Statistical Transmutations in Doped Quantum Dimers

Arnaud Ralko,

Institut Néel, Grenoble.

Annecy, 18 april 2013.

Collaborators

* Didier Poilblanc (LPT - Toulouse / France)
* Pierre Pujol (LPT - Toulouse / France)
* Masaki Oshikawa (ISSP - Tokyo / Japan)
* Daniel Cabra (IFLP - La Plata / Argentina)
* Carlos Lamas (IFLP - La Plata / Argentina)

Scope

+ Quantum Spin Liquids in Mott insulators
* Doped quantum dimer models
+ Statistical transmutation
Quantum phase transitions

Physical Motivations

What is the general situation for the QAF on lattices?

${ }^{J} \sum_{i, j} S_{i} \cdot S_{j}$
Mott Insulators

Cooling

Anderson (87)
electron, spin upelectron, spin down
Colomb U >>1

Frustration:

What are the possible scenarios?

Heisenberg Model

$$
\mathcal{H}=\underbrace{J \sum \mathbf{S}_{i} \cdot \mathbf{S}_{j}}_{S U(2)}-h \sum S_{i}^{z}
$$

$U(1)$, spin rotation along z -axis

+ spatial symmetries: translations, point group
Presence of a magnetic long range order: $\mathrm{SU}(2)$ broken

$$
\left\langle\mathbf{S}_{i} \cdot \mathbf{S}_{j}\right\rangle \simeq m_{\mathbf{q}}^{2} \cos \left(\mathbf{q} \cdot\left(\mathbf{r}_{i}-\mathbf{r}_{j}\right)\right) \text { as }\left|\mathbf{r}_{i}-\mathbf{r}_{j}\right| \rightarrow \infty
$$

- 3D: up to Néel temperature
- 2 D : only at $\mathrm{T}=0 \mathrm{~K}$

Low energy excitations: Spin waves

Other scenario: Spin liquids

No magnetic long range order

Shastry \& Sutherland (81)

$$
\begin{aligned}
& \left\langle\mathbf{S}_{i} \cdot \mathbf{S}_{j}\right\rangle \simeq e^{-\frac{\left(\mathbf{r}_{i}-\mathbf{r}_{j}\right)}{\xi}} \quad \text { Even at } \mathrm{T}=0 \mathbf{K} \\
& \Delta_{s}=\frac{\left(\mathbf{r}_{i}-\mathbf{r}_{j}\right)}{\xi / a} \quad \mathrm{SU}(2) \text { is preserved }
\end{aligned}
$$

Ground state made of Spin Singlets ! $S=0$ states
How to dope it?

- Removing electrons

- (holons)
- Magnetic field h (spinon)

$$
\begin{aligned}
& |1\rangle=\uparrow \uparrow \\
& |-1\rangle=\downarrow \downarrow
\end{aligned}|0\rangle=\frac{\uparrow \downarrow+\downarrow \uparrow}{\sqrt{2}}
$$

Dimers in the nature: $\mathrm{SrCu}_{2}\left(\mathrm{BO}_{3}\right)_{2}$

No magnetic long range order

$$
\chi(T) \simeq T^{-1 / 2} e^{-\Delta_{s} / T}
$$

Shastry \& Sutherland (81), Kageyama et al. (2005)

- Static dimer background
- Bose-condensation of triplets
- Exotic phases: SF, SS

Magnetization Plateau

Dimers in the nature: $\mathrm{SrCu}_{2}\left(\mathrm{BO}_{3}\right)_{2}$

No magnetic long range order

$$
\chi(T) \simeq T^{-1 / 2} e^{-\Delta_{s} / T}
$$

- Static dimer background
- Bose-condensation of triplets
- Exotic phases: SF, SS

Doping the singlet GS

Increasing $\mathrm{H} \Rightarrow$ Triplet
Magnetization Plateau

Holon quantum dynamics
Statistics of Holons?
Connection with High-Tc

Dimers in the nature: $\mathrm{ZnCu}_{3}(\mathrm{OH})_{6} \mathrm{Cl}_{2}$

Most frustrated spin- $1 / 2$ system

Helton et al. PRL $2010 \quad \mu_{B} \mathrm{H} / \mathrm{k}_{\mathrm{B}} \top$

$$
\chi(T) \simeq H / T^{1+0.66}
$$

- "Ideal" spin-1/2 QAF
- Non magnetic order up to 50 mK Mendels et al. PRL 2007
- Finite susceptibility (Z_{2} liquid?)

Impurities in the Kagomé Spin-1/2 QAF

Real system: Zinc impurities ranging in 6\% to 10%

- Hopping term added in the effective H Hao \& Tcherbyshyov (2010)
- Possible comparison to NMR experiments What is the parent insulating GS?

Strange critical behavior connected to holons

Doped Quantum Dimer models

Quantum Dimer Models

Effective models derived from microscopic systems

- Heisenberg Rokhsar \& Kivelson (88), Moessner \& Sondhi (01), AR et al. (11)
- Spin-orbital Vernay, AR, Becca, Mila (06)

Quantum Dimer Model: projection onto the singlet subspace

$\langle\varphi \mid \psi\rangle$
$O_{\phi, \psi}=I d+2 \alpha^{4} A+2 \alpha^{6} B+\cdots$

$$
\mathcal{H}_{\phi, \psi}^{\mathrm{eff}}=\langle\phi| \mathcal{H}|\psi\rangle \simeq O_{\phi, \psi}
$$

Sutherland (88)

Quantum Dimer Models

Dimer background quantum dynamics

Rokhsar \& Kivelson (88)

$$
\mathcal{H}=v(|g\rangle\langle\Omega|+|00\rangle\langle 00|)-J(|g\rangle\langle 00|+|00\rangle\langle g|)
$$

- v: Potential term

Quantum Dimer Models

Dimer background quantum dynamics

Rokhsar \& Kivelson (88)

$$
\mathcal{H}=v(|g\rangle\langle\Omega|+|00\rangle\langle 00|)-J(|g\rangle\langle 00|+|00\rangle\langle g|)
$$

- v: Potential term
- J: Kinetic term

Quantum Dimer Models

Dimer background quantum dynamics

Rokhsar \& Kivelson (88)

$$
\mathcal{H}=v(|g\rangle\langle g|+|00\rangle\langle 00|)-J(|g\rangle\langle 00|+|00\rangle\langle g|)
$$

- v: Potential term
- J: Kinetic term
- t: Holon hopping term

$$
+t|6\rangle\langle 0|
$$

Dimers in competition

Doping with holons

Quantum Dimer Models

Dimer background quantum dynamics

Rokhsar \& Kivelson (88)

$$
\mathcal{H}=v(|g\rangle\langle\Omega|+|00\rangle\langle 00|)-J(|g\rangle\langle 00|+|00\rangle\langle g|)
$$

- v: Potential term
- J: Kinetic term
- t: Holon hopping term

$$
+t|0\rangle\langle 09|
$$

Quantum Dimer Models

Dimer background quantum dynamics

Rokhsar \& Kivelson (88)

$$
\mathcal{H}=v(|g\rangle\langle\Omega|+|00\rangle\langle 00|)-J(|g\rangle\langle 00|+|00\rangle\langle g|)
$$

- v: Potential term
- J: Kinetic term
- t: Holon hopping term

$$
+t|6\rangle\langle 0|
$$

Quantum Dimer Models

Dimer background quantum dynamics

Rokhsar \& Kivelson (88)

$$
\mathcal{H}=v(|g\rangle\langle\Omega|+|00\rangle\langle 00|)-J(|g\rangle\langle 00|+|00\rangle\langle g|)
$$

- v: Potential term
- J: Kinetic term
- t: Holon hopping term

$$
+t|\Omega\rangle\langle 0|
$$

But what are the holon properties?

$$
\mathcal{H}=\mathcal{H}_{v}+\mathcal{H}_{J}+\mathcal{H}_{t}
$$

- Analitycal methods (Jordan-Wigner transformation)
- Exact diagonalizations, Quantum Monte-Carlo AR et al. PRL(2012), PRB(2013)

Square
not frustrated

* role of the parent insulating state * importance of the statistics * effect of the frustration

How to properly define the holon statistics? AR et al. PRL(2012), PRB(2013)

Complex structure of the Hamiltonian

- We start with the unfrustrated case $\mathrm{J}>0, \mathrm{t}>0$, bosons \mathcal{H}_{a}

$$
t \leftrightarrow-t
$$

$$
\begin{aligned}
& \mathcal{H}_{a} \stackrel{\mathcal{H}_{b}}{ } \\
& \mathcal{F} \leftrightarrow \mathcal{B} \uparrow \quad \mathcal{H}=\mathcal{H}_{v}+\mathcal{H}_{J}+\mathcal{H}_{t} \quad \mathcal{F} \leftrightarrow \mathcal{B} \\
& \mathcal{H}_{c} \xrightarrow[t \leftrightarrow-t]{ } \mathcal{H}_{d}
\end{aligned}
$$

Four Hamiltonian classes

Depending the sign of J , bosons transmutes in fermions !!!

2D Jordan-Wigner transformation
 Fradkin (88), Wang (92)

- From fermionic to fractional statistics:
Anyons

$$
\begin{aligned}
a_{i}^{\dagger}= & e^{i \phi_{i}} c_{i}^{\dagger} \\
& -i 2 \xi \sum_{l \neq i} n_{l} \arg \left(z_{i}-z_{l}\right)
\end{aligned}
$$

$$
\arg \left(z_{i}-z_{j}\right)=\arg \left(z_{j}-z_{i}\right) \pm \pi
$$

$z_{l} /$		
z_{i}		

- Anyons are hard-core thanks to the Pauli principle of initial fermions
- Mean-field: a flux tube $\xi \phi_{0}$ attached on each electron

Aharonov-Bohm phase when 2 anyons are exchanged: $e^{\frac{e}{\hbar} \oint \vec{A} \cdot \overrightarrow{d l}}=e^{i \xi \pi}$

Application to $\mathcal{H}=\mathcal{H}_{v}+\mathcal{H}_{J}+\mathcal{H}_{t}$

- Rewrite dimers $b_{i, j}^{+}=\frac{1}{\sqrt{2}}\left(c_{i, \uparrow}^{+} c_{j, \downarrow}^{+}-c_{i, \downarrow}^{+}+{ }_{j, \uparrow}^{+}\right)$
- Impose constraint on site $i a_{i}^{+} a_{i}+\sum_{j \in n . n .} b_{i, j}^{+} b_{i, j}=1$
- Write down the Hamiltonian

Dimer Kinetic $\quad h_{i, j, k, l}^{(J)}=-J\left(b_{i, j}^{+} b_{k, l}^{+} b_{j, k} b_{l, i}+h . c.\right)$
Dimer Potential $h_{i, j, k, l}^{(v)}=v\left(b_{i, j}^{+} b_{i, j} b_{k, l}^{+} b_{k, l}+b_{j, k}^{+} b_{j, k} b_{l, i}^{+} b_{l, i}\right)$

- Perform the Jordan-Wigner $a_{i}=e^{-i \phi_{i}} c_{i} \quad b_{i, j}=e^{-i\left(\phi_{i}+\phi_{j}\right)} \tilde{b}_{i, j}$

$$
\begin{array}{ll}
h_{i, j, k, l}^{(J)} \rightarrow h_{i, j, k, l}^{(\tilde{J})}=-\tilde{J}\left(\tilde{b}_{, i, j}^{+} \tilde{b}_{k, l}^{+} \tilde{b}_{j, k} \tilde{b}_{l, i}+h . c .\right) & \tilde{J}=-J \quad \text { (with fixed gauge) } \\
h_{i, j, k, l}^{(v)} \rightarrow h_{i, j, k, l}^{(\tilde{v})}=\tilde{v}\left(\tilde{b}_{i, j}^{+} \tilde{b}_{i, j} \tilde{b}_{k, l}^{+} \tilde{z}_{k, l}+\tilde{b}_{j, k}^{+} \tilde{b}_{j, k} \tilde{b}_{l, i} \tilde{i}_{l, i}\right) & \tilde{v}=-v
\end{array}
$$

Equivalence proved

$\tilde{J} \leftrightarrow-J$
$\mathcal{F} \leftrightarrow \mathcal{B}$

Quantum phase transitions

$$
\mathcal{H}=\mathcal{H}_{v}+\mathcal{H}_{J}+\mathcal{H}_{t}
$$

- Zero doping at $J>0$, rich phase diagram

- Under doping : generic 1-e superconducting phase

SS	$1 \mathrm{e}-\mathrm{SF}$	$2 \mathrm{e}-\mathrm{SF}$	PS	SF or Bose-liquid?	$1 \mathrm{e}-\mathrm{SF}$	$2 \mathrm{e}-\mathrm{SF}$	$4 \mathrm{e}-\mathrm{SF}$

$$
\mathcal{H}_{a} \underset{\mathcal{H}_{C}}{\substack{t \rightarrow-t}} \mathcal{H}_{\substack{t \rightarrow-t}}^{\mathcal{H}_{d}}
$$

Quantum phase transitions

$\frac{\text { Observables } \rightarrow}{\text { Phases } \downarrow}$	κ	$\left\langle b_{i, j}^{\dagger} b_{i, j} b_{k, l}^{\dagger} b_{k, l}\right\rangle$	$\left\langle a_{k}^{\dagger} a_{l}^{\dagger} a_{i} a_{j}\right\rangle$	$\left\langle a_{i}^{\dagger} S_{i, j} a_{j}\right\rangle$	sgn_{B}	sgn_{F}	Flux periodicity	
PS	<0							
VBC	>0	LR	SR	SR				
SS	>0	LR	LR	SR	1	0		
$2 e-\mathrm{SF}$	>0	SR	LR	SR	$0<\operatorname{sgn}_{B}<1 \quad 0$	$0<\operatorname{sgn}_{F}<1$		
e-SF	>0	SR	LR (weak)	LR	1	0		
Bose liquid	>0	SR	SR	SR	1	0		
Fermi liquid	>0	SR	SR	SR	0	1		
"Complex" phase	>0	SR	SR	SR	$0<\operatorname{sgn}_{B}<1 \quad 0$	$0<\operatorname{sgn}_{F}<1$		
$\stackrel{5}{5}$		SF	2e-SF	P PS	SF or Bose-liquid?	? 1e-SF	2e-SF	$4 \mathrm{e}-\mathrm{SF}$

Thank you!

