Statistical Transmutations in Doped Quantum Dimers

Arnaud Ralko, Institut Néel, Grenoble.

Annecy, 18 april 2013.

Collaborators

- Didier Poilblanc (LPT Toulouse / France)
- Pierre Pujol (LPT Toulouse / France)
- Masaki Oshikawa (ISSP Tokyo / Japan)
- Daniel Cabra (IFLP La Plata / Argentina)
- Carlos Lamas (IFLP La Plata / Argentina)

Scope

- Quantum Spin Liquids in Mott insulators
- Doped quantum dimer models
- Statistical transmutation
- Quantum phase transitions

Physical Motivations

What is the general situation for the QAF on lattices ?

What are the possible scenarios?

Heisenberg Model

U(1), spin rotation along z-axis

+ spatial symmetries: translations, point group

Presence of a magnetic long range order: SU(2) broken

$$\langle \mathbf{S}_i \cdot \mathbf{S}_j \rangle \simeq m_{\mathbf{q}}^2 \cos(\mathbf{q} \cdot (\mathbf{r}_i - \mathbf{r}_j)) \ as \ |\mathbf{r}_i - \mathbf{r}_j| \to \infty$$

- 3D: up to Néel temperature
- 2D: only at T=0K

Low energy excitations: Spin waves

Other scenario: Spin liquids

Dimers in the nature: SrCu₂(BO₃)₂

No magnetic long range order $\chi(T) \simeq T^{-1/2} e^{-\Delta_s/T}$

Shastry & Sutherland (81), Kageyama et al. (2005)

Doping the singlet GS Increasing $H \Rightarrow$ Triplet Magnetization Plateau

- Static dimer background
- Bose-condensation of triplets
- Exotic phases: SF, SS

Dimers in the nature: SrCu₂(BO₃)₂

No magnetic long range order $\chi(T) \simeq T^{-1/2} e^{-\Delta_s/T}$

Shastry & Sutherland (81), Kageyama et al. (2005)

Doping the singlet GS Increasing $H \Rightarrow$ Triplet Magnetization Plateau

Holon quantum dynamics

- Static dimer background
- Bose-condensation of triplets
- Exotic phases: SF, SS

Connection with High-Tc

Statistics of Holons ?

Impurities in the Kagomé Spin-1/2 QAF

Real system: Zinc impurities ranging in 6% to 10%

- Hao & Tcherbyshyov (2010)
- Possible comparison to NMR experiments

What is the parent insulating GS?

Strange critical behavior connected to holons

Doped Quantum Dimer models

Effective models derived from microscopic systems

- Heisenberg Rokhsar & Kivelson (88), Moessner & Sondhi (01), AR et al. (11)
- Spin-orbital Vernay, AR, Becca, Mila (06)

Dimer background quantum dynamics

Rokhsar & Kivelson (88)

$\mathcal{H} = v(|\Box\rangle\langle\Box| + |\Box\rangle\langle\Box|) - J(|\Box\rangle\langle\Box| + |\Box\rangle\langle\Box|)$

• v: Potential term

Dimer background quantum dynamics Rokhsar & Kivelson (88)

- v: Potential term
- J: Kinetic term

Dimer background quantum dynamics Rokhsar & Kivelson (88)

- v: Potential term
- J: Kinetic term
- t: Holon hopping term

Dimer background quantum dynamics Rokhsar & Kivelson (88)

- v: Potential term
- J: Kinetic term
- t: Holon hopping term

Dimer background quantum dynamics Rokhsar & Kivelson (88)

- v: Potential term
- J: Kinetic term
- t: Holon hopping term

Dimer background quantum dynamics Rokhsar & Kivelson (88)

 $\mathcal{H} = v(|\Box\rangle\langle\Box| + |\Box\rangle\langle\Box|) - J(|\Box\rangle\langle\Box| + |\Box\rangle\langle\Box|)$

- v: Potential term
- J: Kinetic term
- t: Holon hopping term

But what are the holon properties?

$$\mathcal{H} = \mathcal{H}_v + \mathcal{H}_J + \mathcal{H}_t$$

- Analitycal methods (Jordan-Wigner transformation)
- Exact diagonalizations, Quantum Monte-Carlo AR et al. PRL(2012), PRB(2013)

$\mathcal{H} = v(|\Box\rangle\langle\Box| + |\Box\rangle\langle\Box|) - J(|\Box\rangle\langle\Box| + |\Box\rangle\langle\Box|) + t |\Box\rangle\langle\Box|$

How to properly define the holon statistics? AR et al. PRL(2012), PRB(2013)

Complex structure of the Hamiltonian

We start with the unfrustrated case J>0, t>0, bosons \mathcal{H}_a $t \leftrightarrow -t$

 $\begin{array}{ccc} \mathcal{H}_{a} & \mathcal{H}_{b} \\ \mathcal{F} \leftrightarrow \mathcal{B} & \mathcal{H} = \mathcal{H}_{v} + \mathcal{H}_{J} + \mathcal{H}_{t} & \mathcal{F} \leftrightarrow \mathcal{B} \\ \mathcal{H}_{c} & \mathcal{H}_{d} \end{array}$

$$\begin{array}{c} J \leftrightarrow -J \\ \mathcal{H}_a & \mathcal{F} \leftrightarrow \mathcal{B} \end{array} \mathcal{H}_{a'} \end{array}$$

same spectrum !

Depending the sign of J, bosons transmutes in fermions !!!

- Anyons are hard-core thanks to the Pauli principle of initial fermions
- Mean-field: a flux tube $\xi \phi_0$ attached on *each* electron

Aharonov-Bohm phase when 2 anyons are exchanged: $e^{\frac{e}{\hbar}\oint \vec{A}\cdot\vec{dl}} = e^{i\xi\pi}$

Application to $\mathcal{H} = \mathcal{H}_v + \mathcal{H}_J + \mathcal{H}_t$

- Rewrite dimers $b_{i,j}^+ = \frac{1}{\sqrt{2}} \left(c_{i,\uparrow}^+ c_{j,\downarrow}^+ c_{i,\downarrow}^+ c_{j,\uparrow}^+ \right)$
- Impose constraint on site $i \quad a_i^+a_i + \sum_{j \in n.n.} b_{i,j}^+b_{i,j} = 1$
- Write down the Hamiltonian

Dimer Kinetic $h_{i,j,k,l}^{(J)} = -J(b_{i,j}^+ b_{k,l}^+ b_{j,k} b_{l,i} + h.c.)$ Dimer Potential $h_{i,j,k,l}^{(v)} = v(b_{i,j}^+ b_{i,j} b_{k,l}^+ b_{k,l} + b_{j,k}^+ b_{j,k} b_{l,i}^+ b_{l,i})$

• Perform the Jordan-Wigner $a_i = e^{-i\phi_i}c_i$ $b_{i,j} = e^{-i(\phi_i + \phi_j)}\tilde{b}_{i,j}$ $h_{i,j,k,l}^{(J)} \rightarrow h_{i,j,k,l}^{(\tilde{J})} = -\tilde{J}(\tilde{b}_{i,j}^+ \tilde{b}_{k,l}^+ \tilde{b}_{j,k} \tilde{b}_{l,i} + h.c.)$ $\tilde{J} = -J$ (with fixed gauge) $h_{i,j,k,l}^{(v)} \rightarrow h_{i,j,k,l}^{(\tilde{v})} = \tilde{v}(\tilde{b}_{i,j}^+ \tilde{b}_{i,j} \tilde{b}_{k,l}^+ \tilde{b}_{k,l} + \tilde{b}_{j,k}^+ \tilde{b}_{j,k} \tilde{b}_{l,i} \tilde{b}_{l,i})$ $\tilde{v} = -v$

Equivalence proved

 $\begin{vmatrix} \tilde{J} \leftrightarrow -J \\ \mathcal{F} \leftrightarrow \mathcal{B} \end{vmatrix}$

Quantum phase transitions

• Under doping : generic 1-e superconducting phase

SS	1e-SF		2e-SF	PS	SF or E	3ose–liquid?	1e–SF	2e-SF	4e-SF
sites		11	$a \xrightarrow{t \rightarrow} a$		\mathcal{H}_b				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	\mathcal{X} \mathbf{x}				$\rightarrow \mathcal{F}$	X			1.0
PS 2e-SF	Complex	H.		-t 7 PS	Complex	Fermi–liquid	1e–SF	2e-SF	4e-SF

Quantum phase transitions

the second s							
<u>Observables→</u> Phases↓	К	$\langle b_{i,j}^{\dagger}b_{i,j}b_{k,l}^{\dagger}b_{k,l} angle$	$\langle a_k^\dagger a_l^\dagger a_i a_j angle$	$\langle a_i^{\dagger} S_{i,j} a_j \rangle$	sgn _B	sgn _F	Flux periodicity
PS	<0						
VBC	>0	LR	SR	SR			2e
SS	>0	LR	LR	SR	1	0	2e
2e-SF	>0	SR	LR	SR	$0 < \operatorname{sgn}_B < 1$	$0 < \operatorname{sgn}_F < 1$	2 <i>e</i>
sites-SF	>0	8×8 sites SR	LR (weak)	LR	1	0	2 <i>e</i>
Bose liquid	>0	SR	SR	SR	1	0	2 <i>e</i>
Fermi liquid	>0	SR	SR	SR	0	1	2 <i>e</i>
"Complex" phase	>0	SR	SR	SR	$0 < \operatorname{sgn}_B < 1$	$0 < \operatorname{sgn}_F < 1$	2 <i>e</i>
SS		1e-SF	2e-SF	ABC VBC	SF or Bose–liq	uid? 1e–SF	2e–SF 4e–SF
$\frac{2000025}{30000} = \frac{30000}{35} = \frac{300000}{35} = \frac{30000}{35} = \frac{30000}{$	• / 10 20	$8 \times 8 \text{ sites}$	\mathcal{H}_a $\mathcal{B} \rightarrow \mathcal{F}$ \mathcal{H}	$\rightarrow -t$ \mathcal{B} $t \cdot \theta - t$	\mathcal{H}_b $\rightarrow \mathcal{F}$ \mathcal{H}_d	e-SF pha	String 1.0
PS 2e-SF	Comple	x 1e-3	SF 2e-SF	ABC VBC	Complex Fermi	-liquid 1e-SF	2e–SF 4e–SF

Thank you!