ILC Experiment Preliminary Results

Franck Dubard

Applied Statistics and Machine Learning Research Group Linear Accelerator Laboratory, Paris Sud

dubard@lal.in2p3.fr

March 18, 2013

(日) (四) (문) (문) (문)

Table of Contents

æ

Questions over Deep Learning Family of algorithms The DAAs/DAEs

Table of Contents

- Questions over Deep Learning
- Family of algorithms
- The Denoising Auto-associators/Auto-encoders

2 Development

____>

Questions over Deep Learning Family of algorithms The DAAs/DAEs

Question over Deep Learning

æ

Questions over Deep Learning Family of algorithms The DAAs/DAEs

Question over Deep Learning

What ?

Sub-field of machine learning.

æ

Questions over Deep Learning Family of algorithms The DAAs/DAEs

Question over Deep Learning

What ?

Sub-field of machine learning.

When ?

Since the 80's,

• • • • • • • • • • • • • •

э

э

Questions over Deep Learning Family of algorithms The DAAs/DAEs

Question over Deep Learning

What ?

Sub-field of machine learning.

When ?

Since the 80's, but it is actually only booming until a few years ago.

Image: A = A

Questions over Deep Learning Family of algorithms The DAAs/DAEs

Question over Deep Learning

What ?

Sub-field of machine learning.

When ?

Since the 80's, but it is actually only booming until a few years ago.

Why?

Learning several levels of representations, corresponding to a hierarchy of features or factors or concepts. Most of the algorithms are framed as unsupervised learning.

A 1

Questions over Deep Learning Family of algorithms The DAAs/DAEs

Family of algorithms

• 2 different paradigms, but the connections are more tenuous when we consider deeper models¹

¹For more details, please refer to the paper named *Representation Learning: A Review and New Perspectives* by Y. Bengio, A. Courville and P. Vincent 2000

Family of algorithms

• 2 different paradigms, but the connections are more tenuous when we consider deeper models¹

Probabilistic Graphical Model

RBMs¹ and its derivatives.

¹Restricted Boltzmann Machines

Neural Network Model

The AAs^1/AEs^2 variants.

¹Auto-Associators ²Auto-Encoders

¹For more details, please refer to the paper named *Representation Learning: A Review and New Perspectives* by Y. Bengio, A. Courville and P. Vincent

Questions over Deep Learning Family of algorithms The DAAs/DAEs

Family of algorithms

• 2 different paradigms, but the connections are more tenuous when we consider deeper models¹

Probabilistic Graphical Model

RBMs¹ and its derivatives.

¹Restricted Boltzmann Machines

Neural Network Model

The AAs^1/AEs^2 variants.

¹Auto-Associators ²Auto-Encoders

Choice

We decided to use AAs/AEs and more precisely, DAAs/DAEs.

¹For more details, please refer to the paper named *Representation Learning:* A Review and New Perspectives by Y. Bengio, A. Courville and P. Vincent

Questions over Deep Learning Family of algorithms The DAAs/DAEs

The DAAs/DAEs Principle

- Clean input x ∈ [0, 1]^d is partially destroyed, yielding corrupted input: x̃ ~ q_D(x̃|x).
- $\tilde{\mathbf{x}}$ is mapped to hidden representation $\mathbf{y} = f_{\theta}(\tilde{\mathbf{x}})$.
- From **y**, we reconstruct $\mathbf{z} = g_{\theta \prime}(\mathbf{y})$.
- Train parameters to minimize the cross-entropy "reconstruction error" L_H(x, z) = H(B_x||B_z), where B_x denotes multivariate Bernoulli distribution with parameter x.

Extracting and Composing Robust Features with Denoising Autoencoders, ICML 2008

Toy Problem Real Problem Preliminary Results

Table of Contents

- Toy Problem
- Real Problem
- Preliminary Results

- ● ● ●

Toy Problem Real Problem Preliminary Results

Toy Problem

Description

We use our method on one of this year ICDAR¹ competitions dataset, the Handwritten Digit and Digit String Recognition Competition².

¹International Conference on Document Analysis and Recognition ²http://caa.tuwien.ac.at/cvl/research/icdar2013-hdrc

A > 4

Toy Problem Real Problem Preliminary Results

Toy Problem Results

The hyperparameters are :

- Learning Rate : 25%
- Corruption Level : 90 %

Figure : 500 filters of size 28×28

A (1) > A (1) > A

э

э

Toy Problem Real Problem Preliminary Results

Toy Problem Results

The hyperparameters are :

- Learning Rate : 25%
- $\bullet\,$ Corruption Level : 90 $\%\,$

Figure : some filters began to show the shape of recognizable number

A > 4

Toy Problem Real Problem Preliminary Results

Real Problem

Data Set Characteristics

We have 6150 examples.

Each one are a vector of 9720 ($18 \times 18 \times 30$) numbers.

Each number are part of $\mathbb{R}_{\geq 0},$ which represents the amount of deposit energy.

Toy Problem Real Problem Preliminary Results

Preliminary Results

Simulation...

F. Dubard ILC Experiment

æ