments 4/04/2013 Orsay





#### Overview

- ABC effect in He nuclei
- pd  $\rightarrow$  <sup>3</sup>He  $\pi^0 \pi^0$ 
  - Measurements
  - Brief look into analysis
  - Preliminary results
- dd  $\rightarrow$  <sup>4</sup>He  $\pi^0 \pi^0$ 
  - Measurements
  - Results
- Summary





# ABC effect in He nuclei

- First observation of ABC: Double-Pionic fusion to 3He
  - inclusive measurements pd  $\rightarrow$  <sup>3</sup>He X
  - Low mass enhancement in M<sub>x</sub>
  - Alexander <u>A</u>bashian, Norman E. <u>B</u>ooth Kenneth M. <u>C</u>rowe, Phys. Rev. Lett. 5, 258 (<u>1960</u>)
- Exclusive measurements with high statistics carried out at WASA/CELSIUS and WASA-at -COSY
  - WASA/CELSIUS:
    - pd  $\rightarrow$  <sup>3</sup>He  $\pi^0\pi^0$
    - $T_{\text{beam}} = 0.895 \text{ GeV} (\sqrt{s} = 3.357 \text{ GeV})$
  - WASA-at-COSY
    - dd  $\rightarrow$  <sup>4</sup>He  $\pi^0\pi^0$





PR. C 86 (2012 )Rapid Comm. 032201





# ABC effect in He nuclei

• pn  $\rightarrow$  d $\pi^0\pi^0$ : ABC connected to d\* resonance



• New measurements with WASA-at-COSY of pd  $\rightarrow$  <sup>3</sup>He  $\pi^0\pi^0$ 





- 2 ways of measuring the reaction
  - pd collisions pd  $\rightarrow$  <sup>3</sup>He  $\pi^0\pi^0$  T<sub>p</sub>=1.0 GeV ( $\sqrt{s}$ =3.416GeV)
  - Quasifree measurements in dd collisions
    - − dd →<sup>3</sup>He  $\pi^0\pi^0$  (n) T<sub>d</sub> = 1.4 GeV, 1.7 GeV



End state two possibilities:

- Neutron is active part of the reaction: coherent production
- Neutron as spectator: quasi-free production providing a range of collision energies due to Fermi motion













- Forward Detector
  - Energy losses in thick plastic scintillator  $\rightarrow$  Particle Identification
  - charged tracks as <sup>3</sup>He
- CD  $\rightarrow$  calorimeter:
  - Identification of the  $2\pi^0$









- Forward Detector
  - Energy losses in thick plastic scintillator  $\rightarrow$  Particle Identification
  - charged tracks as <sup>3</sup>He
- CD  $\rightarrow$  calorimeter:
  - Identification of the 2π<sup>0</sup>
    - Recombination of all gamma pairs
    - $\chi^2$  to chose the best combination













Edep<sub>ERH1</sub>[GeV]

Elena Perez del Rio



# Double-Pionic Fusion to <sup>3</sup>He Preliminary Results

• 
$$\mathbf{pd} \rightarrow {}^{3}\mathbf{He\pi^{0}\pi^{0}}$$
  
•  $\mathbf{T}_{\text{beam}} = \mathbf{1.0 \ GeV} \ (\sqrt{s} = 3.416 \ GeV)$ 





EBERHARD KARLS

UNIVERSITÄT TÜBINGEN

Elena Perez del Rio





- dd collisions
  - Reconstruction of the neutron based on energy-momentum conservation
  - $P_n = P_{initial} P_{3He} P_{2\pi0}$
  - Well separated regions depending on process
    - Cut on momentum of neutron to select
    - Beam spectator: forward angle cut







# Double-Pionic Fusion to <sup>3</sup>He Preliminary Results

• dd  $\rightarrow$  <sup>3</sup>He $\pi^0\pi^0$  (n) • T<sub>beam</sub> = 1.7 GeV

EBERHARD KARLS

- Analysis ongoing
- Neutron spectator from target cut out by thresholds
- Preliminary results for neutron spectator from beam
  - $IM_{\pi0\pi0}$  corrected data



# Double-Pionic Fusion to <sup>3</sup>He **Preliminary Results**





EBERHARD KARLS

UNIVERSITÄT TÜBINGEN

Elena Perez del Rio





- Measured with WASA-at-COSY
  - Nine different energies over the region where ABC effect is expected
    - T<sub>beam</sub>: 0.8 GeV, 0.9 GeV, 1.0 GeV, 1.05 GeV, 1.117 GeV,
      1.2 GeV, 1.25 GeV, 1.32 GeV, 1.4 GeV
  - Absolute normalization to <sup>3</sup>Hen
  - Total cross section energy dependence
  - Differential distributions





• Total cross section energy dependence





















Elena Perez del Rio





#### Summary

- Double-Pionic Fusion to <sup>3</sup>He
  - dd  $\rightarrow$  <sup>3</sup>He $\pi^0\pi^0(n)$  and pd  $\rightarrow$  <sup>3</sup>He $\pi^0\pi^0$
  - Preliminary results
  - ABC effect
- Double-Pionic Fusion to <sup>4</sup>He
  - dd  $\rightarrow$  <sup>4</sup>He $\pi^0\pi^0$  measured at 9 energies over the full ABC region
  - Kinematically complete measurements over the entire region of the ABC effect
  - d\* Resonance
  - Fermi motion of the nucleons broadens the Resonance respect to the Double-Pionic fusion to deuteron.











EBERHARD KARLS





EBERHARD KARLS





Elena Perez del Rio

EBERHARD KARLS





EBERHARD KARLS





•  $T_{beam} = 1.05$  GeV about maximum of the Resonance











# Double-Pionic Fusion to <sup>3</sup>He Preliminary Results



EBERHARD KARLS

TÜBINGEN

Elena Perez del Rio

# Touble-Pionic Fusion to <sup>3</sup>He Preliminary Results



EBERHARD KARLS

UNIVERSITÄT TÜBINGEN

Elena Perez del Rio