

Di-pion and di-electron production in NN reactions with HADES at 1.25GeV incident beam energy.

Hubert Kuc – UJ Krakow, IPN Orsay hubertkuc@gmail.com

Bormio 21-25.01.2013

- Physics motivation
- Analysis procedure: particle identification
- Comparison to theoretical models
- Summary and Outlook

Motivation

Main goal of HADES experiments:

• Study in-medium vector meson via their decay in e⁺e⁻ in the 1-2 AGeV energy range

Modification of spectral functions of vector mesons (ρ, ω, ϕ)

N-

✓ Do we understand e^+e^- elementary sources in N+N at 1-2 GeV ?

Motivation - elementary reactions HADES

Results from inclusive e⁺e⁻:

- ✓ pp well described by one boson exchange (OBE) models
- \checkmark Delta dalitz decay dominating in pp
- \checkmark np data are underestimated at high $\rm M_{ee}$

Motivation - elementary reactions HADES

Results from inclusive e⁺e⁻:

- ✓ pp well described by one boson exchange (OBE) models
- \checkmark Delta dalitz decay dominating in pp
- \checkmark np data are underestimated at high M_{ee}

R. Shyam, U. Mosel, Phys.Rev. C82 (2010) 062201

Other reasons to look into $\pi^+\pi^-$

• Specific interest in systematic study of 2-charged π channels in pp and pn

- $p+p \rightarrow p p \pi^+ \pi^-$
- $n+p \rightarrow n p \pi^+ \pi^-$
- $n+p \rightarrow d \pi^+ \pi^-$
- Main contributions
 - N*(1440) $\rightarrow \Delta \pi$,
 - N*(1440) \rightarrow N ($\pi\pi$)s-wave,
 - $\Delta\Delta$ excitation

as seen by WASA in np $\rightarrow d\pi^0 \pi^0$

Explained by di-baryon resonance $\Gamma \approx 70 \text{ MeV} \ll 2*\Gamma_A$ $M \approx 2380 \text{ MeV} = 2*M_A - 80 \text{ MeV}$

The HADES spectometer

• **Detector geometry** full azimuthal range covered, 6 sectors polar angle: 16°<θ<84°

•**Tracking** Superconducting coils, toroidal field 24 Mini Drift Chambers

•**Particle identification (e, p, K, p)** RICH, MDC, TOF, TOFINO, Shower (RPC)

•Resolutions

 $\Delta M\omega/M\omega \sim 2.1\%$ at ω peak $\Delta p/p \sim 2-3\%$ for proton and π

The HADES spectometer –Forward WAll

• **Detector geometry** full azimuthal range covered, 6 sectors polar angle: 16°<θ<84°

•**Tracking** Superconducting coils, toroidal field 24 Mini Drift Chambers

•**Particle identification (e, p, K, p)** RICH, MDC, TOF, TOFINO, Shower (RPC)

•Resolutions

 $\Delta M\omega/M\omega \sim 2.1\%$ at ω peak $\Delta p/p \sim 2-3\%$ for proton and π

• Forward Wall:

Plastic scintillators covering θ angles up to 7° Detector dedicated to tag proton spectator

• Cells in FW:

140 small 4x4cm $\rightarrow (0^{\circ} < \theta < 2^{\circ})$ 64 middle 8x8cm $\rightarrow (2^{\circ} < \theta < 3.3^{\circ})$ 84 large 16x16cm $\rightarrow (3.3^{\circ} < \theta < 7.2^{\circ})$

> Designed for di-electron spectroscopy, also suited for the charged hadron detection

HADES acceptance for exclusive channels

Particle identification.

PID in HADES

· p [MeV/c]

σ

- Hadron: Hypothesis, Time (β) reconstruction, Tracking, graphical selection β vs p
- Lepton: Hypothesis, Time (β) reconstruction, Tracking, RICH and Shower correlation, graphical selection β vs p

PID in Forward Wall

• Particle identification based on time of flight

Analysis procedure for n+p->d $\pi^+ \pi^-$ (III) : Background subtraction

e⁺e⁻ production in n+p & p+p @1.25GeV

Dilepton exclusive production in pp and np@1.25GeV - HADES

Dilepton exclusive production in np@1.25GeV – Forward Wall

$n+p \rightarrow np \pi^{+}\pi^{-}$ & $p+p \rightarrow pp \pi^{+}\pi^{-}$

Existing experimental data and theoretical models

- OPER, OPER-2 models : <u>A. Jerusalimov, arXiv:1203.3330 [nucl-th]</u>, arXiv:1208.3982[nucl-ex] (reggeized π exchange model, includes one pion + one baryon exchange diagrams, all possible resonances)
- Valencia model: <u>L. Alvarez-Ruso, E. Oset et al. Nucl. Phys. A 633 (1998) 519-543</u>
 (Effective lagrangian model, interference between diagrams, N*(1440), Δ(1232))
- XuCao model: <u>Xu Cao et al. Phys Rev C81, 065201 (2010</u>)
 (Effective lagrangian model with less number of diagrams, no interference, resonances up to 1.72 GeV)
- → modified Valencia model: <u>T. Skorodko, et al.</u>, <u>Physics Letters B 679 (2009)30</u>, <u>Phys.Lett.B695:115-123,201</u>1 (Modification of the partial decay width between the decay $N^* \rightarrow N\sigma$ via Δ and direct, Strength of $N^*(1440)$, ρ exchange in double Δ excitation was suppressed by factor of 12)

Other double- π results from HADES

 $pp \rightarrow pp \pi^+ \pi^-$

M. Gumberidze (TU Darmstadt)

$np \rightarrow np\pi^+\pi^-$

A. Kurilkin (Dubna)

- Models normalized to area of experimental yield.
- Data shows sensitivity to different inputs of the models.
- None of the models is able to explain experimental data
- Investigations with modified models is ongoing

Other double- π results from HADES

$n+p \rightarrow d \pi^+ \pi^-$

ABC effect – presentation of Annette Pricking (WASA-at-COSY coll.) from MESON2012

P. Adlarson et. al Phys. Rev. Lett. 106:242302, 2011

Model of the di-baryon resonance - M. Bashkanov (WASA-at-COSY coll.)

Range of √s for HADES measurement at deuton beam energy T=1.25 AGeV (weighted by neutron momentum distribution in deuteron)

Di-pion mass changes with total energy - 4π

Di-pion mass changes with total energy – HADES acceptance

Di-pion mass changes with total energy – HADES Acceptance

Di-baryon resonance d* – model from Mikhail Bashkanov (WASA)

pion invariant mass vs deuteron theta (I=0 channel in 4π)

pion invariant mass vs deuteron theta (I=1 channel in 4π)

d $\pi^+ \pi^-$ analysis with deuteron in HADES

d π^+ π^- analysis with deuteron in HADES

- e⁺e⁻ excess seen in pn/pp inclusive
- excess related to exclusive channel pn \rightarrow pn e⁺e⁻ (,,off-shell" ρ meson production)
- pn \rightarrow d e⁺e⁻ model in agreement with the data (B.V. Martemyanov, et al.)
- pp/pn \rightarrow pp/pn $\pi^+\pi^-$
 - Ongoing comparison with models
 - Sensitivity to $\Delta\Delta$, N* $\rightarrow\Delta\pi$, N* \rightarrow N σ
- pn \rightarrow d $\pi^+\pi^-$
 - Yield in agreement with model including d* as used by WASA
 - $M_{inv(\pi\pi)}$ do not agree

Outlook:

• Deuteron selection by missing mass method (pn $\rightarrow \pi^+\pi^- X$): extension to the "blind" area

The end

Modifications of Valencia model

$pp \rightarrow pp \pi^0 \pi^0 E = 1.3 \text{ GeV WASA}$

Much better description of both $\pi^+\pi^-$ and $\pi^0\pi^0$ channels with the modified model

Motivation for HADES experiment

- Main goal of HADES is studys of hadronic matter using dilepton probes
- •
- Study in-medium vactor meson via their decay in e⁺e⁻
- Do we understand e⁺e⁻ elementary sources in N+N at 1-2 GeV ?

Important to look in parallel to $\pi^+\pi^-$ production in pp and np collision in order to learn more and understand difference in inclusive spectra of e⁺e⁻ ABC effect – presentation of Annette Pricking (WASA-at-COSY coll.) from MESON2012

A New Resonance: Total Cross Section $pn \rightarrow d\pi^0 \pi^0$

