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✦ Quantum Spin Liquids in Mott insulators
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What are the possible scenarios?
Heisenberg Model

+ spatial symmetries: translations, point group

Presence of a magnetic long range order: SU(2) broken

• 3D: up to Néel temperature
• 2D: only at T=0K

Low energy excitations: Spin waves 
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Other scenario: Spin liquids
No magnetic long range order
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Even at T=0K 

SU(2) is preserved
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How to dope it ?
• Removing electrons 

(holons)

S=0 states



• Static dimer background
• Bose-condensation of triplets
• Exotic phases: SF, SS

Doping the singlet GS

Increasing H ⇒ Triplet

Dimers in the nature: SrCu2(BO3)2

Shastry & Sutherland (81), Kageyama et al. (2005)

�(T ) � T�1/2e��s/T

No magnetic long range order

Magnetization Plateau



• Static dimer background
• Bose-condensation of triplets
• Exotic phases: SF, SS

Doping the singlet GS

Increasing H ⇒ Triplet

Dimers in the nature: SrCu2(BO3)2

Shastry & Sutherland (81), Kageyama et al. (2005)

�(T ) � T�1/2e��s/T

No magnetic long range order

Magnetization Plateau

Holon quantum dynamics

Statistics of Holons ?
Connection with High-Tc



Dimers in the nature: ZnCu3(OH)6Cl2

GS at the proximity of a QCP and/or influenced by disorder

• “Ideal” spin-1/2 QAF

• Non magnetic order up to 50mK 

• Finite susceptibility (Z2 liquid?)

Most frustrated spin-1/2 system

response function is not quite adequate. It should also be
pointed out that in herbertsmithite the entire bulk suscep-
tibility obeys this scaling relation, while in CeCu5:9Au0:1
it is only the estimated local contribution, !LðTÞ ¼
½!ðTÞ%1 % !ðT ¼ 0Þ%1&%1, that obeys scaling. A suscepti-
bility of this form will imply a similar scaling in the bulk dc
magnetization of the sample, with MT"%1 expressible as a
function of H=T. As a complementary measurement, such
a scaling is shown in the inset to Fig. 1(b). The dc magne-
tization was measured up to #0H ¼ 14 T at temperatures
ranging from T ¼ 1:8 K to 10 K, and is plotted asMT%0:34

vs #BH=kBT.
The inelastic neutron scattering spectrum of herbert-

smithite was measured on the time-of-flight Disk
Chopper Spectrometer at the NIST Center for Neutron
Research. A deuterated powder sample of mass 7.5 g was
measured using a dilution refrigerator with an incident
neutron wavelength of 5 Å. Measurements were taken at
six different temperatures, with roughly logarithmic spac-
ing, ranging from 77 mK to 42 K. The scattering data
were integrated over a wide range of momentum transfers,
0:5 ' Q ' 1:9 !A%1, to give a measure of the local re-
sponse. The momentum integrated dynamic scattering
structure factor, Sð!Þ, is shown in Fig. 2(a). Similar to
previous reports on the neutron scattering spectrum of
herbertsmithite [11], the data show a broad inelastic spec-
trum with no discernable spin gap and only a weak tem-

perature dependence for positive energy transfer
scattering. The negative energy transfer scattering intensity
is suppressed at low temperatures due to detailed balance.
The imaginary part of the dynamic susceptibility is related
to the scattering structure factor through the fluctuation-
dissipation theorem, !00ð!Þ ¼ Sð!Þð1% e%@!=kBTÞ. The
dynamic susceptibility can then be determined in a manner
similar to that used previously [11]. For the two lowest
temperatures measured, detailed balance considerations
will effectively suppress scattering at negative energy
transfer for values of j@!j ( 0:15 meV. Thus these data
sets are averaged together and treated as background. This
background is subtracted from the T ¼ 42 K data, for
which the detailed balance suppression is not pronounced
below j@!j ¼ 2 meV. From this, !00ð!;T ¼ 42 KÞ is cal-
culated for negative !, and the values for positive ! are
easily determined from the fact that !00ð!Þ is an odd
function of !. The dynamic susceptibility at the other
temperatures is calculated by determining the difference
in scattering intensity relative to the T ¼ 42 K data set. It
is reasonably assumed that the elastic incoherent scattering
and any other background scattering are effectively tem-
perature independent. The calculated values of !00ð!Þ at
all measured temperatures are shown in Fig. 2(b). The
T ¼ 42 K scattering data and !00ð!Þ were fit to smooth
functions for use in calculating the susceptibility at other
temperatures so that statistical errors would not be propa-
gated throughout the data; the smooth function of
!00ð!;T ¼ 42 KÞ used in the calculation is also shown in
the figure.

FIG. 2 (color online). (a) Neutron scattering structure factor
Sð!Þ, measured using the Disk Chopper Spectrometer integrated
over wave vectors 0:5 ' Q ' 1:9 !A%1. (b) The local dynamic
susceptibility !00ð!Þ, determined as described in the text.
Uncertainties where indicated in this article are statistical in
origin and represent 1 standard deviation.

FIG. 1 (color online). (a) The in-phase component of the ac
susceptibility, measured at 100 Hz with an oscillating field of
17 Oe. (b) A scaled plot of the ac susceptibility data measured at
nonzero applied field, plotted as !0

acT
" with " ¼ 0:66 on the y

axis and #BH=kBT on the x axis. Inset: A scaled plot of the dc
magnetization, showing MT%0:34 vs #BH=kBT.
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0:5 ' Q ' 1:9 !A%1, to give a measure of the local re-
sponse. The momentum integrated dynamic scattering
structure factor, Sð!Þ, is shown in Fig. 2(a). Similar to
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herbertsmithite [11], the data show a broad inelastic spec-
trum with no discernable spin gap and only a weak tem-

perature dependence for positive energy transfer
scattering. The negative energy transfer scattering intensity
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to the scattering structure factor through the fluctuation-
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will effectively suppress scattering at negative energy
transfer for values of j@!j ( 0:15 meV. Thus these data
sets are averaged together and treated as background. This
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susceptibility !00ð!Þ, determined as described in the text.
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Impurities in the Kagomé Spin-1/2 QAF

t

• Hopping term added in the effective H

Real system: Zinc impurities ranging in 6% to 10%

What is the parent insulating GS?
• Possible comparison to NMR experiments

Hao & Tcherbyshyov (2010)

Strange critical behavior connected to holons

LAMAS, RALKO, OSHIKAWA, POILBLANC, AND PUJOL PHYSICAL REVIEW B 87, 104512 (2013)

issue in this problem is the statistics of the holon. For the
holons to condense without forming pairs, they must be
bosons. However, it should be noted that transmutation of
the statistics16,17 is possible. Namely, the statistics of holons
as elementary excitations appearing in the low-energy limit
can be different from the statistics assigned to holes in the
microscopic model.

In this paper we address the issue of the statistics of holes
and its interplay with possible superconducting phases in
doped QDMs. In a recent work18 it was shown that a QDM with
fermionic (at microscopic level) holes is equivalent to another
QDM with bosonic holes. Because of the equivalence, the
statistics of the holon as a physical elementary excitation must
be the same for either representation. This proves the existence
of a dynamical statistical transmutation in the system. In this
paper we study in more detail the statistical transmutation
in QDMs and give a simple and efficient method to obtain
the relation between the QDMs with fermionic and bosonic
representation of the holes.

In Sec. II we introduce a second quantization notation for
QDM Hamiltonians and show the gauge symmetry associated
with them. In Sec. III we present the composite particle repre-
sentation of QDM Hamiltonians which is the key ingredient to
show the exact equivalence between a QDM with bosonic
and another QDM with fermionic holes. This equivalence
is shown for a generic flipping term defined in any kind of
lattice. The result, which relies on an orientation prescription
of the bonds in the lattice considered, is totally generic and
can then be applied to any QDM defined in the most common
lattices. The method used here differs considerably from, and
has numerous advantages over, the one used in Ref. 18 where
a two-dimensional version of the Jordan-Wigner (JW) trans-
formation was used. In Sec. IV we argue how the modification
of the orientation prescription can be interpreted as a simple
gauge transformation in the QDM Hamiltonian. We then apply
the general result of the statistical transmutation obtained
in Sec. III to generic QDM Hamiltonians defined on the
square, triangular, hexagonal, and kagome lattices. Section V is
devoted to numerical investigation of four inequivalent QDMs
defined on the triangular lattice. In particular, we identify an
exotic superconductor phase due to condensation of holons
with charge e, measuring numerically the gauge-invariant
Green’s function of a single holon. In Sec. VI we discuss an
explicit realization of one of the QDMs discussed in Sec. V.
It is obtained as a low-energy strong interaction limit of a
Bose-Hubbard model on the kagome lattice. The number of
bosons is directly related to the doping, or number of holes,
in the resulting QDM on the triangular lattice. Section VII is
devoted to the discussion of our results. We also include as an
appendix the derivation of the statistical transmutation for a
generic QDM on the kagome lattice using the Jordan-Wigner
transformation. Of course the result is consistent with the one
obtained with the composite particle representation obtained
in Sec. III, but allows a better understanding of the connection
between these two different methods.

II. THE HAMILTONIAN AND ITS GAUGE SYMMETRIES

We start with a doped quantum dimer model on a two-
dimensional lattice. To fix the ideas, we work here with the

FIG. 1. (Color online) Schematic snapshot of a doped “dimer
liquid”. Each site is occupied by either a (single) dimer or a hole
(empty site).

Hamiltonian defined on the square lattice but all the arguments
remain valid for any two-dimensional lattice. We write the
Hamiltonian as

H = HJ + HV + Ht (1)

with

HJ = −J + H.C

HV = V +

Ht = −t +

+ + + H.C ,

where the sums are over all the smallest resonant plaquettes
on the lattice (for the square lattice these are the squares). In
a second quantized formalism we assume that dimer config-
urations are created by spatially symmetric dimer operators
b
†
i,j and holes are created by bosonic operators a

†
k (see Fig. 1).

Then, we can rewrite the Hamiltonian as

HJ = −J
∑

!
{b†i,j b

†
k,lbj,kbl,i + H.c.}, (2)

HV = V
∑

!
{b†i,j b

†
k,lbi,j bk,l + b

†
j,kb

†
l,ibj,kbl,i}, (3)

Ht = −t
∑

i

{b†i,j bj,ka
†
kai + H.c}. (4)

In the last equation, the indices correspond to the labeling of
the sites of a square plaquette as in Fig. 2. In our previous
conventions, dimer configurations are represented by spatially
symmetric operators b

†
i,j satisfying

[bi,j ,b
†
k,l] = δi,kδj,l + δi,lδj,k, [bi,j ,bk,l] = [b†i,j ,b

†
k,l] = 0.

(5)

The boson operator a
†
i creates a hole in the site i and satisfies

[ai,a
†
j ] = δi,j , [ai,aj ] = [a†

i ,a
†
j ] = 0. (6)

104512-2



Doped Quantum Dimer models



Effective models derived from microscopic systems

Quantum Dimer Model: projection onto the singlet subspace

� =
1�
2

= �(| ⇥⇤⌅ � | ⇤⇥⌅)

O�,⇥ = Id + 2�4A + 2�6B + · · ·
Sutherland (88)

Quantum Dimer Models

• Heisenberg
• Spin-orbital

Rokhsar & Kivelson (88), Moessner & Sondhi (01), AR et al. (11)

Vernay, AR, Becca, Mila (06)

He↵
�, = h�|H| i ' O�, 



H = v(| ⇥� |)�J(| ⇥�| + | ⇥� | + | ⇥� |)
Rokhsar & Kivelson (88)

Quantum Dimer Models
Dimer background quantum dynamics

• v: Potential term



H = v(| ⇥� |)�J(| ⇥�| + | ⇥� | + | ⇥� |)
Rokhsar & Kivelson (88)

Quantum Dimer Models
Dimer background quantum dynamics

• J: Kinetic term
• v: Potential term



H = v(| ⇥� |)�J(| ⇥�| + | ⇥� | + | ⇥� |)
Rokhsar & Kivelson (88)

Quantum Dimer Models
Dimer background quantum dynamics

• J: Kinetic term
• v: Potential term

Doping with holons

Dimers in competition

+t | | ⇥�+t | |

• t: Holon hopping term



H = v(| ⇥� |)�J(| ⇥�| + | ⇥� | + | ⇥� |)
Rokhsar & Kivelson (88)

Quantum Dimer Models
Dimer background quantum dynamics

• J: Kinetic term
• v: Potential term

• t: Holon hopping term

+t | | ⇥�+t | |



H = v(| ⇥� |)�J(| ⇥�| + | ⇥� | + | ⇥� |)
Rokhsar & Kivelson (88)

Quantum Dimer Models
Dimer background quantum dynamics

• J: Kinetic term
• v: Potential term

• t: Holon hopping term

+t | | ⇥�+t | |



H = v(| ⇥� |)�J(| ⇥�| + | ⇥� | + | ⇥� |)
Rokhsar & Kivelson (88)

Quantum Dimer Models
Dimer background quantum dynamics

• J: Kinetic term
• v: Potential term

• t: Holon hopping term

• Analitycal methods (Jordan-Wigner transformation)
• Exact diagonalizations, Quantum Monte-Carlo

But what are the holon properties?

+t | | ⇥�+t | |

H = Hv +HJ +Ht

AR et al. PRL(2012), PRB(2013)



defining four nonequivalent families. This is summarized
in Fig. 2.

More precisely, the established equivalence is between
H1 and H2, both represented by the family label (a) and in
the same way for the pairs of Hamiltonians H2i!1 and H2i

with i ¼ 2, 3, 4 corresponding, respectively, to families
(b), (c), and (d). We argue that such an equivalence is a
general feature of doped two-dimensional QDMs,

independent of the lattice geometry. Physically, classes
(a) and (b) [(c) and (d)] describe systems with doped
polarized spinons (doped holons) and are called ‘‘spi-
nonic’’ QDMs (‘‘electronic’’ QDMs). Note that, for the
square (or hexagonal) lattice, an additional t $ !t sym-
metry reduces the number of nonequivalent families from 4
to 2. In Fig. 2, the two families defined for the square lattice
by H1 $ H2 $ H3 $ H4 on one hand and by H5 $
H6 $ H7 $ H8 on the other hand, were dubbed as
‘‘Perron-Frobenius’’ and ‘‘non-Perron-Frobenius’’
Hamiltonians and studied in [7], while for the triangular
lattice, only the unfrustratedH1 Hamiltonian [representing
family (a)] was studied in [9].
As the transformation we shall establish below change

bosons into fermions (and vice versa), we can start by
assuming, without lost of generality, that the (bare) holons
in the doped QDM are bosons. We implement a two-
dimensional Jordan-Wigner transformation on these
bosons to change their statistics to fermionic. In contrast
to one-dimensional systems, this resulting transformed
Hamiltonian is highly nonlocal [11–14], requiring, in gen-
eral, a mean field approximation to proceed further, at least
from an analytical point of view. Next, we show that the
nonlocal terms can be absorbed by using a different rep-
resentation for the dimer operators, which keeps their
bosonic character. This key feature provides then an ele-
gant proof of the ‘‘statistical transmutation symmetry’’ of
these models.
Proof of statistical transmutation symmetry.—It is con-

venient to write the Hamiltonian in a second quantized
form by introducing creation operators byi;j for a dimer

sitting between sites i and j and holes by operators ayi . In
our conventions, dimers between sites i and j are created
by spatially symmetric operators byi;j; both operators (byi;j
and ayi ) are bosonic and mutually commuting. It is instruc-
tive to notice that the dimer bosonic operators can be
thought of as bilinears of ‘‘electrons’’ operators: byi;j ¼
1ffiffi
2

p ðcyi;"cyj;# ! cyi;#c
y
j;"Þ. In terms of these operators, we imple-

ment the hard-core constraint ayi ai þ
P

zb
y
i;iþzbi;iþz ¼ 1,

where the sum runs over the NN of site i. Let us call P̂
the projector on the subspace where the constraint holds.
In the following, we use systematically the projected

Hamiltonian P̂HP̂ ( ¼ HP̂ since all terms of H commute

with P̂ ), which proves to be very useful later.
Let us now apply a 2D Jordan-Wigner (JW) transforma-

tion on the holon operators [12]:

ai ¼ e!i!ifi; (1)

where !i ¼
P

j!if
y
j fj argð"j ! "iÞ, and "j ¼ xj þ iyj

is the complex coordinate of the jth hole. Using that
argð"i ! "jÞ ¼ argð"j ! "iÞ & #, it follows immediately
that two f operators in different sites anticommute, and

FIG. 2 (color online). Equivalence classes (‘‘models’’) and
relations between the eight Hamiltonians introduced in the
text. Starting from the unfrustrated (J > 0, t > 0) bosonic H1

Hamiltonian, one can combine any change of statistics and/or
change of signs of J and/or sign of t to obtain H2; ' ' ' ; H8.
Equivalence relations are shown by arrows: full dark grey arrows
(dotted light grey arrows) are valid for all lattices (for vacancies
hopping on the square lattice only).

FIG. 1 (color online). Dimer coverings corresponding to dif-
ferent lattices. Light blue shaded areas represent flippable pla-
quettes and arrows represent the allowed single hole hopping
process. (i) Square lattice: The hole hopping is between sites in
the same sublattice. (ii) Triangular lattice: A hole can hop in the
different directions schematized by the arrows. (iii) Kagome
lattice: The light blue shaded area shows one of the possible
flippable plaquettes of length 10.

PRL 109, 016403 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending
6 JULY 2012

016403-2

Square

Triangular

Kagomé

not frustrated

frustrated

even more frustrated* role of the parent insulating state
* importance of the statistics
* effect of the frustration

How to properly define the holon statistics?

H = v(| ⇥� |)�J(| ⇥�| + | ⇥� | + | ⇥� |) +t | | ⇥�+t | |

AR et al. PRL(2012), PRB(2013)



Complex structure of the Hamiltonian
• We start with the unfrustrated case J>0, t>0, bosons

Ha Hb

Hc Hd

Ha

F $ B F $ B

t $ �t

t $ �t

Four Hamiltonian classes

Ha Ha0F $ B
J $ �J

same spectrum !

Depending the sign of J, bosons transmutes in fermions !!!

H = Hv +HJ +Ht



• From fermionic to fractional statistics:

a†i = ei�ic†iAnyons

Fermion

zi

zl

cic
+
j + c+i cj = �i,j

aia
+
j + ei⇠⇡a+i aj = �i,j

arg(zi � zj) = arg(zj � zi)± ⇡

1/20 1

BosonFermion Semion

• Anyons are hard-core thanks to the Pauli principle of initial fermions

�i2⇠
X

l 6=i

nl arg(zi � zl)

• Mean-field: a flux tube         attached on each electron⇠�0

Aharonov-Bohm phase when 2 anyons are exchanged: e
e
~
H

~A·~dl = ei⇠⇡

2D Jordan-Wigner transformation
Fradkin (88), Wang (92)

⇠



Application to H = Hv +HJ +Ht

b+i,j =
1p
2

⇣
c+i,"c

+
j,# � c+i,#c

+
j,"

⌘

a+i ai +
X

j2n.n.

b+i,jbi,j = 1

h(J)
i,j,k,l = �J(b+i,jb

+
k,lbj,kbl,i + h.c.)

ai = e�i�ici bi,j = e�i(�i+�j)b̃i,j

• Rewrite dimers

• Impose constraint on site i

• Write down the Hamiltonian

Dimer Potential

Dimer Kinetic

• Perform the Jordan-Wigner

h(v)
i,j,k,l = v(b+i,jbi,jb

+
k,lbk,l + b+j,kbj,kb

+
l,ibl,i)

h(v)
i,j,k,l ! h(ṽ)

i,j,k,l = ṽ(b̃+i,j b̃i,j b̃
+
k,lb̃k,l + b̃+j,k b̃j,k b̃

+
l,ib̃l,i)

h(J)
i,j,k,l ! h(J̃)

i,j,k,l = �J̃(b̃+i,j b̃
+
k,lb̃j,k b̃l,i + h.c.)

F $ B
J̃ $ �J

i j

kl

Equivalence proved

J̃ = �J

ṽ = �v

(with fixed gauge)



Quantum phase transitions

• Zero doping at J>0, rich phase diagram

H = Hv +HJ +Ht
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Phase separation and flux quantization in the doped quantum dimer model on the
square and triangular lattices

Arnaud Ralko,1 Frédéric Mila,2 and Didier Poilblanc1

1 Laboratoire de Physique Théorique, CNRS & Université Paul Sabatier, F-31062 Toulouse, France
2 Institute of Theoretical Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland

(Dated: April 5, 2007)

The doped two-dimensional quantum dimer model is investigated by numerical techniques on the
square and triangular lattices, with significantly different results. On the square lattice, at small
enough doping, there is always a phase separation between an insulating valence-bond solid and
a uniform superfluid phase, whereas on the triangular lattice, doping leads directly to a uniform
superfluid in a large portion of the RVB phase. Under an applied Aharonov-Bohm flux, the superfluid
exhibits quantization in terms of half-flux quanta, consistent with Q = 2e elementary charge quanta
in transport properties.

PACS numbers: 75.10.Jm, 05.50.+q, 05.30.-d

Understanding electron pairing in high temperature
superconductors is a major challenge in strongly corre-
lated systems. In his milestone paper, Anderson pro-
posed a simple connection between high temperature su-
perconductors and Mott insulators [1]. Electron pairs
”hidden” in the strongly correlated insulating parent
state as Valence Bond (VB) singlets lead, once fried to
move at finite doping, to a superconducting behavior.
A very good candidate of the insulating parent state is
the resonating VB state (RVB), a state with only expo-
nentially decaying correlations and no lattice symmetry
breaking. A simple realization of RVB has been pro-
posed by Rokhsar and Kivelson (RK) in the framework
of an effective quantum dimer model (QDM) with only
local processes and orthogonal dimer coverings [2]. Even
though the relevance of these models for the description
of SU(2) Heisenberg models is still debated, this approach
is expected to capture the physics of systems that nat-
urally possess singlet ground states (GS). For instance,
specific quantum dimer models have recently been de-
rived from a spin-orbital model describing LiNiO2 [3], or
from the trimerized kagome antiferromagnet [4]. In a re-
cent work, a family of doped QDMs (at T=0) generalizing
the so-called RK point of Ref.[2] has been constructed
and investigated[5], taking advantage of a mapping to
classical dimer models [6] that extends the mapping of
the RK model onto a classical model at infinite temper-
ature, with evidence of phase separation at low doping.
However, the soluble models of Ref.[5] are ’ad hoc’ con-
structions, and this call for the investigation of similars
issue in the context of more realistic models. In that re-
spect, a natural minimal model to describe the motion of
charge carriers in a sea of dimers is the two-dimensional
quantum hard-core dimer-gas Hamiltonian:

H = v
∑

c

Nc|c〉〈c|− J
∑

(c,c′)

|c′〉〈c|− t
∑

(c,c′′)

|c′′〉〈c|

(1)

where the sum on (c) runs over all configurations of the

Hilbert space, Nc is the number of flippable plaquettes,
the sum on (c′, c) runs over all configurations |c〉 and |c′〉
that differ by a single plaquette dimer flip, and the sum
on (c′′, c) runs over all configurations |c〉 and |c′′〉 that
differ by a single hole hopping between nearest neigh-
bors (triangular) or (diagonal) next-nearest neighbors
(square). Throughout the energy scale is set by J = 1.
A schematic phase diagram for the two lattices is de-
picted in Fig.1 in the undoped case. Remarkably, these
lattices lead to quite different insulating states. Indeed,
an ordered plaquette phase appears on the square lattice
immediately away from the special RK point, whereas a
RVB liquid phase is present in the triangular lattice

RVB

columnar

columnar staggered

staggered

liquid

v
J

RK

sq
u
a
re

tr
ia

n
g
u
la

r

√
12 ×

√
12

plaquette

FIG. 1: (color online) Schematic phase diagrams for the tri-
angular and the square lattice.

In this Letter, we investigate in details the properties
of model (1) on the square and triangular lattices at fi-
nite doping. Building on the differences between the two
lattices in the undoped case, we investigate to which ex-
tent the properties of the doped system are governed by
the nature of the insulating parent state. This investi-
gation is based on exact Diagonalisations and extensive
Green’s Function Monte-Carlo (GFMC) simulations [7]
essentially free of the usual finite-size limitations [8].

Phase separation: At small t, it is expected that holes

VBC 1

Ha Hb

Hc Hd
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FIG. 9. Holon Green’s function (open circles) and square
root of the absolute value of the pair-pair correlations (filled
symbols) for parameters V = 0.3, |J | = 1.0 and |t| = 0.5,
at a low dimer density 1 − x " 0.1 for the 4 classes (a-d) of
models defined in the caption of Fig. 6. Left: 2 dimers on a
36-site cluster (x ∼ 0.89). Right: 3 dimers on a 64-site cluster
(x ∼ 0.91).

coherent dimer pairs of charge 4e. We have checked that
there is not phase separation in none of the four mod-
els at those large values of x. We have also looked at
the energy difference between two and one dimers and
found that pairing is indeed favored in models (b) and
(d) which may explain the drop of the Pijkl in Figure 9
for x ! 0.9.
Based on Figs. 6, 8 and 9, we have extracted the

qualitative phase diagrams for the four models at fixed
V/|J | = 0.3 and t/|J | = 0.5 as a function of doping
x. They are depicted in Fig.10. Charge e superfluidity
seems to occur in all models, with the largest occurrence
in model (a). For intermediate doping, models (b) and
(d) seem to present short range correlations for both one
and two particle Green functions. This behavior sug-
gest an uncondensed phase which in the case of model
(d) would correspond to a Fermi-liquid state. Since el-
ementary excitation in model (b) are bosonic the pres-
ence of an uncondensed phase points toward an exotic
Bose-liquid state, although this statement should require
a more detailed study (using clusters of a much bigger
size) which is beyond the scope of the present article.
For x big, as expected, all models exhibit a 2e-superfluid

2e"SF

2e"SF

2e"SF2e"SF

2e"SF

1e"SF

1e"SF

4e"SF

4e"SF

1e"SF

1e"SFSS

Complex

Complex

V
B
C

V
B
C

V
B
C

V
B
C

SF or Bose"liquid?

Fermi"liquidPS

PS

PS

0.0 0.2 0.4 0.6 0.8 1.0

!a"

!b"

!c"

!d"

x

FIG. 10. Phase diagrams of the four models (a), (b), (c) and
(d) at V/|J | = 0.3 and t/|J | = 0.5 derived from Fig.6 and
Fig.8. All have both the e-superfluid (e-SF) and 2e-superfluid
(2e-SF) phases at different doping depending on the model.

phase followed by a charge 4e superfluid phase in models
(b) and (d) due to dimer pairing.

VI. CONNECTION TO BOSE-HUBBARD
MODELS

We finish this work by discussing the connection to
Bose-Hubbard like models which do not contain a priori
the ice-rule constraint. However, the physics of the doped
QDM can emerge naturally when some form of large re-
pulsion between the itinerant bosons is considered, hence
providing emergence of fractionalized excitations.32

In Ref. 32 it was introduced a simple model of hard-
core bosons hopping (t) on a kagome lattice with a boson
repulsion V favoring the smallest number of bosons in
each hexagon.

H = −t
∑

〈i,j〉

(d†idj + did
†
j) + V

∑

(n )2 (52)

where d†i creates a boson on site i and n =
∑6

i=1 d
†
idi

is the number of bosons in a hexagonal plaquette. When
the boson density is ρ = 1/2 a large V /t stabilizes an in-
sulating phase whose quantum dynamics is described by
a generalized QDM on the triangular lattice with exactly
3 dimers per site. The insulating phase is a Z2 topological
liquid. When t < 0 the model is not frustrated and can
be studied with QMC : the superfluid-insulator transi-
tion was argued to be a novel non-conventional fractional
critical point.32

To make the connection with some of our doped
QDM’s we shall assume here the microscopic d bosons
have charge−2e and their density is set to ρ = 1

6 (1−x/2),
x << 1. In that case, as shown in Fig. 11, for V /t → ∞
the lowest-energy configuration space (E = NV /3) is
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FIG. 9. Holon Green’s function (open circles) and square
root of the absolute value of the pair-pair correlations (filled
symbols) for parameters V = 0.3, |J | = 1.0 and |t| = 0.5,
at a low dimer density 1 − x " 0.1 for the 4 classes (a-d) of
models defined in the caption of Fig. 6. Left: 2 dimers on a
36-site cluster (x ∼ 0.89). Right: 3 dimers on a 64-site cluster
(x ∼ 0.91).

coherent dimer pairs of charge 4e. We have checked that
there is not phase separation in none of the four mod-
els at those large values of x. We have also looked at
the energy difference between two and one dimers and
found that pairing is indeed favored in models (b) and
(d) which may explain the drop of the Pijkl in Figure 9
for x ! 0.9.
Based on Figs. 6, 8 and 9, we have extracted the

qualitative phase diagrams for the four models at fixed
V/|J | = 0.3 and t/|J | = 0.5 as a function of doping
x. They are depicted in Fig.10. Charge e superfluidity
seems to occur in all models, with the largest occurrence
in model (a). For intermediate doping, models (b) and
(d) seem to present short range correlations for both one
and two particle Green functions. This behavior sug-
gest an uncondensed phase which in the case of model
(d) would correspond to a Fermi-liquid state. Since el-
ementary excitation in model (b) are bosonic the pres-
ence of an uncondensed phase points toward an exotic
Bose-liquid state, although this statement should require
a more detailed study (using clusters of a much bigger
size) which is beyond the scope of the present article.
For x big, as expected, all models exhibit a 2e-superfluid

2e"SF

2e"SF

2e"SF2e"SF

2e"SF

1e"SF

1e"SF

4e"SF

4e"SF

1e"SF

1e"SFSS

Complex

Complex
V
B
C

V
B
C

V
B
C

V
B
C

SF or Bose"liquid?

Fermi"liquidPS

PS

PS

0.0 0.2 0.4 0.6 0.8 1.0

!a"

!b"

!c"

!d"

x

FIG. 10. Phase diagrams of the four models (a), (b), (c) and
(d) at V/|J | = 0.3 and t/|J | = 0.5 derived from Fig.6 and
Fig.8. All have both the e-superfluid (e-SF) and 2e-superfluid
(2e-SF) phases at different doping depending on the model.

phase followed by a charge 4e superfluid phase in models
(b) and (d) due to dimer pairing.

VI. CONNECTION TO BOSE-HUBBARD
MODELS

We finish this work by discussing the connection to
Bose-Hubbard like models which do not contain a priori
the ice-rule constraint. However, the physics of the doped
QDM can emerge naturally when some form of large re-
pulsion between the itinerant bosons is considered, hence
providing emergence of fractionalized excitations.32

In Ref. 32 it was introduced a simple model of hard-
core bosons hopping (t) on a kagome lattice with a boson
repulsion V favoring the smallest number of bosons in
each hexagon.

H = −t
∑

〈i,j〉

(d†idj + did
†
j) + V

∑

(n )2 (52)

where d†i creates a boson on site i and n =
∑6

i=1 d
†
idi

is the number of bosons in a hexagonal plaquette. When
the boson density is ρ = 1/2 a large V /t stabilizes an in-
sulating phase whose quantum dynamics is described by
a generalized QDM on the triangular lattice with exactly
3 dimers per site. The insulating phase is a Z2 topological
liquid. When t < 0 the model is not frustrated and can
be studied with QMC : the superfluid-insulator transi-
tion was argued to be a novel non-conventional fractional
critical point.32

To make the connection with some of our doped
QDM’s we shall assume here the microscopic d bosons
have charge−2e and their density is set to ρ = 1

6 (1−x/2),
x << 1. In that case, as shown in Fig. 11, for V /t → ∞
the lowest-energy configuration space (E = NV /3) is
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FIG. 9. Holon Green’s function (open circles) and square
root of the absolute value of the pair-pair correlations (filled
symbols) for parameters V = 0.3, |J | = 1.0 and |t| = 0.5,
at a low dimer density 1 − x " 0.1 for the 4 classes (a-d) of
models defined in the caption of Fig. 6. Left: 2 dimers on a
36-site cluster (x ∼ 0.89). Right: 3 dimers on a 64-site cluster
(x ∼ 0.91).

coherent dimer pairs of charge 4e. We have checked that
there is not phase separation in none of the four mod-
els at those large values of x. We have also looked at
the energy difference between two and one dimers and
found that pairing is indeed favored in models (b) and
(d) which may explain the drop of the Pijkl in Figure 9
for x ! 0.9.
Based on Figs. 6, 8 and 9, we have extracted the

qualitative phase diagrams for the four models at fixed
V/|J | = 0.3 and t/|J | = 0.5 as a function of doping
x. They are depicted in Fig.10. Charge e superfluidity
seems to occur in all models, with the largest occurrence
in model (a). For intermediate doping, models (b) and
(d) seem to present short range correlations for both one
and two particle Green functions. This behavior sug-
gest an uncondensed phase which in the case of model
(d) would correspond to a Fermi-liquid state. Since el-
ementary excitation in model (b) are bosonic the pres-
ence of an uncondensed phase points toward an exotic
Bose-liquid state, although this statement should require
a more detailed study (using clusters of a much bigger
size) which is beyond the scope of the present article.
For x big, as expected, all models exhibit a 2e-superfluid

2e"SF

2e"SF

2e"SF2e"SF

2e"SF

1e"SF

1e"SF

4e"SF

4e"SF

1e"SF

1e"SFSS

Complex

Complex

V
B
C

V
B
C

V
B
C

V
B
C

SF or Bose"liquid?

Fermi"liquidPS

PS

PS

0.0 0.2 0.4 0.6 0.8 1.0

!a"

!b"

!c"

!d"

x

FIG. 10. Phase diagrams of the four models (a), (b), (c) and
(d) at V/|J | = 0.3 and t/|J | = 0.5 derived from Fig.6 and
Fig.8. All have both the e-superfluid (e-SF) and 2e-superfluid
(2e-SF) phases at different doping depending on the model.

phase followed by a charge 4e superfluid phase in models
(b) and (d) due to dimer pairing.

VI. CONNECTION TO BOSE-HUBBARD
MODELS

We finish this work by discussing the connection to
Bose-Hubbard like models which do not contain a priori
the ice-rule constraint. However, the physics of the doped
QDM can emerge naturally when some form of large re-
pulsion between the itinerant bosons is considered, hence
providing emergence of fractionalized excitations.32

In Ref. 32 it was introduced a simple model of hard-
core bosons hopping (t) on a kagome lattice with a boson
repulsion V favoring the smallest number of bosons in
each hexagon.

H = −t
∑

〈i,j〉

(d†idj + did
†
j) + V

∑

(n )2 (52)

where d†i creates a boson on site i and n =
∑6

i=1 d
†
idi

is the number of bosons in a hexagonal plaquette. When
the boson density is ρ = 1/2 a large V /t stabilizes an in-
sulating phase whose quantum dynamics is described by
a generalized QDM on the triangular lattice with exactly
3 dimers per site. The insulating phase is a Z2 topological
liquid. When t < 0 the model is not frustrated and can
be studied with QMC : the superfluid-insulator transi-
tion was argued to be a novel non-conventional fractional
critical point.32

To make the connection with some of our doped
QDM’s we shall assume here the microscopic d bosons
have charge−2e and their density is set to ρ = 1

6 (1−x/2),
x << 1. In that case, as shown in Fig. 11, for V /t → ∞
the lowest-energy configuration space (E = NV /3) is
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FIG. 9. Holon Green’s function (open circles) and square
root of the absolute value of the pair-pair correlations (filled
symbols) for parameters V = 0.3, |J | = 1.0 and |t| = 0.5,
at a low dimer density 1 − x " 0.1 for the 4 classes (a-d) of
models defined in the caption of Fig. 6. Left: 2 dimers on a
36-site cluster (x ∼ 0.89). Right: 3 dimers on a 64-site cluster
(x ∼ 0.91).

coherent dimer pairs of charge 4e. We have checked that
there is not phase separation in none of the four mod-
els at those large values of x. We have also looked at
the energy difference between two and one dimers and
found that pairing is indeed favored in models (b) and
(d) which may explain the drop of the Pijkl in Figure 9
for x ! 0.9.
Based on Figs. 6, 8 and 9, we have extracted the

qualitative phase diagrams for the four models at fixed
V/|J | = 0.3 and t/|J | = 0.5 as a function of doping
x. They are depicted in Fig.10. Charge e superfluidity
seems to occur in all models, with the largest occurrence
in model (a). For intermediate doping, models (b) and
(d) seem to present short range correlations for both one
and two particle Green functions. This behavior sug-
gest an uncondensed phase which in the case of model
(d) would correspond to a Fermi-liquid state. Since el-
ementary excitation in model (b) are bosonic the pres-
ence of an uncondensed phase points toward an exotic
Bose-liquid state, although this statement should require
a more detailed study (using clusters of a much bigger
size) which is beyond the scope of the present article.
For x big, as expected, all models exhibit a 2e-superfluid
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FIG. 10. Phase diagrams of the four models (a), (b), (c) and
(d) at V/|J | = 0.3 and t/|J | = 0.5 derived from Fig.6 and
Fig.8. All have both the e-superfluid (e-SF) and 2e-superfluid
(2e-SF) phases at different doping depending on the model.

phase followed by a charge 4e superfluid phase in models
(b) and (d) due to dimer pairing.

VI. CONNECTION TO BOSE-HUBBARD
MODELS

We finish this work by discussing the connection to
Bose-Hubbard like models which do not contain a priori
the ice-rule constraint. However, the physics of the doped
QDM can emerge naturally when some form of large re-
pulsion between the itinerant bosons is considered, hence
providing emergence of fractionalized excitations.32

In Ref. 32 it was introduced a simple model of hard-
core bosons hopping (t) on a kagome lattice with a boson
repulsion V favoring the smallest number of bosons in
each hexagon.

H = −t
∑

〈i,j〉

(d†idj + did
†
j) + V

∑

(n )2 (52)

where d†i creates a boson on site i and n =
∑6

i=1 d
†
idi

is the number of bosons in a hexagonal plaquette. When
the boson density is ρ = 1/2 a large V /t stabilizes an in-
sulating phase whose quantum dynamics is described by
a generalized QDM on the triangular lattice with exactly
3 dimers per site. The insulating phase is a Z2 topological
liquid. When t < 0 the model is not frustrated and can
be studied with QMC : the superfluid-insulator transi-
tion was argued to be a novel non-conventional fractional
critical point.32

To make the connection with some of our doped
QDM’s we shall assume here the microscopic d bosons
have charge−2e and their density is set to ρ = 1

6 (1−x/2),
x << 1. In that case, as shown in Fig. 11, for V /t → ∞
the lowest-energy configuration space (E = NV /3) is

t ! �t

B ! F B ! F

t ! �t

• Under doping : generic 1-e superconducting phase

x
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FIG. 9. Holon Green’s function (open circles) and square
root of the absolute value of the pair-pair correlations (filled
symbols) for parameters V = 0.3, |J | = 1.0 and |t| = 0.5,
at a low dimer density 1 − x " 0.1 for the 4 classes (a-d) of
models defined in the caption of Fig. 6. Left: 2 dimers on a
36-site cluster (x ∼ 0.89). Right: 3 dimers on a 64-site cluster
(x ∼ 0.91).

coherent dimer pairs of charge 4e. We have checked that
there is not phase separation in none of the four mod-
els at those large values of x. We have also looked at
the energy difference between two and one dimers and
found that pairing is indeed favored in models (b) and
(d) which may explain the drop of the Pijkl in Figure 9
for x ! 0.9.
Based on Figs. 6, 8 and 9, we have extracted the

qualitative phase diagrams for the four models at fixed
V/|J | = 0.3 and t/|J | = 0.5 as a function of doping
x. They are depicted in Fig.10. Charge e superfluidity
seems to occur in all models, with the largest occurrence
in model (a). For intermediate doping, models (b) and
(d) seem to present short range correlations for both one
and two particle Green functions. This behavior sug-
gest an uncondensed phase which in the case of model
(d) would correspond to a Fermi-liquid state. Since el-
ementary excitation in model (b) are bosonic the pres-
ence of an uncondensed phase points toward an exotic
Bose-liquid state, although this statement should require
a more detailed study (using clusters of a much bigger
size) which is beyond the scope of the present article.
For x big, as expected, all models exhibit a 2e-superfluid
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FIG. 10. Phase diagrams of the four models (a), (b), (c) and
(d) at V/|J | = 0.3 and t/|J | = 0.5 derived from Fig.6 and
Fig.8. All have both the e-superfluid (e-SF) and 2e-superfluid
(2e-SF) phases at different doping depending on the model.

phase followed by a charge 4e superfluid phase in models
(b) and (d) due to dimer pairing.

VI. CONNECTION TO BOSE-HUBBARD
MODELS

We finish this work by discussing the connection to
Bose-Hubbard like models which do not contain a priori
the ice-rule constraint. However, the physics of the doped
QDM can emerge naturally when some form of large re-
pulsion between the itinerant bosons is considered, hence
providing emergence of fractionalized excitations.32

In Ref. 32 it was introduced a simple model of hard-
core bosons hopping (t) on a kagome lattice with a boson
repulsion V favoring the smallest number of bosons in
each hexagon.

H = −t
∑

〈i,j〉

(d†idj + did
†
j) + V

∑

(n )2 (52)

where d†i creates a boson on site i and n =
∑6

i=1 d
†
idi

is the number of bosons in a hexagonal plaquette. When
the boson density is ρ = 1/2 a large V /t stabilizes an in-
sulating phase whose quantum dynamics is described by
a generalized QDM on the triangular lattice with exactly
3 dimers per site. The insulating phase is a Z2 topological
liquid. When t < 0 the model is not frustrated and can
be studied with QMC : the superfluid-insulator transi-
tion was argued to be a novel non-conventional fractional
critical point.32

To make the connection with some of our doped
QDM’s we shall assume here the microscopic d bosons
have charge−2e and their density is set to ρ = 1

6 (1−x/2),
x << 1. In that case, as shown in Fig. 11, for V /t → ∞
the lowest-energy configuration space (E = NV /3) is
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FIG. 9. Holon Green’s function (open circles) and square
root of the absolute value of the pair-pair correlations (filled
symbols) for parameters V = 0.3, |J | = 1.0 and |t| = 0.5,
at a low dimer density 1 − x " 0.1 for the 4 classes (a-d) of
models defined in the caption of Fig. 6. Left: 2 dimers on a
36-site cluster (x ∼ 0.89). Right: 3 dimers on a 64-site cluster
(x ∼ 0.91).

coherent dimer pairs of charge 4e. We have checked that
there is not phase separation in none of the four mod-
els at those large values of x. We have also looked at
the energy difference between two and one dimers and
found that pairing is indeed favored in models (b) and
(d) which may explain the drop of the Pijkl in Figure 9
for x ! 0.9.
Based on Figs. 6, 8 and 9, we have extracted the

qualitative phase diagrams for the four models at fixed
V/|J | = 0.3 and t/|J | = 0.5 as a function of doping
x. They are depicted in Fig.10. Charge e superfluidity
seems to occur in all models, with the largest occurrence
in model (a). For intermediate doping, models (b) and
(d) seem to present short range correlations for both one
and two particle Green functions. This behavior sug-
gest an uncondensed phase which in the case of model
(d) would correspond to a Fermi-liquid state. Since el-
ementary excitation in model (b) are bosonic the pres-
ence of an uncondensed phase points toward an exotic
Bose-liquid state, although this statement should require
a more detailed study (using clusters of a much bigger
size) which is beyond the scope of the present article.
For x big, as expected, all models exhibit a 2e-superfluid
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FIG. 10. Phase diagrams of the four models (a), (b), (c) and
(d) at V/|J | = 0.3 and t/|J | = 0.5 derived from Fig.6 and
Fig.8. All have both the e-superfluid (e-SF) and 2e-superfluid
(2e-SF) phases at different doping depending on the model.

phase followed by a charge 4e superfluid phase in models
(b) and (d) due to dimer pairing.

VI. CONNECTION TO BOSE-HUBBARD
MODELS

We finish this work by discussing the connection to
Bose-Hubbard like models which do not contain a priori
the ice-rule constraint. However, the physics of the doped
QDM can emerge naturally when some form of large re-
pulsion between the itinerant bosons is considered, hence
providing emergence of fractionalized excitations.32

In Ref. 32 it was introduced a simple model of hard-
core bosons hopping (t) on a kagome lattice with a boson
repulsion V favoring the smallest number of bosons in
each hexagon.

H = −t
∑

〈i,j〉

(d†idj + did
†
j) + V

∑

(n )2 (52)

where d†i creates a boson on site i and n =
∑6

i=1 d
†
idi

is the number of bosons in a hexagonal plaquette. When
the boson density is ρ = 1/2 a large V /t stabilizes an in-
sulating phase whose quantum dynamics is described by
a generalized QDM on the triangular lattice with exactly
3 dimers per site. The insulating phase is a Z2 topological
liquid. When t < 0 the model is not frustrated and can
be studied with QMC : the superfluid-insulator transi-
tion was argued to be a novel non-conventional fractional
critical point.32

To make the connection with some of our doped
QDM’s we shall assume here the microscopic d bosons
have charge−2e and their density is set to ρ = 1

6 (1−x/2),
x << 1. In that case, as shown in Fig. 11, for V /t → ∞
the lowest-energy configuration space (E = NV /3) is
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FIG. 9. Holon Green’s function (open circles) and square
root of the absolute value of the pair-pair correlations (filled
symbols) for parameters V = 0.3, |J | = 1.0 and |t| = 0.5,
at a low dimer density 1 − x " 0.1 for the 4 classes (a-d) of
models defined in the caption of Fig. 6. Left: 2 dimers on a
36-site cluster (x ∼ 0.89). Right: 3 dimers on a 64-site cluster
(x ∼ 0.91).

coherent dimer pairs of charge 4e. We have checked that
there is not phase separation in none of the four mod-
els at those large values of x. We have also looked at
the energy difference between two and one dimers and
found that pairing is indeed favored in models (b) and
(d) which may explain the drop of the Pijkl in Figure 9
for x ! 0.9.
Based on Figs. 6, 8 and 9, we have extracted the

qualitative phase diagrams for the four models at fixed
V/|J | = 0.3 and t/|J | = 0.5 as a function of doping
x. They are depicted in Fig.10. Charge e superfluidity
seems to occur in all models, with the largest occurrence
in model (a). For intermediate doping, models (b) and
(d) seem to present short range correlations for both one
and two particle Green functions. This behavior sug-
gest an uncondensed phase which in the case of model
(d) would correspond to a Fermi-liquid state. Since el-
ementary excitation in model (b) are bosonic the pres-
ence of an uncondensed phase points toward an exotic
Bose-liquid state, although this statement should require
a more detailed study (using clusters of a much bigger
size) which is beyond the scope of the present article.
For x big, as expected, all models exhibit a 2e-superfluid
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FIG. 10. Phase diagrams of the four models (a), (b), (c) and
(d) at V/|J | = 0.3 and t/|J | = 0.5 derived from Fig.6 and
Fig.8. All have both the e-superfluid (e-SF) and 2e-superfluid
(2e-SF) phases at different doping depending on the model.

phase followed by a charge 4e superfluid phase in models
(b) and (d) due to dimer pairing.

VI. CONNECTION TO BOSE-HUBBARD
MODELS

We finish this work by discussing the connection to
Bose-Hubbard like models which do not contain a priori
the ice-rule constraint. However, the physics of the doped
QDM can emerge naturally when some form of large re-
pulsion between the itinerant bosons is considered, hence
providing emergence of fractionalized excitations.32

In Ref. 32 it was introduced a simple model of hard-
core bosons hopping (t) on a kagome lattice with a boson
repulsion V favoring the smallest number of bosons in
each hexagon.

H = −t
∑

〈i,j〉

(d†idj + did
†
j) + V

∑

(n )2 (52)

where d†i creates a boson on site i and n =
∑6

i=1 d
†
idi

is the number of bosons in a hexagonal plaquette. When
the boson density is ρ = 1/2 a large V /t stabilizes an in-
sulating phase whose quantum dynamics is described by
a generalized QDM on the triangular lattice with exactly
3 dimers per site. The insulating phase is a Z2 topological
liquid. When t < 0 the model is not frustrated and can
be studied with QMC : the superfluid-insulator transi-
tion was argued to be a novel non-conventional fractional
critical point.32

To make the connection with some of our doped
QDM’s we shall assume here the microscopic d bosons
have charge−2e and their density is set to ρ = 1

6 (1−x/2),
x << 1. In that case, as shown in Fig. 11, for V /t → ∞
the lowest-energy configuration space (E = NV /3) is
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FIG. 9. Holon Green’s function (open circles) and square
root of the absolute value of the pair-pair correlations (filled
symbols) for parameters V = 0.3, |J | = 1.0 and |t| = 0.5,
at a low dimer density 1 − x " 0.1 for the 4 classes (a-d) of
models defined in the caption of Fig. 6. Left: 2 dimers on a
36-site cluster (x ∼ 0.89). Right: 3 dimers on a 64-site cluster
(x ∼ 0.91).

coherent dimer pairs of charge 4e. We have checked that
there is not phase separation in none of the four mod-
els at those large values of x. We have also looked at
the energy difference between two and one dimers and
found that pairing is indeed favored in models (b) and
(d) which may explain the drop of the Pijkl in Figure 9
for x ! 0.9.
Based on Figs. 6, 8 and 9, we have extracted the

qualitative phase diagrams for the four models at fixed
V/|J | = 0.3 and t/|J | = 0.5 as a function of doping
x. They are depicted in Fig.10. Charge e superfluidity
seems to occur in all models, with the largest occurrence
in model (a). For intermediate doping, models (b) and
(d) seem to present short range correlations for both one
and two particle Green functions. This behavior sug-
gest an uncondensed phase which in the case of model
(d) would correspond to a Fermi-liquid state. Since el-
ementary excitation in model (b) are bosonic the pres-
ence of an uncondensed phase points toward an exotic
Bose-liquid state, although this statement should require
a more detailed study (using clusters of a much bigger
size) which is beyond the scope of the present article.
For x big, as expected, all models exhibit a 2e-superfluid

2e"SF
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FIG. 10. Phase diagrams of the four models (a), (b), (c) and
(d) at V/|J | = 0.3 and t/|J | = 0.5 derived from Fig.6 and
Fig.8. All have both the e-superfluid (e-SF) and 2e-superfluid
(2e-SF) phases at different doping depending on the model.

phase followed by a charge 4e superfluid phase in models
(b) and (d) due to dimer pairing.

VI. CONNECTION TO BOSE-HUBBARD
MODELS

We finish this work by discussing the connection to
Bose-Hubbard like models which do not contain a priori
the ice-rule constraint. However, the physics of the doped
QDM can emerge naturally when some form of large re-
pulsion between the itinerant bosons is considered, hence
providing emergence of fractionalized excitations.32

In Ref. 32 it was introduced a simple model of hard-
core bosons hopping (t) on a kagome lattice with a boson
repulsion V favoring the smallest number of bosons in
each hexagon.

H = −t
∑

〈i,j〉

(d†idj + did
†
j) + V

∑

(n )2 (52)

where d†i creates a boson on site i and n =
∑6

i=1 d
†
idi

is the number of bosons in a hexagonal plaquette. When
the boson density is ρ = 1/2 a large V /t stabilizes an in-
sulating phase whose quantum dynamics is described by
a generalized QDM on the triangular lattice with exactly
3 dimers per site. The insulating phase is a Z2 topological
liquid. When t < 0 the model is not frustrated and can
be studied with QMC : the superfluid-insulator transi-
tion was argued to be a novel non-conventional fractional
critical point.32

To make the connection with some of our doped
QDM’s we shall assume here the microscopic d bosons
have charge−2e and their density is set to ρ = 1

6 (1−x/2),
x << 1. In that case, as shown in Fig. 11, for V /t → ∞
the lowest-energy configuration space (E = NV /3) is

t ! �t

B ! F B ! F

t ! �t
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TABLE V. Classification of the possible phases, including various superfluid (SF) phases, that may occur in doped QDM’s on the triangular
lattice. Such phases can be distinguished from the sign of the compressibility κ , the long-distance properties (“SR” means short-range, “LR”
means long-range) of various correlations, or the effective charge deduced from periodicity of the GS energy versus a magnetic flux inserted
through a torus. sgnB and sgnF were defined in Ref. 23 to analyze the node content of the GS wave function.

Observables→
Phases↓

κ 〈b†
i,j bi,j b

†
k,lbk,l〉 〈a†

ka
†
l aiaj 〉 〈a†

i Si,j aj 〉 sgnB sgnF Flux periodicity

PS <0
VBC >0 LR SR SR 2e

SS >0 LR LR SR 1 0 2e

2e-SF >0 SR LR SR 0 < sgnB < 1 0 < sgnF < 1 2e

e-SF >0 SR LR (weak) LR 1 0 2e

Bose liquid >0 SR SR SR 1 0 2e

Fermi liquid >0 SR SR SR 0 1 2e

“Complex” phase >0 SR SR SR 0 < sgnB < 1 0 < sgnF < 1 2e

operator in a complicated manner. Namely,
(

a
†
i

∑

n

S (n)
k,i ak)(a†

j

∑

n′

S (n′)
l,j al

)

+
(

a
†
i

∑

n

S (n)
l,i al)(a

†
j

∑

n′

S (n′)
k,j ak

)

= Bi,jB
†
k,l + {loop terms}, (45)

where the first part of the right-hand side is obtained from a
“closure relation” involving all pairs of “retraceable” strings
n′ = n̄, i.e.,

∑

n

(
S (n)

k,iS
(n̄)
l,j + S (n)

l,i S
(n̄)
k,j

)
= bij b

†
kl, (46)

and the rest corresponds to pair hopping dressed with extra
loop fluctuations. The proof for Eq. (46) is not straightforward
but the reader may be easily convinced of this result by drawing
the paths for some examples. This suggests that it is physically
meaningful to write the pair correlations as

Pijkl = GikGjl + GilGjk, + P c
ijkl, (47)

where the first two terms can be viewed as the “mean-field”
contribution and P c

ijkl stands for the “connected” part in
which we remove all the processes involving compositions
of single holon hoppings. In particular, both sides scale like
x2 or (1 − x)2, respectively, in the limit x → 0 or x → 1.
Therefore it is convenient to normalize Pijkl by x2(1 − x)2

and Gij by x(1 − x). Equation (47) shows that LRO in
the holon Green’s function Gik → G∞, characteristic of the
charge-e superfluid, will inevitably induce LRO in the pair-pair
correlation, P ∼ G2

∞. In contrast, the conventional, charge-2e
superfluid is defined by LRO in the connected part together
with the short-ranged holon Green’s function.

3. Dimer-dimer correlations

We finish by recalling that the dimer-dimer correlations are
expressed in terms of the dimer number operators b

†
i,j bi,j as

Ni,j,k,l = 〈b†i,j bi,j b
†
k,lbk,l〉, (48)

where sites i and j on one hand, and k and l on the other hand,
are nearest-neighbor sites. Long-range order in this correlation

function is characteristic of VBC order. The wave vector at
which the associated structure factor diverges defines the VBC
wave vector.

In principle, one can use the new correlations Gi,j and
Pi,j,k,l to refine the previous phase diagrams (Ni,j,k,l was used
in previous work to determine the VBC and SS regions). To
ease the analysis of the numerical results of the doped QDM’s,
a classification of the various possible phases based on simple
considerations is provided in Table V.

We note that there is no phase where there is a charge-e
condensation simultaneously with a dimer long-range order
(“LR” for both 〈b†i,j bi,j b

†
k,lbk,l〉 and 〈a†

i Si,j aj 〉.) This is because
existence of the dimer long-range order leads to confinement
of holons.

C. Numerical results

In Fig. 8 are displayed both the holon Green’s functions
[Eqs. (36) and (37)] and the square root of the pair-pair correla-
tions [Eq. (44)] computed by numerical exact diagonalization
on a 16-site triangular cluster, varying the hole density from
x = 0.125 (low hole concentration) to x = 0.75 (low dimer
concentration), from top to bottom. For convenience, both

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

FIG. 7. (Color online) Sixteen site cluster: labeling of the sites
(numbered circles) and reference bond (purple bond) used respec-
tively in the definition of Green’s functions and the pair correlations.
The bonds are labeled according to one of the sites connected to them
and by a direction, as shown in the example (here site 10).
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