Geometric theory of quantum spin systems

Patrick Bruno, ESRF Theory Group

Summary

- Introduction: classical magnets vs. quantum magnets
* Majorana's stellar representation of quantum spin states
* spin wavefunction as a (fictitious) thermodynamics partition function
* Berry's geometric phase in Majorana representation
* Towards a geometric theory of quantum many-spin systems

Introduction:

Classical magnets vs. quantum magnets

Petrus Peregrinus de Maricourt (13 th cent.), William Gilbert (16 th cent.)

object with the property of being able to point into a certain direction (= dipole moment)
dynamics of a magnet = changes of its orientation
"Traitté de l'aiman"
Dalencé (1691)

European Synchrotron Radiation facility

$$
\mathbf{m}=m \mathbf{u}
$$

$$
m=\text { constant }
$$

dynamics described by classical equations (Landau-Lifshitz-Gilbert)

$$
m \frac{d \mathbf{u}}{d t}=\gamma \mathbf{B}_{\text {eff }} \times \mathbf{u}+\text { damping term }
$$

$$
\mathbf{B}_{\text {eff }}=-\frac{1}{m} \frac{d E}{d \mathbf{u}}
$$

= equation of motion of a classical gyroscope
= dynamics of a point on a sphere (phase space of dimension 2)

molecular magnets
$\left.\begin{array}{l}\begin{array}{l}\mathrm{Fe}_{8} \\ 6 \text { ions } \mathrm{Fe}^{3+} \\ 2 \text { ions } \mathrm{Fe}^{3+} \\ S=5 / 2 \\ \hline\end{array} \quad(\uparrow) \\ \hat{\mathcal{H}}=-\mathrm{H} \cdot \mathrm{S}-K S_{z}^{2}+D\left(S_{x}^{2}-S_{y}^{2}\right)\end{array}\right\} \Rightarrow S=10$
$\left[\mathrm{Fe}_{8} \mathrm{O}_{2}(\mathrm{OH})_{12}(\mathrm{tacn})_{6}\right] \mathrm{Br}_{8}$
(tacn = 1,4,7-triazacyclononane)

genuine quantum effects:
tunneling, quantum interferences, entanglement ...

Quantum spin systems with exotic ordering spin nematics (magnets without dipole moments)

Example:

$$
\operatorname{spin} S=1
$$

$$
\begin{aligned}
& \left.\left\lvert\, \begin{array}{l}
1,1\rangle=\uparrow \\
|1,-1\rangle=\downarrow
\end{array}\right.\right\} \quad \begin{array}{ll}
\mathrm{m} \neq 0 & \text { (dipole moment) } \\
|1,0\rangle=\uparrow
\end{array} \quad \mathrm{m}=0, \quad Q_{\mathrm{zz}} \neq 0 \quad \text { (quadrupole moment) }
\end{aligned}
$$

$H=-\sum_{\langle i, j\rangle}\left[J_{1}\left(\mathbf{S}_{1} \cdot \mathbf{S}_{2}\right)+J_{2}\left(\mathbf{S}_{1} \cdot \mathbf{S}_{2}\right)^{2}\right] \quad 0<J_{1}<J_{2}$
\rightarrow spontaneous quadrupolar ordering
cf. ultracold spin 1 gases
cf. "hidden" order in heavy-fermions systems (hexadecapole ordering, or even higher multipolar ordering, has been proposed)

Majorana's stellar representation of quantum spin states

AГEQMETPHTO乏 MHAEIs EISIT』 (ПИAT,

"Let no one ignorant of geometry enter here"
(inscription above the entrance of Plato's Academy in Athens)

Plato (427-347 B.C.)

traditional description

 of spin systemsquantum state: $|\psi\rangle$
select some axis z
basis set $=$ eigenstates of J_{z} :
$|J M\rangle \quad(M=J, J-1, J-2, \cdots,-J)$

$$
\psi(M)=\langle J M \mid \psi\rangle
$$

matrix element of the Hamiltonian:

$$
H_{M M^{\prime}}=\langle J M| \hat{H}\left|J M^{\prime}\right\rangle
$$

- convenient for numerical calculations
- physically not very insightful (except for particular cases)
- needs to single out some arbitrary axis

spin coherent states

$|\underline{\Omega}\rangle=(|J J\rangle$ rotated to the Ω axis $)$

- "geometrically" more satisfactory description (no need to single out some axis)
- the quantum state is entirely characterized the so-called Husimi function $Q_{\psi}(\Omega)=|\psi(\Omega)|^{2}$
- the Hamiltionian is entirely described by its diagonal matrix elements $H(\Omega)=\langle\underline{\Omega}| \hat{H}|\underline{\underline{\Omega}}\rangle$

European Synchrotron Radiation facility
cubic anisotropy (ground state)
$S=20$
$H=\frac{-3 K}{S^{2}(S+1)^{2}}\left(S_{x}^{4}+S_{y}^{4}+S_{z}^{4}\right)$

$$
Q_{\psi}(\mathbf{n})=|\psi(\mathbf{n})|^{2}
$$

Majorana's "stellar" representation

 the wave function $\psi(\mathbf{\Omega})=\langle\boldsymbol{\Omega} \mid \psi\rangle$ or the Husimi distribution $Q_{\psi}(\mathbf{\Omega})=\mid \psi(\mathbf{\Omega})^{2}$ of a system with spin J has exactly 2 J zeros (= stars)the quantum state $|\psi\rangle$ is entirely characterized by the location of its 2 J stars (= constellation)
for a coherent state $\mid \underline{\mathbf{Q}}$, the Majorana stars are all degenerate and located at the antipode of $\mathbf{\Omega}$ coherent are quasi-classical states (smallest transverse spread)
entangled (non-classical) states are characterized by Majorana stars that are not all degenerate
\leftrightarrow a generic spin J state is obtained a as a unique fully symmetrized product of 2 J spin $1 / 2$ states

Ettore Majorana (1906-1938 (?))

S

spin wavefunction as a (fictitious) thermodynamics partition function

spin $1 / 2$ coherent state: $|\Omega\rangle=\cos \left(\frac{\theta}{2}\right)|\hat{\mathbf{z}}\rangle+\sin \left(\frac{\theta}{2}\right) e^{\mathrm{i} \varphi}|-\hat{\mathbf{z}}\rangle$
scalar product of 2 spin $1 / 2$ states: $\left\langle\mathbf{\Omega}_{1} \mid \mathbf{\Omega}_{2}\right\rangle=\left(\frac{1+\mathbf{\Omega}_{1} \cdot \mathbf{\Omega}_{2}}{2}\right)^{1 / 2} \exp \left(i \frac{\Sigma\left(\hat{\mathbf{z}}, \mathbf{\Omega}_{1}, \mathbf{\Omega}_{2}\right)}{2}\right)$

$$
\Sigma\left(\hat{\mathbf{z}}, \mathbf{\Omega}_{1}, \mathbf{\Omega}_{2}\right)=\text { oriented area of spherical triangle }\left(\hat{\mathbf{z}}, \mathbf{\Omega}_{1}, \mathbf{\Omega}_{2}\right)
$$

spin J coherent state: $|\underline{\underline{\mathbf{Q}}\rangle}\rangle \equiv \underbrace{|\mathbf{\Omega}\rangle \otimes|\mathbf{\Omega}\rangle \otimes \cdots \otimes|\mathbf{\Omega}\rangle}_{2 \mathrm{~J} \text { factors }} \equiv|\mathbf{\Omega}\rangle^{\otimes(2 \mathrm{~J})}$
(unnormalized) spin $2 J$ state parametrized
by its $2 J$ Majorana stars $\left\{\mathbf{n}_{i}\right\} \quad(i=1, \ldots, 2 J):\left|\tilde{\Psi}\left\{\mathbf{n}_{i}\right\}\right\rangle \equiv \frac{1}{(2 J)!} \sum_{P \in \operatorname{perms}(2 J)}\left[\bigotimes_{i=1}^{2 J}\left|-\mathbf{n}_{P(i)}\right\rangle\right]$
norm of state $|\tilde{\Psi}\rangle: Z_{J}(\tilde{\Psi}) \equiv\langle\tilde{\Psi} \mid \tilde{\Psi}\rangle=\frac{2 J+1}{4 \pi} \int d^{2} \boldsymbol{\Omega}\langle\tilde{\Psi} \mid \underline{\mathbf{Q}}\rangle\langle\underline{\underline{\Omega}} \mid \tilde{\Psi}\rangle$

$$
=\frac{2 J+1}{4 \pi} \int \mathrm{~d}^{2} \Omega\left[\prod_{i=1}^{2 J}\left(\frac{1-\mathbf{\Omega} \cdot \mathbf{n}_{i}}{2}\right)\right]
$$

planar 2D Coulomb interaction

$$
U_{2 D-p 1} \propto-q_{1} q_{2} \ln (D)+C
$$

 spherical 2D Coulomb interaction

$$
\begin{aligned}
& U_{2 \mathrm{D}-\mathrm{sph}} \propto-q_{1} q_{2} \ln \left(D_{\mathrm{ch}}\right)+C \\
& \text { chordal distance: } D_{\mathrm{ch}}=2 \sin \left(\frac{\theta}{2}\right)
\end{aligned}
$$

probability of finding our system in the coherent state $|\underline{\Omega}\rangle$:

$$
P_{\tilde{\Psi}}(\mathbf{\Omega}) \equiv \frac{(2 J+1)}{Z_{J}(\tilde{\Psi})}|\langle\tilde{\Psi} \mid \mathbf{\Omega}\rangle|^{2}=\frac{(2 J+1)}{Z_{J}(\tilde{\Psi})} \prod_{i=1}^{2 J} \sin ^{2}\left(\frac{\theta_{\Omega, n_{i}}}{2}\right) \quad \frac{1}{4 \pi} \int d^{2} \mathbf{\Omega} P_{\tilde{\Psi}}(\mathbf{\Omega})=1
$$

$$
=\frac{(2 J+1)}{Z_{J}(\tilde{\Psi})} \exp \left(-\beta V_{\tilde{\Psi}}(\mathbf{\Omega})\right)
$$

with inverse "temperature" $\beta=1$ and $V_{\tilde{\Psi}}(\mathbf{\Omega}) \equiv \sum_{i=1}^{2 J} V\left(\mathbf{\Omega}, \mathbf{n}_{i}\right)$
spherical "Coulomb repulsion" : $V\left(\mathbf{\Omega}, \mathbf{n}_{i}\right)=-\ln \left(2 \sin \left(\frac{\theta_{\Omega, \mathbf{n}_{i}}}{2}\right)\right)$ $)) \begin{aligned} & 2 J \text { fixed } \\ & \text { test charges }\end{aligned}$
$Z_{J}(\tilde{\Psi})=\frac{2 J+1}{4 \pi} \int d^{2} \boldsymbol{\Omega} \exp \left(-\beta V_{\tilde{\Psi}}(\boldsymbol{\Omega})\right)$
$=$ partition function of a fictitious gas of independent particles interacting with $2 J$ fixed test charges
fictitious free energy: $F(\tilde{\Psi}) \equiv-\frac{1}{\beta} \ln \left(Z_{J}(\tilde{\Psi})\right)$

from known expressions of Z_{J} one can derive explicit expressions for the expectation value of the dipole moment for arbitrary value of J :

$$
\begin{array}{ll}
\langle J\rangle=-\frac{1}{2} \mathbf{n}_{1} \quad(J=1 / 2) & \sigma_{i j} \equiv \sin ^{2}\left(\frac{\theta_{1}}{2}\right. \\
\langle\mathbf{J}\rangle=-\frac{1}{2} \frac{\mathbf{n}_{1}+\mathbf{n}_{2}}{1-\frac{\sigma_{12}}{2}} \quad(J=1) & \\
\langle\mathbf{J}\rangle=-\frac{1}{2} \frac{\mathbf{n}_{1}\left(1-\frac{\sigma_{23}}{3}\right)+\mathbf{n}_{2}\left(1-\frac{\sigma_{13}}{3}\right)+\mathbf{n}_{3}\left(1-\frac{\sigma_{12}}{3}\right)}{1-\frac{\sigma_{12}+\sigma_{13}+\sigma_{23}}{3}} & (J=3 / 2) \\
\text { etc... } &
\end{array}
$$

+ expressions of higher multipoles (quadrupole, octupole, etc...)
(systematic diagram technique)
\rightarrow expression of the (real !) energy in terms of the Majorana stars: $H(\tilde{\Psi}) \equiv \frac{\langle\tilde{\Psi}| \hat{H}|\tilde{\Psi}\rangle}{\langle\tilde{\Psi} \mid \tilde{\Psi}\rangle}$ e.g.: $\quad H(\tilde{\Psi})=-\mathbf{B} \cdot\langle\mathbf{J}\rangle+K\left\langle J_{z}^{2}\right\rangle+D\left(\left\langle J_{x}^{2}\right\rangle-\left\langle J_{y}^{2}\right\rangle\right)+\cdots=H\left\{\mathbf{n}_{i}\right\}$

quantum metric

the fictitious free-energy determines the quantum metric:

$$
\overline{\mathbf{g}}_{j i}=\frac{\partial^{2} F(\tilde{\Psi})}{\partial \mathbf{n}_{i} \partial \mathbf{n}_{j}}
$$

allows to measure the quantum (so-called Fubini-Study) distance between quantum states
the metric becomes degenerate, i.e., the volume measure $\sqrt{\operatorname{det}(\overline{\mathbf{g}})}$ goes to zero, whenever two or more Majorana stars coincide
\rightarrow statistical (Coulomb) repulsion of Majorana stars
= consequence of the bosonic character of the Majorana stars
$J=40 \quad$ stereographic representation

random Hamiltonian
(classically chaotic system)
Leboeuf et al. (1990); Hannay (1996)

Berry's geometric phase in Majorana representation

Berry phase in a nutshell

M.V. Berry,

Proc. Roy. Soc. London A 392, 45 (1984)

 of this phase ???

$$
\hat{\mathcal{H}}(\mathbf{R})\left|\Psi_{n}(\mathbf{R})\right\rangle=E_{n}(\mathbf{R})\left|\Psi_{n}(\mathbf{R})\right\rangle
$$

basis states: $\left|\Psi_{n}(\mathbf{R})\right\rangle \quad \hat{\mathcal{H}}(\mathbf{R})\left|\Psi_{n}(\mathbf{R})\right\rangle=E_{n}(\mathbf{R})\left|\Psi_{n}(\mathbf{R})\right\rangle$
adiabatic transformation: $\left|\Psi_{n}\left(\mathbf{R}_{0}\right)\right\rangle \xrightarrow{c}\left|\Psi_{n}^{\prime}\left(\mathbf{R}_{0}\right)\right\rangle=\exp \left[i\left(\delta_{n}+\gamma_{n}(\mathcal{C})\right)\right]\left|\Psi_{n}\left(\mathbf{R}_{0}\right)\right\rangle$
$\delta_{n}=$ dynamical phase
non-integrable (Berry) phase: $\quad \gamma_{n}(C)=i \oint_{C}\left\langle\Psi_{n}(\mathbf{R}) \mid \nabla_{\mathbf{R}} \Psi_{n}(\mathbf{R})\right\rangle \cdot d \mathbf{R}$
Sir Michael V. Berry

Berry phase as a fictitious flux in parameter space (3D)
geometric (Berry) phase: $\gamma_{n}(\mathcal{C})=i \oint_{\mathcal{C}}\left\langle n(\mathbf{R}) \mid \nabla_{\mathbf{R}} n(\mathbf{R})\right\rangle \cdot d \mathbf{R}$

$$
=\oint_{c} \mathbf{A}^{n}(\mathbf{R}) \cdot d \mathbf{R}
$$

with $\mathbf{A}^{n}(\mathbf{R})=i\left\langle n(\mathbf{R}) \mid \nabla_{\mathbf{R}} n(\mathbf{R})\right\rangle$ (Berry connection)
Stokes' theorem: $\gamma_{n}(\mathcal{C})=\iint_{\mathcal{S}} \mathbf{B}^{n}(\mathbf{R}) \cdot \mathbf{n d S} \quad\left(\mathbf{B}^{n}=\right.$ Berry curvature $)$ with $\mathbf{B}^{n}(\mathbf{R})=\nabla_{\mathbf{R}} \times \mathbf{A}(\mathbf{R})$

$$
\begin{aligned}
& =i\left\langle\nabla_{\mathbf{R}} n\right| \times\left|\nabla_{\mathbf{R}} n\right\rangle \\
& =i \sum_{m(\neq n)}\left\langle\nabla_{\mathbf{R}} n \mid m\right\rangle \times\left\langle m \mid \nabla_{\mathbf{R}} n\right\rangle
\end{aligned}
$$

$$
\mathbf{B}^{n}(\mathbf{R})=i \sum_{m(\neq n)} \frac{\langle n| \nabla_{\mathbf{R}} \hat{\mathcal{H}}|m\rangle \times\langle m| \nabla_{\mathbf{R}} \hat{\mathcal{H}}|n\rangle}{\left(E_{m}(\mathbf{R})-E_{n}(\mathbf{R})\right)^{2}}
$$

$B^{n}(\mathbf{R})$ is large if \mathbf{R} is close to a degeneracy \mathbf{R}^{*} (flux of a Dirac monopole located at \mathbf{R}^{*})

Canonical example of Berry phase: spin in a magnetic field

Hamiltonian: $\quad \hat{\mathcal{H}}(\mathbf{n})=-\mathbf{B} \cdot \mathbf{J}=-\mathbf{B} \mathbf{n} \cdot \mathbf{J}$

external parameter = unit vector \mathbf{n}

Berry phase: $\quad \gamma_{C}=-M \Omega$

$$
M=J, J-1, \cdots,-J
$$

= Aharonov-Bohm phase of an electric charge $2 M$ in the magnetic field of a Dirac monopole of unit magnetic charge

quantization of the Dirac monopole \leftrightarrow topology

ETSRE

Berry connection (= "vector potential"): $\quad A_{\alpha}=\frac{i}{2}\left[\frac{\left\langle\tilde{\Psi} \mid \partial_{\alpha} \tilde{\Psi}\right\rangle-\left\langle\partial_{\alpha} \tilde{\Psi} \mid \tilde{\Psi}\right\rangle}{\langle\tilde{\Psi} \mid \tilde{\Psi}\rangle}\right]$
Berry curvature ($=$ "flux" density): $\quad f_{\alpha \beta} \equiv \partial_{\alpha} A_{\beta}-\partial_{\beta} A_{\alpha}$

$$
f_{\alpha \beta}=\frac{i}{2}\left[\frac{\left\langle\partial_{\alpha} \tilde{\Psi} \mid \partial_{\beta} \tilde{\Psi}\right\rangle-\left\langle\partial_{\beta} \tilde{\Psi} \mid \partial_{\alpha} \tilde{\Psi}\right\rangle}{\langle\tilde{\Psi} \mid \tilde{\Psi}\rangle}-\frac{\left\langle\partial_{\alpha} \tilde{\Psi}\right||\tilde{\Psi}\rangle\left\langle\tilde{\Psi} \mid \partial_{\beta} \tilde{\Psi}\right\rangle-\left\langle\partial_{\beta} \tilde{\Psi}\right||\tilde{\Psi}\rangle\left\langle\tilde{\Psi} \mid \partial_{\alpha} \tilde{\Psi}\right\rangle}{\langle\tilde{\Psi} \mid \tilde{\Psi}\rangle^{2}}\right]
$$

here α label the 4 J coordinates of the 2 J Majorana stars \mathbf{n}_{i}
geometrical (Berry-Aharonov-Anandan) phase for a round trip in state space:

$$
\Phi_{B}=\oint \sum_{i=1}^{2 J} \mathbf{A}_{j} \cdot \mathbf{d n _ { i }}
$$

\mathbf{A}_{i} plays the role of a vector potential for \mathbf{n}_{i}

$\mathbf{A}_{i}=\frac{1}{4 \pi} \int \mathrm{~d} \boldsymbol{\Omega} P_{\tilde{\Psi}}(\boldsymbol{\Omega}) \mathbf{A}_{i}(\mathbf{\Omega})$
with $\quad \mathbf{A}_{i}(\mathbf{\Omega})=\frac{1}{2}\left(\frac{\hat{\mathbf{z}} \times \mathbf{n}_{i}}{1-\hat{\mathbf{z}} \cdot \mathbf{n}_{i}}-\frac{\mathbf{\Omega} \times \mathbf{n}_{i}}{1-\boldsymbol{\Omega} \cdot \mathbf{n}_{i}}\right)$
= vector potential for a Dirac string carrying unit flux quantum, entering along z and exiting along $\mathbf{\Omega}$

$$
\mathbf{A}_{i}=\frac{1}{4 \pi} \int \mathrm{~d} \boldsymbol{\Omega} P_{\tilde{\Psi}}(\boldsymbol{\Omega}) \mathbf{A}_{i}(\boldsymbol{\Omega})=\frac{1}{2}(\underbrace{\frac{\hat{\mathbf{z}} \times \mathbf{n}_{i}}{1-\hat{\mathbf{z}} \cdot \mathbf{n}_{i}}}_{\begin{array}{l}
\text { magnetic } \\
\text { monopole }
\end{array}}-\underbrace{\frac{\partial F(\tilde{\Psi})}{\partial \mathbf{n}_{i}}}_{\begin{array}{l}
\text { fictitious } \\
\text { force acting } \\
\text { test charge } \mathbf{n}_{\mathrm{i}}
\end{array}} \times \mathbf{n}_{i})
$$

the flux density is given by $P_{\tilde{\Psi}}(\mathbf{\Omega})$

quantum dynamics

$$
\left.\sum_{j=1}^{2 J} \overline{\mathbf{f}}_{f_{j}}^{2 \mathbf{d n}_{j}} \frac{\partial H(\tilde{\Psi})}{\mathrm{d} t}=\frac{\partial\left(\tilde{\Psi}^{2}\right)}{\partial \mathbf{n}_{i}}\right)\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)\binom{\dot{x}}{\dot{p}}=\binom{\partial_{x} H}{\partial_{\rho} H}
$$ space

= generalization for a spin J of the Bloch equation of motion of a spin $1 / 2$
= quantum version of the Landau-Lifshitz (classical) equation for spin dynamics
quantum spin $J \leftrightarrow$ ensemble of $2 J$ classical gyroscopes coupled through their symplectic structure, as well as dynamically (Hamiltonian)

Towards a Geometric Theory of Quantum Many-Spin Systems

$\mathbf{\Omega}_{n} \equiv$ unit vector of the coherent state for a spin J at site \mathbf{R}_{n} partition function at temperature $\beta^{-1}: Z \equiv \oint \prod_{n} D \mathbf{\Omega}_{n}(\tau) \exp (-\tilde{S}[\Omega])$
$\tau \equiv$ imaginary time path integral over all the closed paths for the Ω_{n} with the boundary condition $\boldsymbol{\Omega}_{n}(\beta)=\mathbf{\Omega}_{n}(0)$
with the action $\tilde{S}[\mathbf{\Omega}]=-\underbrace{j \sum_{n} \omega\left[\mathbf{\Omega}_{n}\right]}_{\text {Berry phase }}+\int_{0}^{\beta} d \tau H[\mathbf{\Omega}(\tau)]$
$\omega\left[\boldsymbol{\Omega}_{n}\right] \equiv$ solid angle described by $\boldsymbol{\Omega}_{n}$ between 0 and β
describes successfully: - spin waves in ferromagnets and antiferromagnets

- Mermin-Wagner theorem (no ordering for $T>0, D \leq 2$)
- Haldane gap for AF chain of integer spin
- ...
inconvenient for describing spin sytems with exotic (quadupolar) ordering such as spin nematics
$\mathbf{N}_{n} \equiv\left\{\mathbf{n}_{i}\left(\mathbf{R}_{n}\right)\right\} \quad$ (Majorana constellation at site $\left.\mathbf{R}_{n}\right)$ partition function at temperature β^{-1} :

$$
Z \equiv \oint \prod_{n} D \mathbf{N}_{n}(\tau) \exp (-\tilde{S}[\mathbf{N}])
$$

with the boundary condition $\mathbf{N}_{n}(\beta)=\mathbf{N}_{n}(0)$

with the action $\tilde{S}[\mathbf{N}]=-i \underbrace{\sum_{n} \Phi_{B}\left[\mathbf{N}_{n}\right]}-\underbrace{\frac{1}{\beta} \underbrace{\left.\sum_{n} \int_{0}^{\beta} d \tau \ln \sqrt{\operatorname{det}\left(\overline{\mathbf{g}}\left(\mathbf{N}_{n}(\tau)\right)\right.}\right)}_{n}+\underbrace{\int_{0}^{\beta} d \tau H[\mathbf{N}(\tau)]} .]}$

$$
\Phi_{B}\left[\mathbf{N}_{n}\right]=\oint \sum_{i=1}^{2 N} \mathbf{A}_{i} \cdot \mathbf{d \mathbf { d } _ { i }}
$$

appropriate to describe spin sytems with exotic ordering because the quantum state of each each spin is treated exactly

spin 1 nematic

spin 3/2 nematic

Concluding remarks and outlook

- Majorana's stellar representation allows a novel, fully geometrical, interpretation of the concept of geometrical phase for a spin system
- the geometrical representation is the most natural setting to describe the dynamics of systems such as molecular magnets
- \rightarrow quantum spin systems (chains, planes, etc...) with $J>1 / 2$ and unconventional magnetic order (quadrupole, octupole, etc...)
- \rightarrow study the interaction of X-rays and neutrons with spin systems having quadrupolar ordering (suggest methods for experimental investigation of spin nematics)
if you want to learn more about this: P.B., Phys. Rev. Lett. 108, 240402 (2012) see also: Physics Viewpoint "A Quantum Constellation", Physics 5, 65 (2012)

Thank you for your attention!

European Synchrotron Radiation facility

