A_RD_10:

Nanometer stabilization studies

at ATF2

Nobuhiro Terunuma, KEK On behalf of the LAL, LAPP and KEK cooperation

TYL-FKPPL joint workshop, Seoul, June 4, 2013

Contents

- Introduction
 - Nanometer beam at KEK; ATF2 project
- FJPPL contribution to ATF2
 - LAL contribution
 - LAPP contribution
- Summary

Nanometer stabilization of e- beam

- Challenge for the extremely stable beam handling
- Key technique to maintain the luminosity of International Linear Collider (ILC)
- Global collaboration led by, Oxford, KNU, LAL, LAPP and KEK
- Worthwhile contributions on the stabilization of the beam monitors (LAL) and the vibration monitoring (LAPP) are ongoing.

FJPPL (TYL) application 2013-2014 Fiscal year april 1st 2013 – March 31st 2014

In red are example to be replaced by the appropriate data in black

ID ¹ :A_RD_10	Title: Nanometer stabilization studies at ATF2					
	French Group			Japanese Group		
	Name	Title	Lab./Organis. ²	Name	Title	Lab/Organis. ³
Leader Members	Andrea Jeremie	IR1	LAPP	Nobuhiro Terunuma	A.Prof.	KEK
	Philip Bambade	DR2	LAL	Toshiaki Tauchi	A.Prof	KEK
	Oscar Blanco	PhD	LAL	Junji Urakawa	Prof	KEK
	Shan Liu	PhD	LAL	Kiyoshi Kubo	A.Prof	KEK
	Sandry Wallon	IR2	LAL	Shigeru Kuroda	R.A.	KEK
	Frédéric Bogard	IE2	LAL	Toshiyuki Okugi	R.A.	KEK
	Patrick Cornebise	IE2	LAL	Sakae Araki	Eng	KEK
	Julie Allibe	IR	LAPP	Hiroshi Yamaoka	Eng	KEK
		CDD				

Challenging goals for ATF/ATF2

An important technical challenge of ILC is the collision of extremely small beams of a few nanometers in vertical size.

ATF/ATF2 will address the development of the techniques for following issues:

1. Achieve the small vertical emittance ATF-DR 4 $pm \rightarrow 2 pm$ (ILC) or 1 pm2. Demonstrate the ILC final focus optics achieve the 37 nm vertical beam size at the IP 3. Stabilize the the beam position in a few

nanometer level at the IP.

The ATF international collaboration is strongly promoting these activities. TYL-FKPPL joint workshop, Seoul, June 4,

KEK Accelerator Test Facility (ATF)

2013

先端加速器試験装置(ATF)

Contents

- Nanometer beam at KEK: ATF2 project
- FJPPL contribution to ATF2
 - -LAL contribution
 - -LAPP contribution
- Summary

KEK's role

- host of the ATF2 project, including collaboration on commissioning and tuning studies.
- Goal 1 of ATF2 has almost been obtained recently: 64 nm/37nm (goal)
- We will now concentrate on the Goal 2; nanometer stabilization of the vertical beam position at IP.

LAL contribution:

pursue two main instrumentation projects at ATF2,

- the installation and qualification of the IP-BPM chamber with internal moving mechanisms in nm level.
 - LAL will join the beam experimentation with the IP-BPMs, with the goal to properly evaluate the scale factors for optimal reconstruction of beam parameter and proper resolution studies
- the diamond sensor implementation for beam halo and linear Compton scattering measurements
 - to prepare future non-linear QED experiments
 - to support **background mitigation studies** in current ATF2 operation.
 - beam tests at the PHIL low energy electron photo-gun facility at LAL
 - in-vacuum tests at ATF2 (2014).

Requirements for new IP chamber

- 1. Pre-alignment of IP-BPM set with respect to rest of beam line < 200 μ m
- 2. Internal pre-positioning accuracy $\sim 50 \ \mu m$
- 3. Remote relative positioning via beam based alignment within < 5 μ m (dynamic range of IP-BPM electronics)
- 4. Mechanical calibration of IP-BPM scale factors $\rightarrow 10^{-4}$
- 5. Compatibility with IP-BSM operation (viewports for lasers, wire-scanner, electron / laser beam alignment...)

Present IP-chamber (FFTB)

Main features of new IP chamber

- 1. Mechanical references for precise pre-positioning and alignment
- 2. Adjustable fixture for rigid mount on IP-BSM optical table
- 3. Base-plate + cradles support BPM1-2 and BPM3 in tripod configurations
- 4. Lateral & vertical adjustments with 8 piezo-movers in 230-300 μ m range
- 5. Positioning within 10⁻⁴ of the range (strain gauges as input to feedback)
- 6. In-vacuum temperature monitoring
- 7. Remote electronics (25 meter cables)

Mechanical parts almost completed

Install them into ATF2-

IP in June 2013 (soon)

Chamber: manufactured at LAPP Piezo movers: assembled and tested at LAL

4 PI piezo-actuators

4 Cedrat piezo-actuators

Stability of the piezo mover measured by interferometer at LAL

6

Diamond sensor implementation for beam halo and linear Compton scattering measurements

Motivations:

➢ Beam halo transverse distribution unknown → investigate halo model

➢ Probe Compton recoiled electron→ investigate the higher order contributions to the Compton process (in the future)

Beam halo measurement by wire scanners at ATF2 – March 2013 -

Diamond Detector Characteristics

Diamond Detector Test @ PHIL

Second Test @ PHIL

Beam Energy : 3 MeV; Beam Size: σ ≈ 4.5 cm Beam Charge: 33 pC (measured at ICT 1, obtained using a 10% filter on the laser)

Performed on 20.03.2013

Contents

- Nanometer beam at KEK: ATF2 project
- FJPPL contribution to ATF2

-LAL contribution

–LAPP contribution

• Summary

LAPP contribution:

- detection of the ground motion effect on the beam
 - foreseen for the development of a new Ground Motion feedforward acting on the beam stability.
 - The 15 sets of Ground Motion sensors have been installed at ATF2.
- (Re)evaluation of the vibrational performances for nanometer stabilization.
 - relative displacement of the Final Doublet to the IP
 - New quadrupole, new IP chamber with BPM (LAL,KNU)
- requesting travel for the common measurement campaign and transport of the acquisition system and sensors.

CERN-LAPP ground motion sensor system

- LAPP bought 15 sensors
 (A. Jeremie et al)
- CERN puts the DAQ (Kurt et al) and the simulations (Yves et al)

- System commissioned in Annecy
- Equipment already operational in KEK

sensor support design by LAL Fabrication on going

TYL-FKPPL joint workshop, Seoul, June 4, 2013

Summary

- The ATF2 is near the first goal of 37 nm vertical beam;
 64 nm achieved. Then, we are opening the door of the second goal, the nanometer-level beam stabilization.
- Equipment for the nanometer stabilization has been developed by French-Japanese team (LAL, LAPP and KEK).
 - chamber with the nm stabilization of the BPM and the evaluation of beamline vibrations.
- This stabilization program will start in this year.
- The FJPPL(TYL) program assists our activity very much.

additions TYL-FKPPL joint workshop, Seoul, June 4, 28 2013

Features

- uses low emittance beam extracted from ATF DR
- ATF2-FF optics is an energy scale down of the ILC final focus system.
- Demonstration of compact final focus optics for ILC
- Beam instrumentation has been developed with the ILC specifications.
- International participation in the commissioning and operation.

Re-evaluation of vibrational behaviour: 2 main changes

- New Final Doublet (FD) magnet has been installed: 3 times heavier!
 - Vibration resonance will move to lower frequencies
 - Expect degraded vibrational behaviour
 - Compare with previous measurements done by LAPP
 - New IP-chamber to be soon installed by LAL (see corresponding slides)

