(A short?)Update on the Loma Linda Proton CT Project

Reinhard W. Schulte, Dr. med, Dipl. Phys Professor of Radiation Medicine Radiation Research Laboratories Loma Linda University California, USA

pCT Meeting Nice, April 25,2013

Outline

- Importance of range in particle therapy
- Proton CT (pCT) and Radiography
 - History
 - Principle of pCT and pRG
 - pCT collaboration
 - Phase 1 and 2 scanners
 - Image reconstruction
 - Proton Radiography
- Future Developments and Applications

IMPORTANCE OF RANGE IN PARTICLE THERAPY

Current Limitations of Hadron Therapy – and how to overcome them

- Biological Uncertainty: range uncertainty requires overshoot of dose, but the distal relative biological effectiveness (RBE) is least certain -> track structure studies
- Range Uncertainty: creates a conflict between healthy tissues sparing and need to completely cover tumor tissue -> proton CT
- Motion Uncertainty: position of tissues relative to the beam varies between and during treatment fractions
 -> image guidance with proton CT

Range Uncertainty in Particle Therapy

- Inhomogeneities are fundamentally more important in particle therapy than in X-ray therapy
- We have learned to deal with them by
 - Optimizing our X-ray CT calibration methods
 - Incorporating additional margins
 - Developing robust optimization methods for IMPRT
- We have remaining issues due to
 - Need for higher accuracy with hypofractionation and stereotactic treatments
 - Restrictions in beam entry directions
 - CT artifacts in the presence of metallic hardware, dental fillings embolization glue etc.
 - Intra- and inter-treatment changes of proton range (motion, weight loss etc.)
 - Higher RBE of distal edge when placed into critical normal tissues

Typical Range Uncertainties in Proton Therapy – Prostate and Brain Treatments

Type of Uncertainty	Prostate	Brain
Material Densities/ Manufacture		
Bolus density	0.9 mm	0.5 mm
Bolus manufacture	0.5 mm	0.5 mm
Pod/Mask- CT conversion	1.0 mm	<u>1.0 mm</u>
combined	1.4 mm	1.2 mm
Patient Electron Densities	% of Range	
CT # random fluctuations	0.3 %	
Beam hardening effects	1.5 %	
HU- to rel. electron dens. conversion 2.0 %		
Combined	3.8	%
<u>Combined Total (GTV coverage in 90% of cases)</u>		
Prostate (WED = 200 mm)	9 mm	
Brain (WED = 100 mm)	3 mm	

The role of CT Imaging in Charged Particle Therapy

- CT imaging is needed for
 - Target volume definition (anatomical boundaries with additional anatomical & functional information from registered MRI and PET studies)
 - Dose and range calculation
 - 3D Patient alignment verification (in-room cone beam CT, CBCT)

Pros and Cons of X-ray CT Use in

Particle Therapy

- Pros
 - Widely available (diagnostic CT has firm industry support)
 - Thoroughly investigated and established
 - Excellent spatial and timing resolution
- Cons
 - Issues with conversion of CT units to relative proton stopping power, leading to systematic range errors of the order of 3-5% for soft tissues and higher for tissues with very low or high density (lung, bone) or in the presence of metal artifacts
 - Relatively high patient dose with CBCT when used as daily imaging modality for daily image verification
 - Reconstruction artifacts with MV or kV cone beam CT -> not ideal for dose replanning

Process of X-ray CT HU to Relative Stopping Power Conversion

Range Accuracy of Proton/Ion Therapy when X-ray CT is used

- X-ray attenuation in the 70-120kV range is determined by photoelectric and Compton scattering
- Conversion of Hounsfield units to relative stopping power (RSP) requires careful calibration
- There is no consistent one-to-one relationship between Hounsfield units and RSP for different tissues and materials

O. Jäkel, Imaging and Tumor Localization in Ion Beam Therapy, in: Ute Linz (Ed.), Ion Beam Therapy, Springer 2012)

Passive Proton Beam Delivery Technique

Charged Particle Treatment Planning: Proton Ray Tracing

- Protons beams are modulated in energy such that their water-equivalent pathlength in tissue places the Bragg peak at the desired location
- The most critical location is the "distal edge"
- X-ray CT provides the required WEPL data from which the required thickness of the range compensator (bolus)

Clinical Implications of Range Uncertainties in Proton Therapy

- Differences in the interaction of x-rays and protons with matter make proton range calculations uncertain
- Range uncertainties can range from mm to cm
- Materials of unknown stopping power and CT artifacts create additional uncertainties
- beam overshoot (mm) The problem of range uncertainty also exists with active scanning when nean range error exceeds longitudinal width of Bragg peak

pCT Meeting Nice, April 25,2013

Gensheimer F, et al., Int J Radiation Oncol Biol Phys 2010 (50% idosdose, red = observed, blue =planned

Goal: Reduction of Range Errors in Particle Therapy

- Our ultimate goal in proton and ion therapy is to use proton or other light ion beams of sufficient range for treatment planning and integral range verification
- This will allow reconstruction of the volumetric distribution of relative stopping power for proton and ion treatment planning and pre-treatment verification
- First systems for proton imaging have been developed in recent years

PROTON CT AND RADIOGRAPHY: PRINCIPLE, CONCEPTS, HISTORY &

REALIZATION pCT Meeting Nice, April 25,2013

Principle of Proton Imaging

- Due to electronic and elastic nuclear interactions protons lose energy and acquire scattering angle variance; in addition they may be lost due to inelastic nuclear interactions
- The object can conceptually be replaced by a uniform water slab that, on average, leads E_{in} , σ_{in}^2 to the same energy loss, difference in scattering angle variance, or loss due to nuclear interactions
- Based on this information, water equivalent pathlengths (WEPL_{st}, WEPL_{sc}), WEPL_{ni} may be derived
- A 2D plot of average WEPL values per pixel produces radiographs
- Tomographic or 3D reconstruction of corresponding differential quantities, e.g., stopping power, relative to water is possible (CT)

A SHORT HISTORY OF CHARGED PARTICLE RADIOGRAPHY AND CT

History of Proton Radiography (pRG)

- A. Koehler was the first to point out the potential value of pRG and to perform experiments with 160 MeV (Koehler, Science 160, 303–304, 1968)
- The higher density resolution but poorer spatial resolution than with x-ray radiography was noted by Koehler and later by Kramer et al. (Radiology, 1980)
- Medical interest in pRG as a QA tool for proton therapy was revived by U. Schneider and E. Pedroni at PSA during the 1990s
- pRG has been explored material testing at Los Alamos NL
- pRG continues to be explored for clinical use at MGH (J Seco, this meeting) and PSI
- More recently heavy ion radiography is being explored at the Heidelberg Ion Beam Therapy Center (K Parodi, this meeting)

Andy Koehler, former director pCT Meeting Nice, April 25,2013 the Harvard Cyclotron) Proton Radiography as a Tool to measure Range Uncertainties

Range Uncertainties (measured with PTR) > 5 mm> 10 mm> 15 mm

Schneider U. & Pedroni E. (1995), "Proton radiography as a tool for quality control in proton therapy," Med Phys. 22, 353.

Alderson Head Phantom

History of Proton CT

- pCT is conceptually similar to pRG but consists of multiple pRG projections covering 360 deg followed by 3D image reconstruction
- Proton CT was originally suggested by A. Cormack in 1963
- First experiments were performed at LBL and LANL during the 1970s, and in Japan during the 1980s
- Clinical proton CT as a low-dose tomographic imaging modality was explored by R. Martin at Argonne NL during the 1990s
- A first pCT system was built by P. Zygmanski at the Harvard Cyclotron Lab in the late 1990s
- A pCT collaboration between researchers interested in pCT was formed at BNL in 2003
- pCT projects now exist at LLU/UCSC/CSUSB, NIU and FNAL, pCT Meeting Nice, April 25,2013 at INFN and IPHC

Particle CT in the 1970s

- Heavy ion tomography at LBNL 1972 – 1980 was explored by Cornelius Tobias and colleagues
- Proton computed tomography was investigated at LANL by Ken Hanson et al.

The Proton CT Collaboration

- A group of individuals with interest in proton imaging first met at BNL in Jan 2003 and LLUMC in Feb 2003 to develop a conceptual design for a modern pCT scanner based on single proton registration
- 2003 2007: Conceptual design, Geant4 simulations, most likely path concept, small prototype experiments
- 2008 2010: Phase 1 scanner for proof of principle
- 20011 2013: Phase 2 scanner for preclinical testing

Proton CT Scanner: Design Principle

- Protons of sufficient energy can penetrate the human body
- Protons can be tracked on the entry and exit side using modern Si detectors
- Residual energy detector to measure energy loss of individual protons
- Rotational detector arrangement in synchrony with proton gantry

Proton CT with Single Particle Detection – Phase 1 Scanner

- First concepts were derived from proton radiography systems developed at PSI
- Fully developed concept of pCT (IEEE NSS/MIC 2003)
- This pCT concept is realized in the Phase
 1 scanner

Single Particle Concept: Advantages and Challenges

- Single particle detection allows for
 - rejection of unsuitable events ("data cuts")
 - estimation of individual proton paths
 - use of iterative reconstruction algorithms based on single proton histories
- Challenges of single particle detection
 - Requires high data rates (fast DAQ systems)
 - Requires computation tools exploiting sparsity and massive parallelism

Summary of pCT Design Principles

- Detect location of individual primary particles, reject nonrelated events (e.g., cosmic rays, noise) or unsuitable events (e.g., large-angle scattering, inelastic nuclear interactions)
- Reconstruct charged particle path as accurately as possible
- Measure residual energy or range of charged particle as accurately as possible
- Convert residual energy/range to water-equivalent path length (WEPL)
- Define the pCT reconstruction problem for RSP using as much information as possible and apply efficient reconstruction algorithm (parallizable)
- Perform pCT reconstruction as efficiently as possible (GPU/CPU cluster)

Phase 1 pCT Tracker

- The Phase 1 pCT tracker consists of front and rear module for location and direction measurements
- Modules: two detector boards measuring the X-Y position in two locations => direction
- Detector boards: 4 Si Strip Detectors (SSDs), 9 cm x 9 cm, 384 strips, 0.23 mm pitch
- Strips of one SSD oriented in either vertical or horizontal direction (X and Y sensitivity)
- Total sensitive area 9 cm x 18 cm
- Modified GLAST/Fermi readout chip, max rate 200 kHz

Detector board with 2 SSDs in Rhasehp (Tspanardf 208506d He the back of the board

Silicon Tracker Improvements

- Large-area coverage requires tiling of Si sensors
- Largest available sensors are ~9 cm x 9 cm singlesided Si strip detectors cut from 6 inch wafers (Hamamatsu)
- Strip pitch 0.23 mm
- These sensors, in their native form have ~1mm inactive edges which will create image artifacts (see next slide for solution)

Layout of one of the four x-y tracker planes using 9 cm x 9 cm single-sided silicon detectors with one side rotated by 90 degrees.

Novel Si Sensors with "Slim" Edges Courtesy Hartmut F-W Sadrozinski, UCSC Si SSD with Cut within 50 µm Guard Ring Cut (!) 900µm dead edge of Guard Ring NO IN IN IN

- The corner of a sensor manufactured by Hamamatsu Photonics for the GLAST mission is shown on the left with the planned cut indicated by the red line
- The sensor was etch-scribed with XeF2, cleaved and passivated with nitrogen plasma-enhanced chemical vapor deposition (PECVD)
- The slim edge with strips and bias ring is shown on the right; only traces of the guard ring are visible.

Next Generation pCT Tracker/ASIC

- 4 (x/y) SSDs (9 cm x 9 cm) per tracking layer cut from 6" highresistivity n-intrinsic silicon wafers
- Eight layers of silicon strip detectors are read out by 144 64-channel ICs, each with a 100 Mbit/s link to an FPGA on the same board
- Nominal data rate ~10⁶ protons per sec

Next Generation pCT Data Readout/Data Flow

- Readout is triggered by energy/range detector and tracker
- Buffering at front end to minimize dead time
- Eight layers of SSDs read out by 144 ASICs and linked to an FPGA (Spartan 6, Xilinx)

Phase 1 Energy Detector: Crystal Calorimeter

- Crystal matrix with 18 thallium-doped cesium-iodide (CsI(TI)) crystals (~3.6 cm x 3.6 cm x 12.5 cm)
- Each crystal read out by area-matched Si photodiode
- Si photodiode => preamp/shaper => ADC
- Excellent linearity and energy resolution < 1% above 40 MeV
- Integrated with rear tracker module

Individual responses are weighted and summed

Calorimeter Calibration: WET Calibration

- Polystyrene blocks of known thickness and RSP
- Produces a second order polynomial, providing fast conversion from detector response to WEPL
- Procedure takes 15 minutes and can be performed daily

Calorimeter Calibration: WET Calibration Verification

Used WEPL calibration method to determine RSP of tissue equivalent materials from Gammex:

Problems with Phase 1 Calorimeter

- Despite careful calibration, inhomogeneous response to proton histories of same residual energy (WEPL) could not be resolved
- Analysis revealed that this complicated response is due to light leakage at the level of the PDs and jitter of the timing of different front end chips

pCT Meeting Nice, April 25,2013

System Alignment: Tracker Offsets

Use straight tracks from beam to calculate x and y corrections

Requires 1 minute of beam data without the phantom, performed daily.

System Alignment: Rotational Axis Definition

- Rotation axis position must be defined relative to the detector coordinate space.
- Location along the beam axis (z) is defined mechanically.
- Vertical location (y) is determined by imaging a plastic rod mounted off axis:
 - 1. Projection data are recorded at various angles.
 - 2. Center of rod is found in "sinogram," for each projection angle.
 - 3. Constant from sine wave fit corresponds to vertical misalignment of axis
 - \rightarrow Correct for this in software

This procedure takes 20 minutes and is performed periodically (~monthly).

Next Generation pCT Energy Detector

- A multi-stage scintillator (MSS) registers energy response; the response of the stopping scintillator is converted to WEPL
- The WEPL resolution is high (~3 mm), combined with good light yield and uniformity
- MSS design is preferred compared to stack of multiple thin scintillators (range counter) based on cost considerations

R3318 PMT

Phase I pCT Scanner at LLU (completed in 2010)

- System component integration & mounting (April 2010)
- Tested initially with radioactive source and cosmic rays (muons)
- Installation on proton research beam line & 1st test runs (May 2010)
- Spill uniformity optimization (June 2010)
- Scanner calibration (July 2010)
- Experience collected with phantom scans since Dec 2010, leading to Phase 2 pCT scanner

Data Flow Chart (Tracker, 1 of 16)

DAQ Software

The Phase 2 pCT Scanner (Summer 2013)

- Large area tracker suitable for head scans + immobilization devices (36 cm x 9 cm
- Multi (5)-stage scintillation detector calibrated for WEPL measurements
- Vertical axis rotation stage for phantom rotation on fixed horizontal beam line
- FPGA-based readout and reconstruction on GPGPU cluster
- Currently, transition from Phase 1 to Phase 2 (Phase 1.5)

pCT RECONSTRUCTION AND PHANTOM SCANS

Linear pCT System and Solution Concept

- Linear System
 - i =1...m measurements => vector b = (b_i)
 - Object vector $\mathbf{x} = (\mathbf{x}_i), j=1...n$
 - Projection matrix $A = (a_{ij})$
- Note: matrix A is very large & sparse, and the system is inconsistent
- Find "adequate" solution of Ax=b using iterative projection method (projection onto hyperplanes H_i)
- Parallel algorithms for pCT have been developed over the last 5 years by Penfold, Censor & Schulte

 $H_i = \{ x \in \mathfrak{R}^n \mid \langle a^i, x \rangle = b_i, \text{ for } i = 1, 2, \dots, m.$

Path Reconstruction Concepts

- Different proton paths may be used in the reconstruction: MLP = Most Likely Path, SLP = straight line path, CSP = cubic spline path
- The MLP is determined by maximizing likelihood (chi square) of output parameters, given entry parameters
- MLP significantly improves spatial resolution compared to SLP, CSP reconstruction is nearly as good as MLP reconstruction as shown by Li & Schulte (Med Phys 2006) and later by Wang et al. (PMB 2011)
- The MLP concept was formulated by Williams (PMB 2004), & further refined by Schulte et al. (Med Phys 2008)

The Mathematics of Iterative pCT Reconstruction

- Linear System
 - i =1...m measurements =>
 vector b = (b_i)
 - Object vector $\mathbf{x} = (\mathbf{x}_j), j=1...n$
 - Projection matrix $A = (a_{ii})$
- Note: matrix A is very large & sparse, and the system is inconsistent due to noise in b (energy measurement) and A (path uncertainty)
- Find "adequate" solution of Ax=b using iterative projection method (projection onto hyperplanes H_i)

$$H_i = \{ x \in \mathfrak{R}^n \mid \langle a^i, x \rangle = b_i, \text{ for } i = 1, 2, \dots, m.$$

4th Joint Symposium on Radiotherapy Research, Rice University, April 6-8, 2010

First pCT Scanning Results with the LLU/UCSC/NIU pCT Scanner

- A series of pCT scans of a polystyrene Lucy phantom with cylindrical air, acrylic, and bone-equivalent plastic cavities/inserts were done after completion and first calibration of the Phase 1 pCT scanner
- Reconstructions with an iterative algorithm (DROP-TVS) were performed on an NVIDIA GPU

pCT Reconstruction: A Linear Convex Feasibility Problem

- Ideal case: proton energy measurements are noise-free, and MET Safe existen energy measurements are noise-free, and MET Safe existen energy of the section of the first of the section and superstants are noise-free, and noi object function

$$S_i = \{x \in |\mathbb{R}^n | g_i(x) \le 0\} \text{ find } S = \bigcap_{i=1}^m S_i$$

in our case

$$g_i(x) = \left| \left\langle a^i, x \right\rangle - b_i \right| = \mathcal{D}_i \le 0$$

4th Joint Symposium on Radiotherapy Research, Rice University, April 6-8, 2010

Projection Methods – The Classics

- Fully sequential: ART (Kaczmarz, 1937)
 - standard, used in many applications
 - Proven to work in pCT
 - Slow due to sequential nature
 - Can be made parallel in principle
- Fully simultaneous (Cimmino, 1937)
 - Converges to least-squares minimum
 - Very slow due to small weight (1/m)

4th Joint Symposium on Radiotherapy Research, Rice University, April 6-8, 2010

Projection Methods – Block-Iterative and String-Averaging Methods

- Block-Iterative Projection (BIP) (Aharoni & Censor 1989)
 - Simultaneous projection within blocks of hyperplanes
 - Sequential projection of block iterates
 - Weighting according to block size (avoiding small 1/m)
- String-Averaging Algorithm (Censor, Elfving, Herman, 2001)
 - Sequential projection within strings of hyperplanes. in parallel within all strings

4th Joint Symposium on of all string

Total Variation Superiorization

- First suggested by Butnariu, Davidi, Herman, & Kazantsev, IEEE J. Sel. Top in Sign Proc, 1, 540–547 (2007)
- Under certain conditions, perturbation of the k-th image iterate leads to a "superior" image in terms of smaller total variation
- Easier to perform than optimization and better result than solving the feasibility problem without superiorization
- Has shown promising results in X-ray CT reconstruction

TVS-DROP Reconstruction Results

Circular phantom with central high-contrast feature (for MTF), bone shell, and brain interior – DROP/TVS has

- Less noise
- Better accuracy
- Better stability
- Improved spatial resolution
- Better contrast discrimination

4th Joint Symposium on Radiotherapy Research, Rice University, April 6-8, 2010

Complete Lucy Phantom Scan

Water Phantom Scan

Water Phantom Profile

- 15 cm diameter acrylic cylinder filled with degassed water
- Reconstruction based on 4.3x10⁷ proton histories
- Total scan time: ~6 hours
- 200 MeV beam energy
- 90 projections (4 degree steps)
- 16 x 16 x 8 cm³ reconstruction volume
- 256 x 256 pixels, 32 slices $\rightarrow 2.1 \times 10^{6}$ voxels
- 0.625 x 0.625 mm pixel size
- 2 5 mm slice width Water Phantom RSP Values

Head Phantom Scan

- CIRS HN-715 Pediatric head phantom
- Realistic head and neck geometry and densities
- 7 different tissue equivalent materials

Head Phantom Scan

- Reconstruction based on 3.8x10⁷ proton histories
- Scan time: ~5 hours
- 200 MeV beam energy
- 90 projections (4 degree steps)
- 23 x 23 x 9 cm³ reconstruction volume
- 384 x 384 pixels, 36 slices $\rightarrow 5.3 \times 10^6$ voxels
- 0.6 x 0.6 mm pixel size
- 2.5 mm slice width
- Image quality should be improved with a larger proton history data set.

Proton Radiography

- Proton radiographs (pRGs) showing WEPL_{st} of a realistic hand phantom were obtained with 100 MeV protons
- pRGs give a more faithful representation of relative bone and soft tissue electron densities compared to x-ray RGs
- pCT RGs have also proven useful in detecting flaws in current detector designs and data processing

pCT – A low-dose image modality?

- Dose per proton & image slice (180 x 180 x 1 mm³) of unit density: 0.67 x 0.5 nGy (<ΔE> = 100 MeV) from electronic interactions + 0.33 x 1 nGy (<ΔE> = 200 MeV) from inelastic nuclear interactions = 0.67 nGy per proton history
- Dimension of single slice head object vector: 180²
 = 3.6 x 10⁴ assuming 1 x 1 x 1 mm³ voxels
- Number of protons per slice ~ number of unknowns x10-100 ~ 3.6 x 10⁵ – 3.6 x 10⁶
- Average dose for a given slice: ~0.04-0.45 mGy (RBE = 1)
- Comparable to 0.07 mSv from single chest x-ray
- Even if the detection efficiency of protons is not perfect, the dose advantage of pCT compared to x-ray CT is potentially very large

0.3 mGy

R. Schulte, Med Phys. 2005

Future Applications of pCT & pRG

- Immediate: better treatment planning in the presence of xray CT artifacts, e.g., from embolization glue in AVMs
- Near-term: treatment planning when very high degree of range accuracy is desired, e.g. IMpRS (intensity modulated proton radiosurgy)
- Long-term: In-room pretreatment range verification, adapted plan of the day, low dose IGpRT
- Far future: Implementation of pretreatment pCT and intratreatment pRG in a future multi-ion beam facility

Where to next?

Conclusions

- pCT and pRG are evolving technologies that are driven by solving a fundamental challenge in charged particle therapy (accurate range prediction & verification)
- Fastest progress is made by continued exchange of ideas and experience between medicine, high energy & nuclear physics, applied mathematics, computer science and engineering within a framework of multi-institutional & international collaboration ("extended laboratory" concept)
- Wide-spread use can be expected within the next 10 years as proton/ion therapy expands its role in RT

Acknowledgments & Disclaimer

- PCT research is funded by a 4-year grant from the National Institute of Biomedical Imaging and Bioengineering (NIBIB) and the National Science Foundation (NSF), award Number R01EB013118. The content of this presentation is solely the responsibility of the authors and does not necessarily represent the official views of NIBIB, NIH and NSF. Work in pCT reconstruction has been supported by the U.S.-Israel Binational Science Foundation (BSF)
- The Phase 1 detectors were built at UCSC and Northern Illinois University (NIU) with support from the U.S.
 Department of Defense Prostate Cancer Research Program, award No. W81XWH-12-1-0122and the Department of Radiation Medicine at LLUMC (Dr. James M. Slater)

pCTlers

Vladimir Bashkirov Ford Hurlev Andrew Wroe **Baron Black Bob Jones** Hartmut Sadrozinski Robert Johnson Andriy Zatserklyaniy Joel DeWitt Forest Martinez-McKinney Sergei Kashiguine Edwin Spencer Andrew Plumb Cole Holcomb **David Steinberg** Vanessa Feng Scott Macafee Jessica Missaghian **Tia Plautz** Keith Schubert Micah Witt Blake Schultze **Reinhard Schulte** Scott McAllister John Tafas Yair Censor Ran Davidi Anatoly Rozenfeld Peter Lazarakis Valentina Giacometti Carol Grande Gerald Barnett

Gerald Blazev George Coutrakon Bela Erdelyi Alexandre Dychkant Eric Johnson Sergey Uzunyan Vishnu Zutshi Karonis Nicholas Kirk Duffin Caesar Ordonez John Winans Andrew Gearhart Mahmoud Yaqoub **Rick Salcido** Viktoriya Zvoda Tony Zhang Eric Olson Michael Papka Tom Uram Peter Wilson Greg Sellberg John Rauch John Krider Paul Rubinov Tom Fitzpatrick Herman Cease Michael Roman Michael Utes Anindya Sen

Gabor Herman

Scott Penfold

Márgio C. Loss Klock **Tianfang Li** Jerome Z. Liang Ivan Evseev Hugo Schelin Olga Yevseveva Sergei Paschuk Edney Milhoretto Valeriy Denyak David C. Williams **Todd Satogata Steven Pegas** Klaus Mueller Jason Heimann Leah R. Johnson **Brian Keeney** David C. Williams. Lan Zhang Zheng Li Craig Woody

Thank you!

LLU Radiation Research Laboratories at night (left wing & basement)