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The	  integer	  quantum	  Hall	  effect:	  a	  topological	  phase	  

acteristic voltages (see Fig. 5). The first, V , was the volt-
age along the current path, which, when divided by the
current, represented the electrical resistance R of the
material. The second, VH , was the voltage across the
current path, which was expected to be zero since the
current ran perpendicular to it. This was indeed Hall’s
observation until he applied a magnetic field B vertical
to the metal sheet. It gave rise to a nonzero voltage VH
across the current path. From his different experiments,
Hall deduced that VH was proportional to the current I
and proportional to the magnetic field B. Hence, denot-
ing VH /I as an electrical resistance RH yielded RH!B .
Ever since this effect has been known as the Hall effect.

The associated voltage VH is the Hall voltage, which,
when divided by the current I, becomes the Hall resis-
tance RH .

The origin of the Hall effect is classical electrodynam-
ics. The presence of the magnetic field exerts a sideward
force (Lorentz force) onto the electrons, which, on av-
erage, had been moving in the direction of the current.
They are pushed toward one side of the specimen (de-
pending on the direction of the magnetic field), giving
rise to a charge accumulation on one side as compared
with the other. This accumulation of charge ultimately
results in the appearance of a voltage across the current
path. Obviously, the higher the field, the bigger the
push, the bigger RH . But also, the lower the density of
electrons, the higher RH . This sounds initially counter-
intuitive, but is rather simple, too. To generate the same
current, fewer electrons need to travel faster. Faster
electrons experience a stronger Lorenz force and create
a bigger VH and, hence, a bigger RH .

In its final form RH!B/(ne), where n is the electron
density per cm2 (unit area) in the sample, which is equal
to the electron density N per cm3 (unit volume) times
the thickness of the specimen, and e is the elementary
charge of an electron. Notice that no other electron pa-
rameter, such as its mass, nor any of the material param-
eters are entering—only the electron density. Most re-
markably, RH does not depend on the shape of the
specimen. In fact, even a set of holes drilled into the
specimen would not alter the result. A perforated metal
sheet shows the same Hall resistance as a perfect sheet,
as long as all electrical contacts remain mutually con-
nected. Due to its independence from all intrinsic and
extrinsic parameters, the Hall effect has become a stan-
dard tool for the determination of the density of free
electrons in electrical conductors. In particular, the elec-
tron density of semiconductors, which can vary widely,
depending on preparation, is measured via the Hall ef-
fect.

In 1879 Edwin Hall discovered that in a normal con-
ductor the resistance RH depends linearly on the
strength B of the magnetic field (see Fig. 6). In 1980
Klaus von Klitzing discovered that, for the case of two-
dimensional electron systems, the dependence is very
different.

THE INTEGRAL QUANTUM HALL EFFECT

Perform a Hall experiment at the low temperature of
liquid He ("4 K) in a very high magnetic field ("10 T)
on the two-dimensional electron system of a Si
MOSFET and you will find a stepwise dependence of
the Hall resistance on magnetic field, rather than Edwin
Hall’s linear relationship (see Fig. 7). Yet more surpris-
ingly, the value of RH at the position of the plateaus of
the steps is quantized to a few parts per billion (!) to
RH!h/(ie2), where i is an integer and h is Planck’s con-
stant (RH#25.812 . . . k$ for i!1). In 1990, h/e2, the
quantum of resistance, as measured reproducibly to
eight significant digits via this integral quantum Hall ef-
fect (IQHE), became the world’s new resistance stan-

FIG. 4. Today’s Bell Labs ultra-high-purity molecular beam
epitaxy equipment with Loren Pfeiffer (center right) and Ken
West (center left), who are synthesizing the world’s highest-
mobility material. They are joined by Kirk Baldwin (left), who
has worked with me for almost 20 years, and Amir Yacoby
(right), a postdoc who worked on one-dimensional wires.

FIG. 5. Geometry for measurement of the magnetoresistance
R and the Hall resistance RH as a function of the current I and
magnetic field B. V represents the longitudinal voltage,
which is dropping along the current path, and VH the Hall
voltage, which is dropping perpendicular to the current path.
The electron density per cm2 is denoted as n and the charge of
the electron as e. The black dots represent electrons that are
forced toward one side of the bar following the Lorentz force
from the magnetic field.
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dard. Concomitant with the quantization of RH , the
magnetoresistance R drops to vanishingly small values.
This is another hallmark of the IQHE and both are di-
rectly related.

Why are two-dimensional systems (2DESs) so differ-
ent? And what is the origin of the steps and minima?
Classically, electrons in a high magnetic field are forced
onto circular orbits, following the Lorentz force. Quan-
tum mechanically, there exists only a discrete set of al-
lowed orbits at a discrete set of energies. The situation is

not unlike the discrete set of orbits that arise in an atom.
Energetically, these so-called Landau levels represent an
equally spaced ladder of states having energies, Ei!(i
" 1

2 )heB/(2!m) (i!1,2,3, . . . ), proportional to the
magnetic field B. Here m is the electron mass and h is
Planck’s constant. (Throughout this lecture we are ne-
glecting the effects due to the electron spin. It simplifies
the discussion without much loss of generality.) Elec-
trons can only reside at these energies, but not in the
large energy gaps in between. The existence of the gaps
is crucial for the occurrence of the IQHE. Here 2DESs
differ decisively from electrons in three dimensions. Mo-
tion in the third dimension, along the magnetic field, can
add any amount of energy to the energy of the Landau
levels. Therefore, in three dimensions, the energy gaps
are filled up and hence eliminated, preventing the quan-
tum Hall effect from occurring. In 2DESs, in addition to
the existence of energy gaps, the number of electrons
fitting into each Landau level is exactly quantized. It
reflects the number d of orbits that can be packed per
Landau level into each cm2 of the specimen. This turns
out to be d!eB/h . Notice that this capacity per Landau
level, also called its degeneracy, apart from natural con-
stants, depends only on the magnetic field B. None of
the materials parameters enters in any way. It is there-
fore a universal measure, independent of the material
employed.

Let the sample have a fixed 2D electron density n. At
low temperatures, where all electrons try to fall into the
energetically lowest available states, and in a sufficiently
high magnetic field, all electrons fit into the lowest Lan-
dau level, filling it only partially. As the field is lowered,
the capacity of the Landau levels shrink according to d
!eB/h . At B1!nh/e the lowest Landau level is exactly
full. Any further reduction of the field requires the first
electron to leave the lowest Landau level and jump
across the energy gap to the next higher Landau level at
an energy cost of heB1 /(2!m). Reducing the field to
B2!(nh/e)/2!B1/2 fills two Landau levels, and the first
electron has to move to the third level, etc. This creates
a sequence of fields Bi!(nh/e)/i , at which all electrons
fill up an exact number of Landau levels, keeping all
higher Landau levels exactly empty. At these special
points on the magnetic-field axis, the magnetoresistance
R drops momentarily and the Hall resistance RH as-
sumes a set of very special values. Using RH!B/(ne)
from the classical Hall resistance and inserting the val-
ues of the sequence of distinctive fields Bi into the equa-
tion results in a quantized Hall resistance of RH
!h/(ie2), i!1,2,3 . . . . While this is the desired result,
it does not account for the true hallmarks of the IQHE,
which are wide plateaus in RH and broad minima in R.

According to the above derivation, RH would take on
its quantized value only at very precise positions Bi of
magnetic field. This would be a poor basis for a stan-
dard, since the precision to which RH assumes one of the
quantized values would depend on the precision to
which one could determine B. In reality, in the IQHE,
the Hall resistance RH assumes the quantized values
over extended regions of B around Bi .

FIG. 6. Edwin Hall’s Hall data of 1878 as plotted from a table
in his publication. The vertical axis is proportional to the Hall
voltage VH of Fig. 5 and the horizontal axis is proportional to
the magnetic field of Fig. 5. A linear relationship between VH
and B and hence between RH and B is apparent. Since the
days of Edwin Hall, this strictly linear relationship has been
confirmed by many, much more precise experiments.

FIG. 7. The integral quantum Hall effect. Left panel: original
data of the discovery of the integral quantum Hall effect
(IQHE) by Klaus von Klitzing in 1980 in the two-dimensional
electron system of a silicon MOSFET transistor. Instead of a
smooth curve, he observed plateaus in the Hall voltage (UH)
and found concomitant deep minima in the magnetoresistance
(UPP). The horizontal axis represents gate voltage (VG),
which varies the carrier density n. The right panel shows
equivalent data taken on a two-dimensional electron system in
GaAs/AlGaAs. Since these data are plotted vs magnetic field,
they can directly be compared to Edwin Hall’s data of Fig. 6.
Rather than the linear dependence of the Hall resistance on
magnetic field of Fig. 6, these data show wide plateaus in RH
and in addition deep minima in R.
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Quan9zed	  Hall	  conduc9vity:	  

n = 1, 2, 3 . . .

-‐	  insula9ng	  bulk	  (Landau	  levels)	  
-‐	  n	  topologically	  protected	  metallic	  edge	  states	  (skipping	  orbits)	  	  
-‐	  n cannot	  be	  changed	  without	  closing	  an	  energy	  gap	  

Since	  ~	  2005,	  many	  examples	  of	  such	  topological	  phases	  
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1.	  topological	  insulators	  and	  edge	  states	  
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Metals	  vs.	  insulators	  
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Topology	  of	  the	  Fermi	  surface	  

σ = (σx,σy,σz)
n =

1

4π
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d2kĥ(k).

�
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∂ky

�
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Fermion	  doubling	  theorem:	  even	  number	  of	  Dirac	  Cones	  	  →	  (Σ n)	  is	  integer	  
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Dirac	  cone	  



Bulk-‐boundary	  correspondence	  
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1	  chiral	  metallic	  edge	  state	  
robust	  to	  (smooth)	  poten9al	  disorder	  



Quantum	  spin	  Hall	  insulators	  
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Symmetry d

AZ Θ Ξ Π 1 2 3 4 5 6 7 8

A 0 0 0 0 Z 0 Z 0 Z 0 Z
AIII 0 0 1 Z 0 Z 0 Z 0 Z 0

AI 1 0 0 0 0 0 Z 0 Z2 Z2 Z
BDI 1 1 1 Z 0 0 0 Z 0 Z2 Z2

D 0 1 0 Z2 Z 0 0 0 Z 0 Z2

DIII −1 1 1 Z2 Z2 Z 0 0 0 Z 0

AII −1 0 0 0 Z2 Z2 Z 0 0 0 Z
CII −1 −1 1 Z 0 Z2 Z2 Z 0 0 0

C 0 −1 0 0 Z 0 Z2 Z2 Z 0 0

CI 1 −1 1 0 0 Z 0 Z2 Z2 Z 0

TABLE I Periodic table of topological insulators and super-

conductors. The 10 symmetry classes are labeled using the

notation of Altland and Zirnbauer (1997) (AZ) and are spec-

ified by presence or absence of T symmetry Θ, particle-hole

symmetry Ξ and chiral symmetry Π = ΞΘ. ±1 and 0 denotes

the presence and absence of symmetry, with ±1 specifying

the value of Θ
2
and Ξ

2
. As a function of symmetry and space

dimensionality, d, the topological classifications (Z, Z2 and 0)

show a regular pattern that repeats when d → d+ 8.

3. Periodic table

Topological insulators and superconductors fit to-
gether into a rich and elegant mathematical structure
that generalizes the notions of topological band theory
described above (Schnyder, et al., 2008; Kitaev, 2009;
Schnyder, et al., 2009; Ryu, et al., 2010). The classes
of equivalent Hamiltonians are determined by specifying
the symmetry class and the dimensionality. The symme-
try class depends on the presence or absence of T sym-
metry (8) with Θ2 = ±1 and/or particle-hole symmetry
(15) with Ξ2 = ±1. There are 10 distinct classes, which
are closely related to the Altland and Zirnbauer (1997)
classification of random matrices. The topological clas-
sifications, given by Z, Z2 or 0, show a regular pattern
as a function of symmetry class and dimensionality and
can be arranged into the periodic table of topological in-
sulators and superconductors shown in Table I.

The quantum Hall state (Class A, no symmetry; d =
2), the Z2 topological insulators (Class AII, Θ2 = −1;
d = 2, 3) and the Z2 and Z topological superconductors
(Class D, Ξ2 = 1; d = 1, 2) described above are each
entries in the periodic table. There are also other non
trivial entries describing different topological supercon-
ducting and superfluid phases. Each non trivial phase is
predicted, via the bulk-boundary correspondence to have
gapless boundary states. One notable example is super-
fluid 3He B (Volovik, 2003; Roy, 2008; Schnyder, et al.,
2008; Nagato, Higashitani and Nagai, 2009; Qi, et al.,
2009; Volovik, 2009), in (Class DIII, Θ2 = −1, Ξ2 = +1;
d = 3) which has a Z classification, along with gapless 2D
Majorana fermion modes on its surface. A generalization
of the quantum Hall state introduced by Zhang and Hu
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Insulator !=0
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FIG. 5 Edge states in the quantum spin Hall insulator. (a)

shows the interface between a QSHI and an ordinary insula-

tor, and (b) shows the edge state dispersion in the graphene

model, in which up and down spins propagate in opposite

directions.

(2001) corresponds to the d = 4 entry in class A or AII.
There are also other entries in physical dimensions that
have yet to be filled by realistic systems. The search is
on to discover such phases.

III. QUANTUM SPIN HALL INSULATOR

The 2D topological insulator is known as a quantum
spin Hall insulator. This state was originally theorized
to exist in graphene (Kane and Mele, 2005a) and in 2D
semiconductor systems with a uniform strain gradient
(Bernevig and Zhang, 2006). It was subsequently pre-
dicted to exist (Bernevig, Hughes and Zhang, 2006), and
was then observed (König, et al., 2007), in HgCdTe quan-
tum well structures. In section III.A we will introduce
the physics of this state in the model graphene system
and describe its novel edge states. Section III.B will re-
view the experiments, which have also been the subject
of the review article by König, et al. (2008).

A. Model system: graphene

In section II.B.2 we argued that the degeneracy at the
Dirac point in graphene is protected by inversion and
T symmetry. That argument ignored the spin of the
electrons. The spin orbit interaction allows a new mass
term in (3) that respects all of graphene’s symmetries. In
the simplest picture, the intrinsic spin orbit interaction
commutes with the electron spin Sz, so the Hamiltonian
decouples into two independent Hamiltonians for the up
and down spins. The resulting theory is simply two copies
the Haldane (1988) model with opposite signs of the Hall
conductivity for up and down spins. This does not violate
T symmetry because time reversal flips both the spin and
σxy. In an applied electric field, the up and down spins
have Hall currents that flow in opposite directions. The
Hall conductivity is thus zero, but there is a quantized
spin Hall conductivity, defined by J↑

x − J↓
x = σs

xyEy with
σs
xy = e/2π – a quantum spin Hall effect. Related ideas

were mentioned in earlier work on the planar state of
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FIG. 2 The interface between a quantum Hall state and an

insulator has chiral edge mode. (a) depicts the skipping cy-

clotron orbits. (b) shows the electronic structure of a semi

infinite strip described by the Haldane model. A single edge

state connects the valence band to the conduction band.

with E(qx) = �vF qx. This band of states intersects the
Fermi energy EF with a positive group velocity dE/dqx =
�vF and defines a right moving chiral edge mode.

In the 1980’s related ideas were applied to narrow
gap semiconductors, which can be modeled using a 3D
massive Dirac Hamiltonian(Volkov and Pankratov, 1985;
Fradkin, Dagotto and Boyanovsky, 1986). An interface
where the Dirac mass changes sign is associated with gap-
less 2D Dirac fermion states. These share some similari-
ties with the surface states of a 3D topological insulator,
but as we shall see in section IV.A, there is a funda-
mental difference. In a separate development, Kaplan
(1992) showed that in lattice quantum chromodynamics
4D chiral fermions could be simulated on a 5D lattice
by introducing a similar domain wall. This provided a
method for circumventing the doubling theorem(Nielssen
and Ninomiya, 1983), which prevented the simulation of
chiral fermions on a 4D lattice. Quantum Hall edge states
and surface states of a topological insulator evade similar
doubling theorems.

The chiral edge states in the quantum Hall effect can
be seen explicitly by solving the Haldane model in a semi-
infinite geometry with an edge at y = 0. Fig. 2(b) shows
the energy levels as a function of the momentum kx along
the edge. The solid regions show the bulk conduction and
valence bands, which form continuum states and show
the energy gap near K and K�. A single band, describing
states bound to the edge connects the valence band to the
conduction band with a positive group velocity.

By changing the Hamiltonian near the surface the dis-
persion of the edge states can be modified. For instance,
E(qx) could develop a kink so that the edge states inter-
sect EF three times – twice with a positive group velocity
and once with a negative group velocity. The difference
NR − NL between the number of right and left moving
modes, however, can not change, and is determined by
the topological structure of the bulk states. This is sum-
marized by the bulk-boundary correspondence:

NR −NL = ∆n, (7)

where ∆n is the difference in the Chern number across
the interface.

!a !b

Valence Band

Conduction Band

FE

k !a !b

Valence Band

Conduction Band

FE

kk

(a) (b)E E

FIG. 3 Electronic dispersion between two boundary Kramers

degenerate points Γa = 0 and Γb = π/a. In (a) the num-

ber of surface states crossing the Fermi energy EF is even,

whereas in (b) it is odd. An odd number of crossings leads to

topologically protected metallic boundary states.

C. Z2 topological insulator

Since the Hall conductivity is odd under T , the topo-
logically non trivial states described in the preceding sec-
tion can only occur when T symmetry is broken. How-
ever, the spin orbit interaction allows a different topolog-
ical class of insulating band structures when T symmetry
is unbroken (Kane and Mele, 2005a). The key to under-
standing this new topological class is to examine the role
of T symmetry for spin 1/2 particles.
T symmetry is represented by an antiunitary operator

Θ = exp(iπSy/�)K, where Sy is the spin operator and
K is complex conjugation. For spin 1/2 electrons, Θ has
the property Θ2 = −1. This leads to an important con-
straint, known as Kramers’ theorem, that all eigenstates
of a T invariant Hamiltonian are at least twofold de-
generate. This follows because if a non degenerate state
|χ� existed then Θ|χ� = c|χ� for some constant c. This
would mean Θ2|χ� = |c|2|χ�, which is not allowed be-
cause |c|2 �= −1. In the absence of spin orbit interac-
tions, Kramers’ degeneracy is simply the degeneracy be-
tween up and down spins. In the presence of spin orbit
interactions, however, it has nontrivial consequences.
A T invariant Bloch Hamiltonian must satisfy

ΘH(k)Θ−1 = H(−k). (8)

One can classify the equivalence classes of Hamiltonians
satisfying this constraint that can be smoothly deformed
without closing the energy gap. The TKNN invariant is
n = 0, but there is an additional invariant with two pos-
sible values ν = 0 or 1 (Kane and Mele, 2005b). The fact
that there are two topological classes can be understood
by appealing to the bulk-boundary correspondence.
In Fig. 3 we show plots analogous to Fig. 2 showing the

electronic states associated with the edge of a T invariant
2D insulator as a function of the crystal momentum along
the edge. Only half of the Brillouin zone 0 < kx < π/a is
shown because T symmetry requires that the other half
−π/a < k < 0 is a mirror image. As in Fig. 2, the shaded
regions depict the bulk conduction and valence bands
separated by an energy gap. Depending on the details
of the Hamiltonian near the edge there may or may not
be states bound to the edge inside the gap. If they are
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FIG. 6 (a) A HgCdTe quantum well structure. (b) As a

function of layer thickness d the 2D quantum well states cross

at a band inversion transition. The inverted state is the QSHI,

which has helical edge states (c) that have a non equilibrium

population determined by the leads. (d) shows experimental

two terminal conductance as a function of a gate voltage that

tunes EF through the bulk gap. Sample I, with d < dc shows

insulating behavior, while samples III and IV show quantized

transport associated with edge states. Adapted from König,

et al., 2007. Reprinted with permission from AAAS.

ature scattering effects. These experiments convincingly

demonstrate the existence of the edge states of the quan-

tum spin Hall insulator. Subsequent experiments have

established the inherently nonlocal electronic transport

in the edge states (Roth, et al., 2009).

IV. 3D TOPOLOGICAL INSULATORS

In the summer of 2006 three groups of theorists in-

dependently discovered that the topological characteri-

zation of the quantum spin Hall insulator state has a

natural generalization in three dimensions (Fu, Kane

and Mele, 2007; Moore and Balents, 2007; Roy, 2009b).

Moore and Balents (2007) coined the term “topological

insulator” to describe this electronic phase. Fu, Kane and

Mele (2007) established the connection between the bulk

topological order and the presence of unique conduct-

ing surface states. Soon after, this phase was predicted

in several real materials (Fu and Kane, 2007), includ-

ing Bi1−xSbx as well as strained HgTe and α−Sn. In

2008, Hsieh, et al. (2008) reported the experimental dis-

covery of the first 3D topological insulator in Bi1−xSbx.

In 2009 “second generation” topological insulators, in-

cluding Bi2Se3, which has numerous desirable properties,

were identified experimentally (Xia, et al., 2009a) and

theoretically (Xia, et al., 2009a; Zhang, H., et al., 2009).
In this section we will review these developments.

(a) (b) (c)

EF

E
kxkx

kyky
!4!3

!1 !2

!4!3

!1 !2

FIG. 7 Fermi circles in the surface Brillouin zone for (a) a

weak topological insulator and (b) a strong topological insu-

lator. In the simplest strong topological insulator the Fermi

circle encloses a single Dirac point (c).

A. Strong and weak topological insulators

A 3D topological insulator is characterized by four Z2

topological invariants (ν0; ν1ν2ν3) (Fu, Kane and Mele,

2007; Moore and Balents, 2007; Roy, 2009b). They can

be most easily understood by appealing to the bulk-

boundary correspondence, discussed in section II.C. The

surface states of a 3D crystal can be labeled with a 2D

crystal momentum. There are four T invariant points

Γ1,2,3,4 in the surface Brillouin zone, where surface states,

if present, must be Kramers degenerate (Fig. 7(a,b)).

Away from these special points, the spin orbit interac-

tion will lift the degeneracy. These Kramers degenerate

points therefore form 2D Dirac points in the surface band

structure (Fig. 7(c)). The interesting question is how the

Dirac points at the different T invariant points connect

to each other. Between any pair Γa and Γb, the surface

state structure will resemble either Fig. 3a or 3b. This

determines whether the surface Fermi surface intersects

a line joining Γa to Γb an even or an odd number of

times. If it is odd, then the surface states are topologi-

cally protected. Which of these two alternatives occurs

is determined by the four bulk Z2 invariants.

The simplest non trivial 3D topological insulators may

be constructed by stacking layers of the 2D quantum spin

Hall insulator. This is analogous to a similar construction

for 3D integer quantum Hall states (Kohmoto, Halperin

and Wu, 1992). The helical edge states of the layers

then become anisotropic surface states. A possible sur-

face Fermi surface for weakly coupled layers stacked along

the y direction is sketched in Fig. 7(a). In this figure a

single surface band intersects the Fermi energy between

Γ1 and Γ2 and between Γ3 and Γ4, leading to the non

trivial connectivity in Fig. 3(b). This layered state is re-

ferred to as a weak topological insulator, and has ν0 = 0.

The indices (ν1ν2ν3) can be interpreted as Miller indices

describing the orientation of the layers. Unlike the 2D he-

lical edge states of a single layer, T symmetry does not

protect these surface states. Though the surface states

must be present for a clean surface, they can be localized

in the presence of disorder. Interestingly, however, a line

dislocation in a weak topological insulator is associated

with protected 1D helical edge states (Ran, Zhang and

Vishwanath, 2009).

ν0 = 1 identifies a distinct phase, called a strong topo-
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FIG. 6 (a) A HgCdTe quantum well structure. (b) As a

function of layer thickness d the 2D quantum well states cross

at a band inversion transition. The inverted state is the QSHI,

which has helical edge states (c) that have a non equilibrium

population determined by the leads. (d) shows experimental

two terminal conductance as a function of a gate voltage that

tunes EF through the bulk gap. Sample I, with d < dc shows

insulating behavior, while samples III and IV show quantized

transport associated with edge states. Adapted from König,

et al., 2007. Reprinted with permission from AAAS.

ature scattering effects. These experiments convincingly

demonstrate the existence of the edge states of the quan-

tum spin Hall insulator. Subsequent experiments have

established the inherently nonlocal electronic transport

in the edge states (Roth, et al., 2009).

IV. 3D TOPOLOGICAL INSULATORS

In the summer of 2006 three groups of theorists in-

dependently discovered that the topological characteri-

zation of the quantum spin Hall insulator state has a

natural generalization in three dimensions (Fu, Kane

and Mele, 2007; Moore and Balents, 2007; Roy, 2009b).

Moore and Balents (2007) coined the term “topological

insulator” to describe this electronic phase. Fu, Kane and

Mele (2007) established the connection between the bulk

topological order and the presence of unique conduct-

ing surface states. Soon after, this phase was predicted

in several real materials (Fu and Kane, 2007), includ-

ing Bi1−xSbx as well as strained HgTe and α−Sn. In

2008, Hsieh, et al. (2008) reported the experimental dis-

covery of the first 3D topological insulator in Bi1−xSbx.

In 2009 “second generation” topological insulators, in-

cluding Bi2Se3, which has numerous desirable properties,

were identified experimentally (Xia, et al., 2009a) and

theoretically (Xia, et al., 2009a; Zhang, H., et al., 2009).
In this section we will review these developments.
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weak topological insulator and (b) a strong topological insu-

lator. In the simplest strong topological insulator the Fermi

circle encloses a single Dirac point (c).
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A 3D topological insulator is characterized by four Z2

topological invariants (ν0; ν1ν2ν3) (Fu, Kane and Mele,

2007; Moore and Balents, 2007; Roy, 2009b). They can

be most easily understood by appealing to the bulk-

boundary correspondence, discussed in section II.C. The

surface states of a 3D crystal can be labeled with a 2D

crystal momentum. There are four T invariant points

Γ1,2,3,4 in the surface Brillouin zone, where surface states,

if present, must be Kramers degenerate (Fig. 7(a,b)).

Away from these special points, the spin orbit interac-

tion will lift the degeneracy. These Kramers degenerate

points therefore form 2D Dirac points in the surface band

structure (Fig. 7(c)). The interesting question is how the

Dirac points at the different T invariant points connect

to each other. Between any pair Γa and Γb, the surface

state structure will resemble either Fig. 3a or 3b. This

determines whether the surface Fermi surface intersects

a line joining Γa to Γb an even or an odd number of

times. If it is odd, then the surface states are topologi-

cally protected. Which of these two alternatives occurs

is determined by the four bulk Z2 invariants.

The simplest non trivial 3D topological insulators may

be constructed by stacking layers of the 2D quantum spin

Hall insulator. This is analogous to a similar construction

for 3D integer quantum Hall states (Kohmoto, Halperin

and Wu, 1992). The helical edge states of the layers

then become anisotropic surface states. A possible sur-

face Fermi surface for weakly coupled layers stacked along

the y direction is sketched in Fig. 7(a). In this figure a

single surface band intersects the Fermi energy between

Γ1 and Γ2 and between Γ3 and Γ4, leading to the non

trivial connectivity in Fig. 3(b). This layered state is re-

ferred to as a weak topological insulator, and has ν0 = 0.

The indices (ν1ν2ν3) can be interpreted as Miller indices

describing the orientation of the layers. Unlike the 2D he-

lical edge states of a single layer, T symmetry does not

protect these surface states. Though the surface states

must be present for a clean surface, they can be localized

in the presence of disorder. Interestingly, however, a line

dislocation in a weak topological insulator is associated

with protected 1D helical edge states (Ran, Zhang and

Vishwanath, 2009).

ν0 = 1 identifies a distinct phase, called a strong topo-
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2. Topological	  superconductors	  and	  Majorana	  fermions	  



Superconduc9vity	  

Bardeen-‐Cooper-‐Schrieffer	  theory	  (1957)	  
	  

	  aLrac9ve	  interac9on	  between	  electrons	  in	  metals	  
	  
➤	  Cooper	  instability:	  binding	  of	  two	  electrons	  
	  
	  
➤	  Cooper	  pairs	  condense	  into	  a	  superfluid	  ground-‐state	  
	  

	   	   	  zero-‐resistance	  state	  
	  
➤	  energy	  gap	  in	  the	  excita9on	  spectrum	  
	  

k−k

Fermi	  sea	  

density	  of	  states	  

energy	  

2∆

specific	  heat	  

C ∼ e−∆/T T � ∆



Bogoliubov-‐de	  Gennes	  theory	  
BCS	  Hamiltonian	  (for	  spinless	  electrons)	  
	  
	  
	  
	  
BdG	  formula9on	  
	  
	  
	  
	  
the	  energy	  spectrum	  is	  gapped	  and	  par9cle-‐hole	  symmetric:	  
	  
	  
	  
elementary	  excita9ons	  =	  superposi9on	  of	  electron	  crea9on	  and	  annihila9on	  	  
	  

H =
�

k

�
ξkc

†
kck +∆kc

†
kc

†
−k +∆∗

kc−kck
�

H =
1

2

�

k

�
c†k c−k

�� ξk ∆k

∆∗
k −ξk

��
ck
c†−k

�
+ cst

ξk = �k − µ

Ek = ±
�

ξ2k + |∆k|2

pair	  poten&al	  

γk = ukck − v∗kc
†
−k

par&cle-‐hole	  spinor	  

γ(−E) = γ†(E)
same	  
state	  

E

k



(Dirac)	  fermions:	  
	  
	  
	  
Majorana	  fermions	  
	  
	  
	  
	  
	  
1	  fermion	  =	  2	  Majoranas	  
	  

Majorana	  fermions	  

{ci, cj} = 0{ci, c†j} = δij

par9cle-‐hole	  symmetry	  in	  superconductors	  

γ(−E) = γ†(E)

{Γi,Γj} = 2δij

Γi = Γ†
i

c =
1

2
(Γ1 + iΓ2) c† =

1

2
(Γ1 − iΓ2)

γ(0) = γ†(0)E = 0 :
no	  charge	  
no	  spin	  

-‐  conjectured	  by	  Majorana	  (1937)	  
-‐  no	  known	  elementary	  par9cle	  

(maybe	  neutrino?)	  



Kitaev	  1D	  toy	  model	  

	  1 	  	  	  	  	  2	  	  	  	  	  	  	  	  	  3	   	   	   	   	  	  	  .	  .	  . 	   	   	   	  	  	  	  	  	  	  	  	  	  	  N
	   	   	   	   	   	  	   	   	   	   	  	  

hopping	   	  	  	  	  	  	  	  pairing	  (p-‐wave)	  

µ = 0

t = ∆
Majorana	  
end	  state	  

Majorana	  
end	  state	  

N	  sites:	  

c†n = (ΓL,n − iΓR,n)/2

cn = (ΓL,n + iΓR,n)/2

H = −it
N−1�

n=1

ΓR,nΓL,n+1
specific	  choice:	  

zero-‐energy	  non-‐local	  fermion:	   d†d =
1

2
(1 + iΓL,1ΓR,N )

Kitaev,	  2001	  

H =
�

n

�
−(tc†ncn+1 + h.c.)− µc†ncn + (∆c†nc

†
n+1 + h.c.)

�

E

k



Kitaev	  model	  and	  topology	  

Z2	  topological	  index	   	  = 	  	  #	  crossing	  of	  the	  Fermi	  surface	  (k>0)	  
	   	   	   	   	  = 	  	  #	  pairs	  of	  Majorana	  end	  states	  

|µ| < 2t |µ| > 2t

kk

E(k)E(k)

µµ

ξk = 4t cos k

n=1	  (topological)	   n=0	  (trivial)	  



H =

�
d2r

�
ψ†(r)

�
−
∂2
x + ∂2

y

2m
− µ

�
ψ(r)− i∆ [ψ(r)(∂x + i∂y)ψ(r) + h.c.]

�

p+ip two-‐dimensional	  superconduc9vity	  
Read	  and	  Green,	  2000	  

H = h(k).τ

n =
1

4π

�
d2kĥ(k).

�
∂ĥ(k)

∂kx
× ∂ĥ(k)

∂ky

�

τ = (τx, τy, τz)

hz(k) =
k2

2m
− µ

µ < 0  	  (trivial) 	   	   	   	   	   	   	   	   	  	  
	   	  	  

µ > 0n = 0 n = 1

Z	  topological	  index:	  	  

∆(k) ∝ (kx + iky)
2ν+1

n = 2ν + 1

hx(k) = ∆kx

hy(k) = ∆ky

with	  

ĥx(k) ĥy(k)

ĥz(k)

ĥ(k) =
h(k)

|h(k)|

p+ ip

(topological)	  



Majorana	  modes	  and	  vortex	  core	  states	  
Read	  and	  Green,	  2000	  

hole	   quan9zed	  flux	  
through	  a	  vortex	  

⊗B

Φ =
hc

2e

topological	  
superconductor	  

energy	  

k 

Majoranas	  



non-‐abelian	  sta9s9cs	  

2N	  Majoranas	  
	  
N	  fermions	  
	  
2N	  degeneracy	  of	  the	  ground	  state	  
	  
	  
clockwise	  exchange	  of	  two	  (vortex	  core)	  Majoranas	  in	  2D	  
	  
	  
	  
	  
	  
braiding	  of	  exchanges	  →	  rota9ons	  within	  the	  ground-‐state	  manifold	  
	  

	  
prospects	  for	  adiaba9c	  quantum	  compu9ng	  

	  

Γ1,Γ2, . . . ,Γ2p,Γ2p+1, . . .

|n1, . . . , nN � np = d†pdp

. . . , dp =
1

2
(Γ2p + iΓ2p+1), . . .

U23Γ2U
†
23 = +Γ3

U23Γ3U
†
23 = −Γ2

Γ1

Γ2

Γ3

Γ4

Ivanov,	  2003	  



proximity-‐induced	  topological	  superconduc9vity	  
semiconduc9ng	  nanowire	  

�
∆2 + µ2 < h

↑, ↓ ↑ ↓
ξk

k

spin	  
gap	  h 

H =

�
dx

�
ψ†(x)

�
p2x
2m

− µ+ ασzpx + hσy

�
ψ(x) +∆ (ψ↑ψ↓ + h.c.)

�

Rashba	  spin-‐
orbit	  coupling	  

transverse	  
Zeeman	  field	  

effec9ve	  pairing	  induced	  by	  proximity	  
with	  a	  conven9onal	  superconductor	  

topological	  if	  

Lutchyn	  et	  al.,	  2010;	  	  
Oreg	  et	  al,	  2010	  

intra-‐band	  pairing	  	  
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B

ERashba
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Zero-‐bias	  anomaly	  
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Au/InSb/NbTi	  
Mourik	  et	  al.,	  2013	  

the	  tunneling	  current	  probes	  
the	  local	  density	  of	  state	  
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conven9onal:	  
	  
	  
2π-‐periodic	  

topological	  Josephson	  junc9ons	  
∆∆eiϕ

HJ = i2t� cos
�ϕ
2

�
ΓLΓR = t� cos

�ϕ
2

��
d†d− 1

2

�

EJ(ϕ) = ∓ t�

2
cos

�ϕ
2

�

I(ϕ) =
2e

�
∂EJ

∂ϕ
= ±et�

2� sin
�ϕ
2

�

4π-‐periodic	  current-‐phase	  rela9on	  	  
for	  a	  given	  occupa9on	  of	  the	  Majorana	  bound	  state	  

equilibrium	  Josephson	  current	  

d†d = 0or 1

I ∝ sinϕ

d = (ΓR + iΓL)/2
d† = (ΓR − iΓL)/2



➤	  Josephson	  radia9on	  at	  half	  the	  Josephson	  frequency	  
	  
	  
	  
	  
	  
	  
	  
	  
➤	  absence	  of	  odd	  Shapiro	  steps	  in	  the	  presence	  of	  microwaves	  

frac9onal	  ac	  Josephson	  effect	  

ϕ̇ =
2e

� V (t)

ω = eVdc/�

I ∝ sin
�ϕ
2

�

S(ω)

ω

eV/�

I

Vdc

�Ω/e 2�Ω/e 3�Ω/e

I

Vdc

�Ω/e 2�Ω/e 3�Ω/e

S(ω)

ω
2eV/�eV/�

V (t) = Vdc + Vac cos(Ωt)

Kitaev,	  2001	  
Kwon	  et	  al,	  2004	  

Fu	  and	  Kane,	  2009	  	  

S(ω) =

�
dτeiωτI(t+ τ)I(t)

(trivial)	  

(trivial)	  



Conclusion	  

➤	  Surprises	  in	  the	  (non-‐interac9ng)	  band	  theory	  of	  solids	  
	  
➤	  topological	  insula9ng	  phases:	  

	   	  -‐	  insula9ng	  bulk	  characterized	  by	  a	  topological	  index	  
	   	  -‐	  robust	  metallic	  edge	  states	  
	   	  -‐	  quan9zed	  response	  func9on	  

	  
➤	  emergent	  Majorana	  fermions	  in	  hybrid	  junc9ons	  with	  conven9onal	  superconductors	  	  
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