

LHC Physics: results from run I

C. Charlot / LLR-École Polytechnique

LCG-France meeting, Ecole Polytechnique, may 2013

Foreword

- Overview of physics results from run I
 - □ Ended beginning of this year, so good time for it
- □ Many many results obtained
 - QCD, QGP, EWK, spectroscopy/new particles, heavy flavours, top, Higgs, Beyond Standard Model
- □ Will not cover everything
 - □ Rather illustrate some of the results obtained to give you a flavour of what has been done and of the most important results
 - □ Apologize in advance for results not shown

Standard Model of Particle Physics

- □ The Standard Model is built upon gauge symmetries
 - □ Internal symmetries (extending upon geometrical symmetries)
 - □ Conserved quantities (quantum numbers): electric charge, colour, spin,..
 - Invariance principles always played a major role in physics (principle of relativity, electromagnetism, special and general relativity)
- Gauge symmetries modified are understanding of forces / interactions
 - Gauge invariance naturally leads to interaction terms, no need to introduce forces between particles
 - Interactions consist in the exchange of particles (vector boson)

A problem

- This picture has been very successful but gauge invariance implies massless vector bosons, or, equivalently, interactions of infinite range
- □ And it is known experimentally that weak interactions are of very short range, the masses of the carrier of the weak interactions are:

 \square m_Z=91.2 GeV and m_W=80.4 GeV

- Thus either it is our picture of the interactions as the exchange of vector bosons which is wrong or there is a way to preserve this description for short range interactions (e.g. massive vector bosons)
- □ A possible way is the spontaneous symmetry breaking
- □ As a consequence the weak W and Z bosons become massive and a new scalar neutral particle appears: this is the Higgs boson

□ It turns out that this mechanism also allows to introduce the fermion (quarks and leptons) masses

Overview of LHC physics, LCG-France meeting, may 2013

Data taking Run 1

- □ The LHC has been working extremely well
- □ 8 TeV center of mass energy since 30/03/2008
- Max reached instantaneous luminosity of 7.3 10³³ cm²s⁻¹ (nominal is 1 10³⁴ cm²s⁻¹)

Efficiency: 90% of delivered data used for physics (ATLAS and CMS)

Pileup conditions

ATLAS and CMS

- □ Study of the Standard Model
 - **QCD**
 - □ EWK physics, top physics
 - □ Higgs boson
- □ Search for physics Beyond Standard Model
 - □ Supersymetry
 - □ New resonances
 - □ Anything new..

Rediscovery of the SM

New particles

|Ξ_b*⁰→Ξ_b¯π⁺→Ξ ⁻Ϳ/ψ π⁺→Λπ ⁻μ⁺μ¯π⁺→p⁺π⁻π⁻μ⁺μ⁻π⁺

Standard Model after 7 TeV run

QCD/Jets

- \Rightarrow Excellent agreement, over many decades
- ⇒ Some generator/PDFs describe the data better than others: useful for tuning and constraining generators and PDFs

EWK Bosons Production

Overview of LHC physics, LCG-France meeting, may 2013

Dibosons: WW, WZ, ZZ

- □ Rare SM processes, only few events at Tevatron
- □ Path to discovery of new heavy particles, background to Higgs searches (WW, ZZ)

Dibosons: WW, WZ, ZZ

□ Search for anomalous triple gauge couplings / deviations wrt Standard Model

Top Physics

 Good description of production vs center of mass energy, pp vs ppbar

The Higgs

Overview of LHC physics, LCG-France meeting, may 2013

Higgs: H->ZZ->4leptons

Overview of LHC physics, LCG-France meeting, may 2013

Higgs:H->ZZ->4leptons

Higgs: H->gammagamma

CMS Experiment at the LHC, CERN Data recorded: 2012-May-13 20:08:14.621490 GMT Run/Event: 194108 / 564224000

♦2 high pT isolated photons
♦ Small signal above a
huge background => best
resolution required

Overview of LHC physics, LCG-France meeting, may 2013

Higgs: H->gammagamma

Higgs : Low resolution channels

$H\text{->}WW\text{->}l\nu l\nu$

Experiment	Expected	Observed
ATLAS	3.7σ	3.8σ
CMS	5.1σ	4.0σ

H**-**>ττ

2.9 σ evidence for H-> $\tau\tau$

Higgs: properties

Beyond Standard Model

Beyond Standard Model

ALICE (+CMS+ATLAS)

□ Study the Quark Gluon Plasma

- □ Charged particle production, soft QCD
- □ Jet quenching
- □ Elliptic flow
- Quarkonia

Energy density, volume, lifetime

- □ Energy density: ~8 GeV/fm3 (3x RHIC)
- \Box Lifetime: ~10 fm/c (1.2x RHIC)

Particle correlations, jet quenching

Color screening in QGP

- J/Psi and Y suppression for central collisions due to color screening is one of the original predictions for QGP
- □ At LHC less suppression than at RHIC: re-generation?

LHCb

□ Studying the heavy flavour sector

- □ Observe the rarest decays
- □ Understand CP violation, matter/anti-matter asymmetry
- □ Find indirect evidence for new physics at very high scale (if any)
- □ Discover new particles

LHCb: Bs->mumu

LHCb: CP violation

 \Box Most accurate measurements of CP violation in the B_s system

Conclusions and Outlook

- □ The 2010-2012 run has been a very exciting period
 - □ The machine and detectors have been working very well
 - □ Plenty of physics results and major discovery of the awaited Higgs boson
- □ A new period will start in 2015 after LS1
 - □ Precise measurement of the Higgs boson properties
 - □ Already started but will benefit from much more statistics
 - □ Is it the Standard Model Higgs boson?
 - □ Search for Beyond Standard Model physics
 - □ How to stabilize the Higgs mass? Unification at high energy? Supersymmetry? Reasons for 3 families? ..?)
 - □ More on QGP, heavy flavour and CP violation
- □ Much more luminosity, much more pileup
 - □ New Challenge for the computing and the Grid

Backup

The Higgs mechanism

- □ The way to reconcile gauge symmetry and the existence of massive vector bosons is called the **spontaneous symmetry breaking**
- In the Higgs mechanism, the potential has a rotational symmetry but the ground state do not have that symmetry
 - □ Mexican hat shape of the potential
- As the a consequence the weak W and Z bosons become massive and a new scalar neutral particle appears: this is the Higgs boson
- It turns out that this mechanism also allows to introduce mass for fermions (quarks and leptons)

- Implying that the mass of the fermions is proportional to their coupling to the Higgs field
- □ This is why we often say that the Higgs field "generates" or "gives" masses

Tracking performances

Photons and electrons

Jets and MET

 Excellent understanding of the detectors thanks to detailed simulations

Missing Transverse Energy

Particle ID in LHCb and ALICE

RICH particle ID in LHCb:
 ~95% efficiency for 5% π-K contamination

- □ ALICE particle ID: Si tracker, TPS, TOF
- □ Tracking down to very low momentum (~100 MeV)

Rediscovery of resonances

QCD/direct photons

Overview of LHC physics, LCG-France meeting, may 2013

 ⇒ Less good for Et<25, more difficult region for pQCD (small x, NLOprediction less accurate)

QCD/Jets

\Rightarrow First and very precise measurement at the TeV scale.

QGP

- □ Lead-lead collisions also performed at LHC
- □ Aim at studying new state of matter: QGP, properties of hot/dense matter

QGP

- □ Lead-lead collisions also performed at LHC
- □ Aim at studying new state of matter: QGP, properties of hot/dense matter

Top mass

⇒ Maybe (much) more important than previously thought!

Higgs: properties

