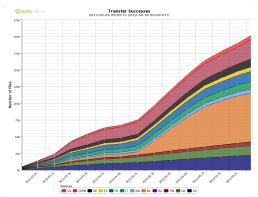
Russian Tier-1: current status and plans

Eygene Ryabinkin, Alexandra Berezhnaya, Vasily Velikhov, Viatcheslav Ilyin, Roman Kolchin, Yury Lazin, Ilya Lyalin, Igor Tkachenko, Fedor Checherov


National Research Centre "Kurchatov Institute"

ALICE T1/T2/T3 meeting, Lyon

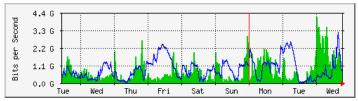
Preface

This presentation will outline the current status and plans for the Tier-1 (prototype) in NRC "Kurchatov Institute" that is being built to serve ALICE, ATLAS and LHCb.

First of all, let's talk about current status.

Current status

Currently we have the following hardware and service layout:


- 740 working CPUs with 4 GB RAM and 50 GB of local disk per core and 1440 more such CPUs are currently being installed;
- Disk-based storage: dCache (production) and EOS (almost ready) instances; 2.2 PB of disks are divided between these two;
- Tape: IBM TS3500 library;
- WLCG services: CREAM CE (2), APEL, BDIIs (site and top-level, both are clustered), VO-BOX, PerfSonar bandwidth and latency nodes;
- standard IT services: DBs (PostgreSQL, MySQL), firewalls, NATs, HTTP proxy farm (CVMFS, Frontier and friends), installation nodes, etc;
- batch system: currently based on Torque/Maui with our own patches; evaluating Slurm-based one.

Current status: networking

- Two network types, WAN and LAN split across different physical hardware sets;
- WAN is organised to carry Nx10 Gbit/sec of external bandwidth with $N \approx 4-10$;
- LAN is designed to scale for 10th of Tbit/sec: core is based on Extreme Networks Black Diamond X8 and active-active inter-switch links; storage is connected directly to the core devices, WNs and services are going through distribution switches;
- LAN is routed, but multicast-friendly (ALICE Torrents!);
- WAN is connected to GEANT (see next slide), to the Russian academic networks (10 Gbit/sec), to various research and educational networks and to LHC OPN;
- new NOC, additional networking people, own routers and autonomous system were brought in to support all of this.

Networking: GEANT, LHC OPN and others

- As you probably know, current Russian GEANT link was cut to 100 Mbit/sec due to NREN debt;
- nevertheless, we're transferring the data¹ from/to other sites all over the world:

- LHC OPN peering was established with 2 Gbit/sec channel; currently we're (still) working on the 10 Gbit/sec dedicated link to CERN;
- Our networking could be better (and we're trying hard to bump it), but we already built a good connectivity.

¹that cavity on tuesday was the time just after the cut

Current status: storage

- Disk instances carry directly-attached, iSCSI and SAS storage; after some experiments we had converged to plain directly-attached storage boxes with 10 Gbit/sec network and phasing out all other storage types;
- Standard 2-4 TB SATA disks, RAID 6 everywhere, storage nodes are loaded with 16 disks each;
- Tape library has 2500+ tape slots (up to 10 PB with IBM enterprise 3592 cartriges); current capacity – 2 PB, 3 TS 1140 drives;
- Current tape library software is Enstore; running it for some months and getting experience with plain Enstore and dCache/Enstore SE. Works mostly fine up to now.

Current status: people

- Infrastructure support team: 24x7 monitoring (2 people with rota;
 7 people in total), support people for power and cooling infrastructure: 11 people.
- Hardware support team: currently we have 6 people who handle all replacements, diagnostics, etc for all our hardware (not only Grid-related one).
- Monitoring: one dedicated person to do monitoring in 12x7; and our fellow sysadmins do the monitoring (with the help from automated systems).
- 1 FTE for ALICE and ATLAS support persons who will mediate the sysadmin teams and VO-specific stuff; something like 0.5 FTE for LHCb support:
 - allocated Ilya Lyalin for the ATLAS business;
 - have a good understanding of what ALICE support person should do; still searching for one;
 - LHCb support person isn't yet determined, though his tasks are mostly understood.

Current status: what we actually already did

- ATLAS part of the current Tier-1 was built, tested and now it is working as the production resource (but without tapes);
- with ATLAS we did reprocessing of 2011's 2.76 TeV data, so our infrastructure was sufficiently stressed with real-world workload;
- reprocessing stats: 57 TB of input data received and processed, 37000 jobs were run, 900 were failed ⇒ 98% of jobs were successful.
- Site is almost always passing standard SAM tests, despite of our experiments with various services.
- Support people are oriented at the production-grade support and we're pushing them hard to achieve this.
- Many services were clustered or made highly-available: this allows for a bit longer allowable response time to the individual failures and provides better resilience.

Let's talk about future

Plans: new hardware and software

- Turns out that we won't buy any new hardware this year (despite our rollout plan that included twice as much storage and CPUs at the end of 2013).
- This is connected to the budget cuts; nevertheless we are working on getting all planned hardware during first half of 2014.
- Life is hard and everything happens :(We take it as the opportunity to focus on the software and operational issues;)
- We're planning to deploy Slurm-based CEs at the end of this year: they should be more stable and easier to support that Torque-based ones.
- More solutions to manage our infrastructure are needed: mature hardware inventory system, more fine-grained monitoring systems that will be interconnected and can be used to cross-system analysis of found problems.

Plans: resources for ALICE

- We are currently installing new hardware and redoing our LAN core to be routed; expected ETA is 2-3 weeks.
- After this we will be ready to start to closely work to provide ALICE resources and test our Tier-1 without tapes.
- Integration of tape with Xrootd-based storage is planned, but not before we will get some real-world operational experience with Enstore and ATLAS.
- Primary disk-based storage element type for ALICE will be EOS; if it will suit everyone, we will stick with it, if not – dCache is the next candidate (we already have a great deal of dCache experience with storage for ATLAS).
- We expect a bit of breakage at the beginning of operations, so don't throw valuable data at us on the first stages, please;)

Plans: people and process

- We are looking for more people that will administer systems and services; it is hard to find good persons for this role, but we're always working on that.
- We will delegate more operational duties to our 24x7 infrastucture team; it is thought to be enlarged to allow for such additional load.
- Monitoring of Grid resources and services will be one of the 24x7 duties, for this we need simpler dashboards with easily-identifieable problems; working on that.
- After getting experience with ATLAS Tier-1 business we're upgrading our internal procedures and views on how things should be done to allow our resources to work smoothly and efficiently.

Questions, comments?

