

Sterile Neutrinos

Thierry Lasserre - CEA

CPPM, May 13th 2013

Open questions

• What are the masses of the mass eigenstates v_i ?

- Is there any conserved Lepton Number (Dirac or Majorana neutrino) ? $\beta\beta0 \nu$
- Precise measurements of the leptonic mixing matrix?
- Do the behavior of ν violate CP?
- Is leptonic CP responsible for the matter-antimatter asymmetry?
- Are there additional (sterile) neutrino states v flavor change, Cosmology

Th. Lasserre – CPPM May 13th 2013

 ν flavor change

A bunch of Neutrino Anomalies

LSND (Los Alamos, 1993-98)

cea

Karmen (stopped π^+ beam)

cea

Oscillation not confirmed – exclude part of LSND

Th. Lasserre – CPPM May 13th 2013

LSND

- Ist results published in PRL 75 (1995)
- Channel: anti- $v_{\mu} \rightarrow anti-v_{e}$
- Detection : anti- ν_{e} + ¹H \rightarrow e⁺ + n
- Baseline: 30 m
- Energy: 20 < E (MeV) < 200</p>
- Status:
 - anti- v_e excess observed \rightarrow 32.2 ± 9.4 ± 2.3 (3.8 σ)
 - not confirmed by Karmen
- Oscillation parameters:
 - $\triangle m^2 >> 0.2 \text{ eV}^2 >> \triangle m_{\text{atm}}^2$
 - Require a 4th neutrino state

Adding Sterile Neutrinos

Introduce a light v_{R} in SM, No SM interactions mixing with active ν' s

The MiniBooNE Experiment

Primary goal: look for ν_{e} appearance in a ν_{μ} beam Probe LSND L/E range

ea

- Cherenkov + scintillation
- π^+ (π^-) decay in flight beam
- L/E \approx 1 m / MeV
 - Baseline: 500 m
 - <E> 500 MeV
 - Started in 2002

Miniboone Results (FNAL)

- Results published from 20107-12
- Channel: (anti-) $v_{\mu} \rightarrow$ (anti-) v_{e}
- Detection: $v_e(p)n \rightarrow e p$ (CCQE)
- Baseline: 541 m
- Energy:
 - <u>200</u> < E (MeV) < 3000
- Status:
 - Excess of event at low energy
 - **3.8** σ
 - 4th neutrino?
 - Backgrounds issue?

The Reactor Anomaly

i) v_{emission} : Improved reactor neutrino spectra $\rightarrow +3.5\%$

Th. Lasserre – CPPM May 13th 2013

19 Experimental Results below 100m

Measured cross sections / fission taken at their face values

The reactor anomaly

- 19 experiments reanalyzed PRD 83, 073006 (2011)
- 7% deficit wrt the new prediction
 - ≈3%: reevaluation of emitted flux
 - ≈3%: reevaluation of
 - IDB cross section revision
 - Accounting for off eq. effect
- 99.7 % C.L. deviation from unity
- Artifact or new physics?

The 4th neutrino hypothesis

Rate Only Analysis

Rate + Shape Analysis

• Best Fit at $\triangle m_{new}^2 > 1 eV^2$

The Reactor Anomaly

Th. Lasserre – CPPM May 13th 2013

Puzzling 1981 ILL v-experiment

- Reactor at ILL with almost pure ²³⁵U, with compact core
- Detector 8.8 m from a COMPACT core
- Reanalysis in 1995 to account for overestimation of flux at ILL reactor by 10%... Affects the rate only but 20% deficit!

Large errors, but a striking pattern is seen by eye ?

The Gallium Neutrino Anomaly

cea

Λ

The Gallium Neutrino Anomaly

Fit to v_e disappearance hypothesis (3+1)

$$\begin{pmatrix} v_{e} \\ v_{s} \end{pmatrix} = \begin{pmatrix} \cos \theta_{new} & \sin \theta_{new} \\ -\sin \theta_{new} & \cos \theta_{new} \end{pmatrix} \begin{pmatrix} v_{1} \\ v_{new} \end{pmatrix}, P_{ee} = 1 - \sin^{2}(2\theta_{new}) \sin^{2}\left(\frac{\Delta m_{hew}^{2}L}{E}\right)$$
$$m^{2}_{new} \approx eV^{2} = \frac{10^{4}}{10^{4}} = \frac{10^{4}}$$

No-oscillation hypothesis disfavored at 2.7 σ (PRC 83 065504,2011)

Th. Lasserre – CPPM May 13th 2013

Number of v's From Cosmology

Universe Expansion Rate H² \approx ($\rho_{\gamma} + \rho_{\nu}$) - ρ_{γ} given by CMB data

- WMAP + other observables consistent with 3 and 4
- Planck favors 3.3, but consistent with 4
- Strong cosmological bounds, but model dependent

Anomalies & 4th Neutrino

Anomaly	Source	Туре	Sensitivity to Oscillation	Channel	Significance
LSND	Decay-at- Rest	$\bar{v_{\mu}} \rightarrow \bar{v}_{e}$	<u>Total Rate,</u> Energy	CC	3.8 σ
MiniBoone	Short baseline	$v_{\mu} \rightarrow v_{e}$	<u>Total Rate,</u> Energy	CC	3.8 σ
Gallium	Electron Capture	v _e dis.	Total Rate	CC	2.7 σ
Reactor	Beta-decay	\overline{v}_{e} dis.	<u>Total Rate,</u> Energy	CC	3.0 σ
Cosmology	Big-Bang	All	Number of v, N _{eff}	N _{eff} =3	or 4 allowed

could be interpreted by an existing eV² 4th neutrino state?

Global Picture

\sim \vec{v}_e disappearance (3+1 scenario)

\mathbf{v}_{e} disappearance (3+1 scenario)

\mathbf{v}_{μ} disappearance (3+1 scenario)

Th. Lasserre – CPPM May 13th 2013

$\mathbf{\bar{v}_{e}}$ appearance (3+1, 3+2 scenarios)

- Global fit to all appearance data is consistent
- Improvement of the fit by adding 2 sterile neutrinos

Th. Lasserre – CPPM May 13th 2013

Appearance / Disappearance Coupling

Electron disappearance channel

•
$$P_{ee} = 1 - \sin^2 2\theta_{ee} \sin^2 \frac{\Delta m_{41}^2}{4E} \& \sin^2 2\theta_{ee} = |U_{e4}|^2 (1 - |U_{e4}|^2)$$

Muon disappearance channel

•
$$P_{\mu\mu} = 1 - \sin^2 2\theta_{\mu\mu} \sin^2 \frac{\Delta m_{41}^2}{4E} \& \sin^2 2\theta_{\mu\mu} = |U_{\mu4}|^2 (1 - |U_{\mu4}|^2)$$

Electron appearance channel

•
$$P_{\mu e} = 4\sin^2 2\theta_{\mu e} \sin^2 \frac{\Delta m_{41}^2}{4E} \& \sin^2 2\theta_{\mu e} \approx \frac{1}{4}\sin^2 2\theta_{ee} \sin^2 2\theta_{\mu \mu}$$

 $v_{\mu} \rightarrow v_{e}$ appearance required both $v_{\mu} \& v_{e}$ disappearance

Appearance / disappearance tension

Th. Lasserre – CPPM May 13th 2013

Testing the eV-scale Sterile Neutrino Hypothesis

$\overline{\mathbf{v}}_{\mathbf{e}}$ Testing $\overline{\mathbf{v}}_{\mathbf{e}}$ disappearance anomalies

- GA & RAA arise from comparisons between data and event prediction → Need a conclusive technique
- Input from Sterile Neutrino Fits
 - $\Delta m^2 \approx 0.1-10 \text{ eV}^2 \rightarrow L_{osc}(m) = 2.5 \frac{E(MeV)}{\Delta m^2(eV^2)} \approx 2-10 \text{ m}$
 - $sin^2(2\theta_{new}) \approx 0.1$
- Experimental Specifications
 - Search for L, E, L/E pattern (shape only)
 - Complement with a <u>rate analysis</u> (direct test of RAA+GA)
 - $\Delta m^2 \approx eV^2$: <u>compact source</u> <1m & <u>good vertex resolution</u> (<1m)
 - sin²(2θ_{new}) : experiment with <u>few % stat. syst. uncertainties</u>

Nucifer

Osiris research reactor

- At Saclay, France
- 70 MW, 20% ²³⁵U
- Compact: 60x60x60 cm³
- Detector designed for reactor monitoring studies
 - 850 kg Gd-loaded liquid scintillator
 - 350 int. expected / day
- But modest oscillation detection capabilities:
 - Short baseline: only 7 m
 - Target: h = 70 cm, Φ = 1.2 m

Nucifer Detector

Design accounting for IAEA constraints : A simple monolithic Gd-LS detector with PMTs reading from the top (Nitrogen sealed, small, safe, robust, non intrusive)

Nucifer Upgrade

First run in 2012 indicated a unexpected background from primary loop circuit

New lead wall erected early 2013 Accidental background has been reduced by a factor 500

Detector Operation

- Detector is working as designed
- Detector is running smoothly. Detector response is stable
- Nucifer has been operated remotely for several months.
- No safety incident has been reported

STEREO project

Contact: D. Lhuillier

- ILL research reactor (Grenoble):
 - 57 MW, highly enriched U
 - Compact: $h = 80 \text{ cm}, \Phi = 40 \text{ cm}$
- Dedicated detector:
 - 5 segments: L and E oscillation
 - Active outer layer: high eff.+veto
 - Muon flux divided by 4, thick CH₂ and Pb walls (70 t)

Oscillometry inside a v-detector

- Place the v-emitter inside or close to existing detectors
 - Very short Baseline (few m)
 - Low Background
- i) v-source at center

$$\frac{dN_{\nu}}{dR} \propto \left[1 - \sin^2(2\theta) \sin^2\left(1.27 \frac{\Delta m^2 R}{\langle E \rangle}\right)\right]$$

ii) v-source Outside LS

 Specific oscillation pattern analytically computable

Unambiguous Proof of $\nu_{\rm e} \rightarrow \nu_{\rm s}$ Oscillation

Th. Lasserre – CPPM May 13th 2013
Cea

v generator proposals

Туре	channel	Background	Source	Production	Ac	tivity (Mci)	Proposal
ν _e	$\nu_{e} \mathbf{e} \rightarrow \nu_{e} \mathbf{e}$	radioactivity (managable) Solar ν (irreducible) ν -Source (out ok but in ?)	51 Cr 0.75 MeV t _{1/2} =26d	n _{th} irradiation	in	>3	Sage LENS
	Compton edge			in Reactor	out	>10	<mark>SOX</mark> * SNO+
	5% F		³⁷ Ar 0.8 MeV t _{1/2} =35d	n _{fast} irradiation in Reactor (breeder)	in	>1	-
	15cm R _{res}				out	5	Ricochet (NC)
$\overline{ u}_{e}$	ν¯ _e p→e⁺ n	reactor <i>ν</i> & <i>ν</i> -Source → Background free!	¹⁴⁴ Ce E<3MeV t _{1/2} =285d	spent nuclear fuel reprocessing	in	0.075	CeLAND* SOX
	E _{th} =1.8 MeV				out	0.5	Daya-Bay
	(e⁺,n) coincidence		⁹⁰ Sr ¹⁰⁶ Rh		-	-	-
	5% E _{res} 15cm R _{res}		⁴² Ar	?	-	-	-

^{cea} ⁵¹Cr/¹⁴⁴Ce Source in Borexino (SOX)

• Existing Tunnel \rightarrow source at 8.25 m from the LS target

ucia

ource

Eur. Phys. J C8, 1999

• Observable: v_e events as a function of distance (I)

⁵¹Cr Source underneath Borexino

= 10 MCi ⁵¹Cr

 Re-use Gallex 36 kg of enriched chromium (38%)
 But need add. enriched ⁵⁰Cr

- Reactors (Petten, Ludmila, US)
 - $n_{th} \approx 10^{15} \text{ n/cm}^2/\text{sec}$

Space to accommodate ⁵⁰Cr

Detection as ⁷Be solar v

- Well known background in 0.25-0.7 MeV: solar v's & ²¹⁰Bi
- 1% fiducial volume error
- R+S Oscillometry analysis
- ERC Funding

sin²20

CeLAND: 75 kCi ¹⁴⁴Ce-¹⁴⁴Pr in KamLAND

Phys. Rev. Lett. 107, 201801 (2011)

Antineutrino Source: 144Ce-144

(ITEP N°90 1994, PRL 107, 201801, 2011)

- 1st Trick: v_{p} source detected via \overline{v}_{e} +p \rightarrow e⁺+n (Thr=1.8 MeV)
 - High IBD cross section \rightarrow 10-100 kCi activity
 - (e⁺,n) detected in coincidence \rightarrow Background free
- 2nd Trick: ¹⁴⁴Ce-¹⁴⁴Pr
 - Abundant fission product (5%)
 - ¹⁴⁴Ce: long-lived & low-Q_β Enough time to produce, transport, use
 - ¹⁴⁴Pr: short-lived & high-Q_B \overline{v}_{e} -emitter above threshold

cea

erc

¹⁴⁴Ce Production at PA Mayak: 2014

75 kCi (2.77 PBq), 4 kg of Ce0₂ (ρ = 4 g/cm³), 600 W

¹⁴⁴Ce-¹⁴⁴Pr Antineutrino Spectra

cea

erc

Th. Lasserre – LBNL – May 2013

75 kCi (2.78 PBq) ¹⁴⁴Ce-¹⁴⁴Pr Source

¹⁴⁴Ce-¹⁴⁴Pr Capsule Temperature

Th. Lasserre - LBNL - May 2013

High-Z Shielding

- Two separate goals
 - Usual biological protection
 - Can be achieved with \approx 16 cm of W-alloy
 - Absorption of the 2.18 MeV γ' s
- Deployment scenario in KamLAND
 - 2015: deployment in Water Veto (OD) Feasible
 - 6 months data taking
 - 20 cm W-alloy shield
 - 2016: deployment in Liquid Scintillator (ID) Study
 - 1 year data taking
 - Need additional shielding
 - 35 cm W-alloy
 - Heavy liquid balloon (NaWO3, Hg)

Biological & Phase 1 Shield

Th. Lasserre – LBNL – May 2013

Shielding Temperature

Shielding external temperature: T_{ext} (38°K) + 60°K

Th. Lasserre – LBNL – May 2013

Biological Protection 16 cm D185

- Back of the envelope dose @1m: 14 $\,\mu\,$ Sv/h
- GEANT4 dose @1m: 28 μ Sv/h
- <u>CEA-SPR</u> computation dose with MCNP @1m: 42 μ Sv/h
 Regulation limit 2 mSv/h @1m? <u>Applicable in Kamioka?</u>

Th. Lasserre – LBNL – May 2013

¹⁴⁴Ce Source Transportation: 2014/15

- Severe constraints based on regulation issued by IAEA
 - nothing impossible, but long, bureaucratic and costly
 - by air limit for each radioisotope : 16.2 kCi for ¹⁴⁴Ce, 2.4 MCi for ⁵¹Cr
 - · by boat : only limited number of harbours agreed for radioactive materials

Transport Route to KamLAND

Transportation from Tokyo/Yokoyama harbor by truck (ok)

Several difficulties to be solved for the final lab access

¹⁴⁴Ce-¹⁴⁴Pr Source Calorimetry

Source Heat Release (75 kCi, 600 W, 96% β)

Time (months)	0	6	12	18	24	3 6	48	60	120
Activity (kCi)	75.0	48.1	30.8	19.8	12.7	5.2	2.1	0.9	0.01
Activity (PBq)	2.78	1.78	1.14	0.73	0.47	0.19	0.08	0.03	0.0004
Heat (W)	592.5	379.9	243.5	156.1	100.1	41.1	16.9	6.9	0.08

Calorimetry

- Precision requested for the activity : <1.5%</p>
 - Achieved for Gallex / Sage
- Realization of a calorimeter (2013/14)
- Measurement at the KamLAND site just before deployment, for few days

CeLAND: ¹⁴⁴Ce in KamLAND

 A great existing underground detector

1000 tons of PC +mineral oil

- But several constraints
 - Full of extra pure mineral oil
 - Avoid contaminations

The entrance hole

- 55 cm in diameter
- Complex operations to insert the source
- Hanging suspension
 - Phase 1: OD Water
 - Phase 2: ID Oil

Deployment in Water OD

- Deployment in Water OD through the platform man-hole
 - Hanged from a new supporting crane using existing anchors
- Run in parallel with KamLAND-Zen

CELAND Phase 1: 2015 in KamLAND

Th. Lasserre - LBNL - May 2013

Phase 1: signal/backgrounds 75 kCi Source @2.5 m away from LS

9.3 m from the detector center

CeLAND phase 1 sensitivity

75 kCi ¹⁴⁴Ce-¹⁴⁴Pr – 9.3 m from detector center

0.5 year of data (10 kevts)

1.5 year of data (20 kevts)

Alternative Deployment Locations

cea

erc

CeLAND phase 1 : Xenon Room

Configuration:

- 75 kCi ¹⁴⁴Ce-¹⁴⁴Pr
- 12 m from detector center
- 14 kevt/1.5 y
- Pros:
 - Space available
 - Easier integration
 - Simultaneous calorimetry
- Cons:
 - Farther from LS
 - Worst shape-only sensitivity

75 kCi ¹⁴⁴Ce-¹⁴⁴Pr – 12.1 m from detector center Fiducial volume considered from 0 to 6.5 m

0.5 year of data (7 kevts)

1.5 year of data (14.3 kevts)

CELAND Phase 2: 2016

Relocate the ¹⁴⁴Ce source: 75 kCi leads to 50 kCi after 6 months

Th. Lasserre – LBNL – May 2013

CELAND Phase 2: Sensitivity 75 kCi 6 months + 50 kCi 1 year (10+50 kevts)

Borexino

Th. Lasserre - 17/01/2013

CeSOX 613 tons - 75 kCi - 1.5y

Distance from center: 7.15 m

Th. Lasserre – 17/01/2013

Many Projects: Overview

Experiment Type	Appearance / Disappearance	Oscillation Channel	Projects	
Reactor	Disappearance	$\bar{v_e} \rightarrow \bar{v_e}$	Nucifer, Stéréo, Scraam, Neutrino-4, DANSS, Poséidon, MARS,	
Radioactive Source	Disappearance	$\begin{array}{c} \overline{\nu_{e}} \rightarrow \ \overline{\nu_{e}} \\ \nu_{e} \rightarrow \nu_{e} \end{array}$	CeLAND, SOX (Cr & Ce), Sage2, SNO+, LENS-s	
Cyclotron	Disappearance	$\bar{\nu}_e \rightarrow \bar{\nu}_e$	IsoDAR	
Pion / Kaon Decay- at-Rest	Apparition & Disappearance	$ \begin{array}{c} \bar{\nu_{\mu}} \rightarrow \bar{\nu_{e}} \\ \nu_{e} \rightarrow \nu_{e} \end{array} $	OscSNS, CLEAR, DAEδALUS, KDAR	
Pion Decay- in-Flight (Beam)	Appearance & Disappearance	$\begin{array}{c} \mathbf{v}_{\mu} \rightarrow \mathbf{v}_{e} \\ \mathbf{v}_{\mu} \rightarrow \mathbf{v}_{e} \\ \mathbf{v}_{\mu} \rightarrow \mathbf{v}_{\mu} \\ \mathbf{v}_{e} \rightarrow \mathbf{v}_{e} \end{array}$	MINOS+, MicroBooNE, LAr1kton+MicroBooNE, Icarus/Nessie@CERN	
Low-E Neutrino Factory	Appearance & Disappearance	$\begin{array}{c} v_{\underline{e}} \rightarrow v_{\underline{\mu}} \\ \bar{v}_{\underline{e}} \rightarrow v_{\mu} \\ \underline{v}_{\underline{\mu}} \rightarrow v_{\underline{\mu}} \\ \bar{v}_{\underline{e}} \rightarrow v_{\underline{e}} \end{array}$	vSTORM@Fermilab	

Icarus-Nessie at CERN

- Concept (L/E \approx km/GeV \rightarrow eV-scale 4th ν)
 - Move T600 (2 x 300 tons) from LNGS to CERN, 2013/14
 - New T150 (150 tons)
 - New magnetized muon spectrometers (Opera's techno)
 - New neutrino beam on the SPS (on-axis, few GeV, fast extraction, 4.5 10¹⁹

pot/y, neutrinos & antineutrino runs, start 2016/7?, under review)

Decay in Flight Beams: v-STORM

- Beam+Detector: manageable extrapolation from known techno
- Capable of definitive sterile ν search in appearance and disappearance channels with : ν_{μ} , ν_{e} , $\overline{\nu}_{\mu}$ and $\overline{\nu}_{e}$.
- Source of GeV $\dot{\nu}_{e}$ for studies of cross sections (HK, LBNO/E).
- First step to Neutrino Factory / Muon Collider (LOI @FNAL/CERN)

Th. Lasserre – CPPM May 13th 2013

Conclusions

- A bunch of anomalies calling for clarification:
 - LSND ($\nu_{\rm S}$, $\Delta \, {\rm m}^2 {\approx} {\rm eV}^2$) & Miniboone ?
 - Gallium Anomaly (ν_{s} , $\Delta m^{2} \approx eV^{2}$)
 - Reactor Anomaly ($\nu_{\rm S}$, $\Delta {\rm m^2}{\approx}{\rm eV^2}$)
 - Cosmological bounds do not exclude a 4 $^{th}\,\nu$
 - But:
 - No deficit in muon channel
 - Significant tensions in global fits

→Bunch of 2 to 4 σ effects → NEED for new CONCLUSIVE short baseline experiments, >20 projects under consideration

- Need to Test the Beam related anomalies (LSND, MiniBoone)
- Need to Test the Gallium and Reactor Anomalies

Thanks for your attention ! www. 0

C. Zhang, X. Qian & P. Vogel RAA Reanalysis (arXiv:1303.0900v1)

- New reanalysis of old 19 reactors antineutrinos experiments adding :
 - sin²(20₁₃) = 0.089±0.011
 - allow to use Chooz, Palo Verde, Double Chooz (Gd & Hyd. datas)
 - => R = 0.959±0.009(stat.) ±0.027(react.flux) : 1.4 σ effect

- First quick comments from Saclay's group
 - which IBD cross-section used ?
 - wrong error used by authors in RAA
 - . 0.027 instead of 0.023
 - taken wrongly as fully correlated
 - only ILL data is fully correlated
 - Saclay preliminary similar reanalysis :
 0.94+- 0.023 (confirmed by Arxiv:1303.3011)
 - short written answer in preparation

