#### Direct detection of dark matter

E. Armengaud (CEA Saclay - IRFU/SPP) LPC Clermont - 05/04/2013





- Cosmology and dark matter
- Principles of WIMP detection
- Germanium bolometers
- Xenon TPCs
- Hints for low-mass WIMPs ?
- Other approaches

## Cosmology today : the «Standard Model»

#### A large set of observations on many scales, described by a simple model

- General Relativity works at large scales
- Contents of the Universe : known fields (baryons etc) + other «stuff» of unknown nature

#### Scenario:

- Primordial plasma, inflation, baryogenesis/electroweak transition, QCD transition
- Primordial nucleosynthesis, decouplings of stable relics (neutrinos, dark matter, photons = CMB)
- Formation of gravitational structures
- Dark energy arises



## We need dark matter : global structure formation in the linear regime

- Dark matter is not baryonic:
  - Relative intensity of CMB acoustic peaks
  - BAO observation
  - Measurement of Ω<sub>b</sub> from abundances
- Dark matter is «cold»
  - Observed distribution of galaxies : clustering on small scales
  - Constraint on «warm» dark matter : m > keV

|   |                       | Planck (CMB+lensing) |                       |   |
|---|-----------------------|----------------------|-----------------------|---|
|   | Parameter             | Best fit             | 68 % limits           |   |
|   | $\Omega_{\rm b}h^2$   | 0.022242             | 0.02217 ± 0.00033     |   |
|   | $\Omega_{\rm c}h^2$   | 0.11805              | 0.1186 ± 0.0031       |   |
| - | 100θ <sub>MC</sub>    | 1.04150              | $1.04141 \pm 0.00067$ | 1 |
|   | τ                     | 0.0949               | $0.089 \pm 0.032$     |   |
|   | <i>n</i> <sub>s</sub> | 0.9675               | $0.9635 \pm 0.0094$   |   |
|   | $\ln(10^{10}A_{s})$   | 3.098                | 3.085 ± 0.057         |   |



# We need dark matter : dynamics of individual astrophysical objects

- Galaxy clusters
  - M<sub>tot</sub> from velocity dispersions, gas temperature, gravitational lensing
  - Mgalaxies ~ 0.02 Mtot
  - Mgas ~ 0.1 Mtot
  - NB: current cluster counts, when compared to CMB data, may suggest ∑m<sub>v</sub> > 0
- Interacting clusters : contrarily to the gas, the missing mass does not interact during the collision

Abell 1689 visible : galaxies

X-rays : intergalactic gas





# We need dark matter : dynamics of individual astrophysical objects

- Galactic dynamics
- spirals : rotation curves
- elliptics : velocity dispersion
- dwarf galaxies, satellites ...
- Need in general additional masse wrt stars
- +gas (or modif. Newton's law)

CDM «model» (simulations):

- spherical halo of dark matter;
- velocity distribution ~ maxwellian
- tricky observations and predictions at the center (« core » vs « cusp »)
- presence of « clumps » = sub-structures of higher density

NB: Complex physics (baryons...)

Scaling laws are observed, but not clearly understood within the framework of CDM : motivation for modified gravity



#### We want to know what is «dark matter» in $\Lambda$ CDM

- New field(s) of gravitationnal nature? (modified gravity, MOND...)
  - justified by scaling laws in galactic dynamics +  $\Lambda$ , but which theory?
  - importance of future tests for GR at large scales
- New field(s) looking more like particles? <u>Many possibilities</u> among which:
  - Axions (especially the µeV-meV window, or more generic ALPs)
  - keV-scale sterile neutrinos
  - Supermassive relics (MPI)
  - etc...
  - WIMPs = Weakly Interacting Massive Particles



7

## WIMPs : appealing and testable

Indirect detection - observe WIMP annihilation products from astrophysical objects - many « observatories » involved - current strongest constraint from FERMI : m ≥ 10 GeV for standard WIMPs





#### Colliders

WIMP production, detection of some
 « missing energy », monojet/photon
 events

- a main goal of LHC, now that the SM is complete

- if new physics signal: does not prove that it makes dark matter



#### **Direct detection**

 observe the interaction of galactic
 WIMPs directly on a terrestrial detector
 dedicated experiments, require a strong detector R&D + underground infrastructure





- Cosmology and dark matter
- Principles of WIMP detection
- Germanium bolometers
- Xenon TPCs
- Hints for low-mass WIMPs ?
- Other approaches

#### Direct proof of WIMP dark matter: direct detection



$$E_r = \left(\frac{m_{\chi}}{2}v^2\right) \times \frac{4m_N m_{\chi}}{\left(m_N + m_{\chi}\right)^2} \times \cos^2 \vartheta_r \quad \sim 1 - 100 \text{ keV}$$

• Scaling with MWIMP : low recoil energies at low MWIMP

$$R \sim \frac{\rho_0 \,\sigma v}{m_{\chi} \,m_N} \sim 0.04 \left(\frac{100}{A}\right) \left(\frac{100 \,GeV}{m_{\chi}}\right) \left(\frac{\sigma_0}{10^{-8} \,pb}\right) \left(\frac{\rho_0}{0.3 \,GeV \,cm^{-3}}\right) \left(\frac{v_0}{230 \,km \,s^{-1}}\right) \quad kg^{-1} day^{-1} day^{-1}$$

Low-threshold detectors (~ few keV) Ultra-low-background detectors

## WIMP signal in direct detection

- Nuclear recoil spectrum ~ exponential
- Scaling with A : ~ A<sup>2</sup> for spinindependant (SI) coupling
- *Directionnality* of recoils (~100% modulation)
- Annual modulation 7% effect

Standard assumptions are used by expts to provide a reasonable comparison between sensitivities  $\Rightarrow$  put constraints in the plane (M<sub>WIMP</sub>,  $\sigma_0$ )

#### Systematics :

- ρ<sub>0</sub>~0.3 (0.0 0.8) GeV/cm3
- $f_1(v)$  : may include non-maxwellian velocity structures, additional dark disk etc.
- nuclear + hadronic physics parameters !!



### WIMP detection is hard : signal vs backgrounds

```
Massive target (kg ... ton[s])
Low detection threshold (~ few keV)
Background rejection :
passive rejection = underground detector, shields, vetos..
active rejection = smart detector design
```

#### WIMP signal

- Nuclear recoils
- Single scatters in the detector
- Interactions uniformly distributed in the detector volume
- Exponential recoil spectrum
- «A<sup>2</sup>» dependance
- Annual modulation
- Directionality

#### Backgrounds

- External gammas
- Internal gamma contamination
- Beta radioactivity : internal and surface
- Alpha radioactivity
- Neutrons from material radioactivity
- Neutrons from cosmic muons
- Neutrino (coherent) scattering

## An example of setup : EDELWEISS-II (2006-2012)





- Located at Laboratoire Souterrain de Modane (1700m rock overburden)
- Clean room
- Deradonized air circulation
- Pb shield against gammas
  - Archeological lead near detectors
- Polyethylene shield against neutrons : slows down fast neutrons from the rock or cosmic rays
- Muon veto : tag residual muons coming inside the PE shield

#### Early times: «single-channel» approaches

- Germanium (eg. Oroville experiment)
- Scintillators (eg. DAMA)
- Strong limitation : no extra handle on potential signal
  - Some discrimination power using pulse shape analysis. but limited near threshold



- Cosmology and dark matter
- Principles of WIMP detection
- Germanium bolometers
- Xenon TPCs
- Hints for low-mass WIMPs ?
- Other approaches

## Germanium bolometers : EDELWEISS-CDMS







- Energy deposition  $E_0$  in the absorber  $\Rightarrow \Delta T = E_0/C$
- Working point ~ 20 mK (EDW) : C(T)~T<sup>3</sup>  $\implies$  large sensitivity
- <u>Thermometer</u> : various technologies
  - EDW : NTD sensor, thermal phonons
  - CDMS : TES, sensitive to out-of-equilibrium phonons
- Ionization readout (electrodes)
  - Measure the ionization yield for each event : discrimination between nuclear and electron recoils

#### Electron vs nuclear recoils in Ge bolometers



#### Surface events in Ge bolometers



- Local radioactivity : betas from 210Pb (from Radon in the air)
  - Hard to control
- Surface  $\beta$  interaction: ER but interaction depth  $\sim$  few microns
  - $\Rightarrow$  incomplete charge collection

Cannot discriminate clearly against NRs



#### Rejecting surface events with «ID» bolometers



- R&D started 2007, validation 2008
- Physics run 2009-2010

Same thermometer as EDELWEISS-I
Change the E field close to the surface using «interleaved» electrodes
Use 'b' and 'd' signals as a veto



## WIMP search with EDELWEISS-II



- 10 ID detectors, all working (redundancy between channels)
- Each detector : 400g  $\rightarrow$  160g after fiducial cut
- Stable cryogenics @ 20 mK for 14 months
- 380 kg.d after all cuts, 98% efficiency @ 20keV threshold



#### Rejecting surface events with phonons : CDMS-II



• TES measure thermal and athermal phonons, with a complex division into cells  $\Rightarrow$  partial reconstruction of the interaction

position (athermal phonon faster for near-surface interactions) • Reject betas, loosing ~50% WIMP efficiency

90% CL Limits: Simple Merger of CDMS and EDELWEISS Data



#### EDW-CDMS : low-threshold analysis



## EDELWEISS-CDMS : current status

#### **EDELWEISS-III**

- 40 FID (Full Interdigit) bolometers with better fiducial volume and background rejection : 24 kg (~XENON100)
- Upgraded EDW-II infrastructure, in commissionning

#### Super-CDMS @ Soudan

- Switched to «iZIP» technology : use the ID concept for surface event rejection
- 15 detectors running

 $\Rightarrow$  Both aim at ~ XENON100 sensitivity soon







FID800

#### EDELWEISS-CDMS : (joint) future



- Cosmology and dark matter
- Principles of WIMP detection
- Germanium bolometers

#### • Xenon TPCs

- Hints for low-mass WIMPs ?
- Other approaches

### Dual-phase Xenon TPC





Discrimination between ER and NR Strong self-shielding

#### ER vs NR in practice for Xenon



#### Low-energy calibration of Xenon

Scintillation signal : Ionization signal :

$$E_{nr} = \frac{1}{\mathcal{L}_{eff}} \cdot \frac{S1}{L_y} \cdot \frac{S_e}{S_n}$$
$$E_{nr} = \frac{S2}{\mathcal{Q}_u}$$

#### Example of Leff measurement



Neutron diffusion expt Scan over  $\theta \Rightarrow$  recoil energy Fit data to *low-energy* MC



## XENON100 WIMP search



- r position : from PMT signal pattern
- first «long run» : ~ 100 live days, fiducial Kr bckgd start to be limiting
- reduced Kr  $\rightarrow$  new run : 224 live days with expected bg ~ 1 event
- Fiducial volume in the TPC : 34 kg (self-shielding against external radioactivity PMTs ...)
- « 2 events » : may belong to single electron tail ?



#### XENON-100 : results



Limit derived from likelihood analysis Low-mass sensitivity may be disputed

## PandaX, LUX

PandaX @ CJPL:

- Stage Ia in installation
- Light yield 4-5 pe/keVee (low mass WIMPs)

LUX @ Sanford:

- 100-200 kg fid., in commissionning
- Water shield

Stage Ia: 25kg (fid)



Low threshold High light collection



Same inner vessel Quick to implement

Stage Ib: 300kg (fid) Stage II: 1Ton (fid)



Same shield/OV/cooling/+ New inner vessel





## XENON1t, XMASS

XMASS @ Kamioka:

- sphere, ~900kg Xenon, water shielkd
- rely only on fiducialization + low radioactivity

- running but currently strongly background limited

#### XENON-1t @ LNGS

- construction started, physics > 2015



In a ~10 m x 10 m water Cherenkov shield

#### Argon instead of Xenon?

- Production of singlet and triplet states with very different livetimes → Pulse
   Shape Discrimination between NR and ER
  - Proven above ~50keV
- Very strong <sup>39</sup>Ar electron recoil background
  - Need to use depleted Ar, found recently in deep underground site («UAr»)
     + dedicated method to extract and purify





Kinder Morgan CO<sub>2</sub> facility.

## DEAP-3600 / MiniCLEAN, DarkSide, ArDM ...

- DEAP/CLEAN @ SNOlab : single phase
  - CLEAN: also Neon.
  - MiniCLEAN: 150 kg fid (360 total), achieve PSD demonstration
  - DEAP-3600: 1t fid (3.6 total), start 2014
- DarkSide (~ WARP) : dual-phase
  - 50kg active mass of UAr, construction/commissionning
  - Within the Borexino CTF tank as a muon veto
  - Prototype for future detector
  - Also ArDM @ Canfranc



DEAP-3600







#### DarkSide

- Cosmology and dark matter
- Principles of WIMP detection
- Germanium bolometers
- Xenon TPCs
- Hints for low-mass WIMPs ?
- Other approaches

## CRESST WIMP search



- Bolometers, reject ER using scintillation signal
- Can choose target material
- CaWO<sub>4</sub> : Oxygen recoils sensitive to low-mass WIMPs
- Many residual bckgd, under control ?



#### CoGeNT spectrum and annual modulation

- Germanium, ionization only
  - PPC diode : achieve very low threshold
- Clear exponential rise of bgckd spectrum
  - Efficiency of PSD rejection near threshold?
- Annual modulation signal (~2.5 $\sigma$ ), mostly at energy > exponential rise





#### Annual modulation of the event rate in DAMA

- Nal scintillating crystals (no rejection of ER bckgd)
- 1.2 ton-yr (0.29 DAMA + 0.87 DAMA/LIBRA)
- Search exclusively an annual modulation of the raw single interaction rate
- Large statistical significance, the signal is «as it should be»
- VERY low threshold
- Efficiency close to threshold ?
- ER bckgd in this energy range ?
- Phase ~ modulation of muon flux @ LNGS (LVD) ?





## How to check DAMA's claim?

- DAMA upgrade (PMTs, more cycles)
- <u>Direct tests</u> : DM-Ice
  - 17kg of NAIAD crystals @ IceCube - South Pole
  - Continuous running since June 2011
  - Which threshold.. ?
- Indirect tests :
  - NR hypothesis : now quite well checked (high-mass, low-mass, SD, SI, inelastic...)
  - ER hypothesis : XENON100 (but need calibration)

| Year | Exposure<br>kg.d | Quoted<br>Significance | Backway<br>Statistical<br>expectation | A and oA<br>of Sm           |
|------|------------------|------------------------|---------------------------------------|-----------------------------|
| 1997 | 4 549            |                        | 1.0                                   | 0.037 +-0.008<br>2-12 keV   |
| 1998 | 19 511           | 99.6 % CL              | 2.0                                   |                             |
| 1999 | 57 986           | 4σ                     | 3.6                                   | 0.022 +- 0.005<br>2-6 keV   |
| 2003 | 107 730          | 6.3 σ                  | 4.9                                   | 0.020 +- 0.003<br>2-6 keV   |
| 2008 | 300 555          | 8.2 σ                  | 8.2                                   | 0.0131 +- 0.0016<br>2-6 keV |



G Gerhier

- Cosmology and dark matter
- Principles of WIMP detection
- Germanium bolometers
- Xenon TPCs
- Hints for low-mass WIMPs ?
- Other approaches

#### Spin-dependent interactions (SD)

Do not benefit from the «A<sup>2</sup>» scaling Must distinguish proton/neutron scattering



## WIMPs with bubble chambers

Example of COUPP (but also PICASSO, SIMPLE)

- CF<sub>3</sub>I chamber with cameras + piezo-acoustic sensors
- Thermodynamical parameters well choosen: see NR above a given threshold, don't see ER !
- Alpha bckgd : rejected with acoustic signal (alpha «louder» than NR)
- $\bullet$  COUPP-4 also has bckgd correlated with activity at the water/CF\_3I boundary





- Mostly competitive for SD, but project to compete on the SI channel
- COUPP-4 (4kg) done
- COUPP-60 : under installation at SNOIab
- Ton-scale projected (PICASSO joining)

## Measuring the WIMP-induced NR direction

- Strong WIMP signature, allows «WIMP astronomy»
- Difficulty : reconstruct tracks@ low E, using a large mass of gaz
  - ⇒ R&D efforts
    - DRIFT : TPC with MWPC wire readout (Boulby)
    - DMTPC : TPC with light (CCD) and charge readout
    - NewAge (Japan)
    - MIMAC : micro-TPC, low-pressure (~50mbar), using micromegas







MiMAC : Eion~40keV recoil of F (CF<sub>4</sub>)



#### Future sensitivities : where should we stop?



 $\rightarrow$  Try to test also other DM candidates

#### Search for ~ $\mu$ eV axion dark matter : ADMX

Coupling «  $g_{ayy} \in B$  » Resonant cavity in a magnetic field B~8T Radio signal @  $f_{cavity} = m_a$ Electric field readout with SQUIDs (sensitivity ~ readout noise) Mechanical scan over  $f_{cavity}$ 



#### Low-mass DM axion search : status



NB: can also look for **keV-scale DM axions** using «standard» WIMP detectors

- Axio-electric coupling gaee
- Resonance in ER spectrum at ma

#### Another possibility : MeV-GeV DM

#### Example :

 $DM \in dark sector U(1)_D$ , DM interacts with ordinary matter through dark photon-photon kinetic mixing

- For MeV-scale DM, kinematics prefers direct detection using ER

- Need ultra-low threshold detectors (eV scale)

- CDMS/EDW-like bolometers may do it



## Conclusions

- Understanding the nature of Dark Matter is a major challenge for cosmology/ particle physics - and may remain for some time...
- The WIMP hunt : direct detection in the «golden» SI channel
  - Many competitors a wonderful playground for bright detector ideas
  - Tremendous progress over the past years for several technologies
     Credit: Joerg Jacckel



- Current lead: dual-phase Xenon TPC
- The situation may evolve, as it already did several times over the past 20 years
- WIMPs are NOT the only DM candidates, and new EW physics has not (yet) appeared : need to explore other scenarios !!