Towards a further understanding on two-pion production

Xu CAO

Institut für Theoretische Physik Universität Giessen

3 April, 2013

(日) (部) (注) (注) (注) (注)

Methodology for resonance study

- resonance: unstable and couple strongly to meson-baryon states
- Build models to extract parameters
- (π, γ)N reactions
 Unitarity, Analiticity....
- isobar models
- 2 coupled-channel models
 - KSU
 - GWU/SAID
 - Mainz/MAID
 - Bonn-Gatchina
 - Giessen
 - Juelich
 - EBAC
 -

- NN reactions Unitarity, Analiticity?
- 3-body final states at least
- 2 Final state interaction?
- isobar models only Four groups
- 9 PWA may be inconclusive.

History of theory

E. Ferrari, Nuovo Cimento, 1963

• OPE model

2 Valencia Model, Nucl. Phys. A, 1999

double-Δ, N*(1440), non-resonant

- 3 Xu CAO et al., Phys. Rev. C 2010
 - more resonances in PDG
- JINR, Dubna, 2012
 - reggeized π exchange(OPER) + one baryon exchange(OBE)

History of experiment

- data before '1985: bubble-chamber, tcs only
- data after '2000:

Channel	Group (Tp(MeV))			
pp->ppπ [⁺] π [⁻]	CELSIUS(650, 680, 750, 775, 895, 1100, 1360), Gatchina(717, 818, 861, 900, 980), COSY(750, 800)			
	KEK(698, 780, 814, 908, 995, 1083, 1172)			
pp->pp _{π⁰π⁰}	CELSIUS(650, 725, 750, 775, 895, 1000, 1100, 1200, 1300, 1360)			
pp->nnπ [*] π [*]	CELSIUS(800, 1100)			
pp->pn $\pi^{+}\pi^{0}$	CELSIUS(725, 750, 775, 1100)			
pn->pn_*	KEK(698, 780, 814, 908, 995, 1083, 1172)			
pn->pp^0	KEK(698, 780, 814, 908, 995, 1083, 1172)			

• new data expected from HADES

Xu CAO (Orsay 2013)

< 口 > < 同

- Feynman diagrams: tree level. The interference terms between different diagrams are neglected because the relative phases of amplitudes are not known.
- Resonances which are experimentally observed are included in our model. Mesons exchanged are restricted to those observed in the decay channels of the adopted resonances.
- Effective Lagrangians: Lorentz covariant orbital-spin scheme for the vertices. The coupling constants appearing in relevant resonances could be determined by the empirical partial decay width of the resonances taken from Particle Data Group.
- Final state interactions: usually important for describing the near threshold behavior.
 Watson-Migdal factorization: only serve as a qualitative illustration.
- Cutoff parameters in the form factors: fit to the empirical data.

Table: Relevant parameters used in our calculation. The masses, widths and branching ratios (BR) are taken from central values of PDG except the BR for $N^*(1440) \rightarrow \Delta \pi$.

Resonance	BW Width	Decay Mode	Decay Ratio	$g^2/4\pi$	
$\Delta^{*}(1232)P33$	118	$N\pi$	1.0	19.54	
$N^{*}(1440)P11$	300	$N\pi$	0.65	0.51	
		$N\sigma$	0.075	3.20	
		$\Delta\pi$	0.135	4.30	
$\Delta^*(1600)P33$	350	$N\pi$	0.175	1.09	
		$\Delta\pi$	0.55	59.9	
		$N^*(1440)\pi$	0.225	289.1	
$\Delta^{*}(1620)S31$	145	$N\pi$	0.25	0.06	
		N ho	0.14	0.37	
		$\Delta \pi$	0.45	83.7	

Xu CAO (Orsay 2013)

• Negligible contributions:

- small branching ratios of double pion channel: $S_{11}(1535), S_{11}(1650), D_{13}(1700)$
- higher partial waves: D₁₃(1520), D₁₅(1675)
- lying beyond the considered energies: $F_{15}(1680), D_{33}(1700), P_{11}(1710), P_{13}(1720)$
- Resonances with mass bigger than 1720MeV: the two pion branching ratios have large uncertainties

 \leftarrow P₃₃(1600) in pp \rightarrow nn $\pi^+\pi^+$

 $\leftarrow \text{Good description in } pn \text{ reactions} \\ \leftarrow P_{11}(1440): \text{ isoscalar excitation}$

$$\leftarrow$$
 a step in $pp \rightarrow pp\pi^0\pi^0$

• $pp \rightarrow nn\pi^+\pi^+$ • $T_p = 1100 \text{ MeV}$ • $pp \rightarrow pp\pi^+\pi^-$

• $pp \rightarrow pp\pi^0\pi^0$ • $T_p = 775 \text{ MeV}$

•
$$pp \rightarrow pp\pi^0\pi^0$$

• $T_p = 895$ MeV

Image: A mathematical states and a mathem

∃ →

Э

• $pp \rightarrow pp\pi^0\pi^0$ • $T_p = 1100 \text{ MeV}$

•
$$pp \rightarrow pp\pi^0\pi^0$$

• $T_p = 1300$ MeV

< □ > < 同 > < 三 >

- ∢ ⊒ →

- A general understanding is achieved.
- Further understanding is definitely needed.
- The couplings of resonances to $\pi\pi N$ extracting from the branching ratios have big uncertainties.
- So theoretical and experimental efforts in $(\pi, \gamma)N \rightarrow \pi\pi N$ are favored.

• $pp \rightarrow nK^+\Sigma^+$: total cross section

• Resonance model: J. J. Xie, C. Wilkin, X. CAO, B. S. Zou

Xu CAO (Orsay 2013)

• Possible direction in the improvement of the model.

1 $\pi\pi$ dynamics?

② a step in tcs of $pp
ightarrow pp \pi^0 \pi^0$ interference? but how to treat the relative phase?

Iseveral form factors in each diagrams

- Possible direction in the improvement of the model.
- **1** $\pi\pi$ dynamics?
- 2 a step in tcs of $pp \rightarrow pp\pi^0\pi^0$ interference? but how to treat the relative phase?

Iseveral form factors in each diagrams

- Possible direction in the improvement of the model.
- **1** $\pi\pi$ dynamics?
- 2 a step in tcs of $pp \rightarrow pp\pi^0\pi^0$ interference? but how to treat the relative phase?
- **③** several form factors in each diagrams

Xu CAO (Orsay 2013)

Universität Giessen

3 April, 2013 16 / 19

- σ-mesonic current
- forbidden in channels with $I_{\pi\pi} \neq 0$, i.e. $pp \rightarrow nn\pi^+\pi^+, pn \rightarrow pp\pi^-\pi^0, pp \rightarrow pn\pi^+\pi^0$

Xu CAO (Orsay 2013)

Xu CAO (Orsay 2013)

Universität Giessen

3 April, 2013 18 / 19

- Effective Lagrangian model gave a general understanding on the two pion production.
- 2 main contribution: nucleon pole, Δ , $N^*(1440)$, $\Delta(1600)$, $\Delta(1620)$
- **3** A full model including properly the interference and $\pi\pi$ dynamics is called for.
- Some difficulties in the model building are addressed.
- **5** Data in channels with $I_{\pi\pi} \neq 0$ is expected to be helpful.
- Efforts in $(\pi, \gamma)N \rightarrow \pi\pi N$ are useful to pin down the parameters.

• Thank You!!!

- Effective Lagrangian model gave a general understanding on the two pion production.
- 2 main contribution: nucleon pole, Δ , $N^*(1440)$, $\Delta(1600)$, $\Delta(1620)$
- **3** A full model including properly the interference and $\pi\pi$ dynamics is called for.
- **9** Some difficulties in the model building are addressed.
- **5** Data in channels with $I_{\pi\pi} \neq 0$ is expected to be helpful.
- Efforts in $(\pi, \gamma)N \rightarrow \pi\pi N$ are useful to pin down the parameters.

Thank You!!!