

Lepton flavour violation: a phenomenological bird's-eye view

Ana M. Teixeira

Laboratoire de Physique Corpusculaire, LPC Clermont

"GT2 - Journées de Prospectives LPC" 20 February 2013

Lepton flavour violation: SM and beyond

Neutral leptons in the SM: a brief history

▶ ν birth: "Rescue" conservation of energy in nucleus beta decay $n \rightarrow p + e^- + \bar{\nu}_e$

"I have hit upon a desperate remedy to save the "exchange theorem" of statistics and the law of conservation of energy. ... electrically neutral particles, that I wish to call neutrons, which have spin 1/2 and obey the exclusion principle... The continuous beta spectrum would then become understandable..."

Pauli. 1930

• Enter the "neutrino": following the discovery of the "neutron" in 1933 by Chadwick, Pauli postulates the existence of a "massless neutrino"

- Electron neutrino: detected in 1956 by Cowan and Reines
- Muon neutrino: discovery in 1962 by Lederman, Schwartz and Steinberger
- ▶ 3 neutrino families: Z boson decay width, CERN 1983
- **Tau neutrino:** direct evidence in **2000** by **DONUT** team
- Lepton sector of the SM: although many pieces of the puzzle have been found, we are far from understanding the "neutrino misteries"

Neutrino sources \Rightarrow the discovery of ν oscillation

Neutrino sources have been experimentally and observationally explored, huge impact for particle & astroparticle physics and astronomy!

Laboratory: reactors, accelerators

Cosmic rays: atmospheric neutrinos ($\nu_{@}$), ultra-high energy neutrinos **Astrophysical:** solar neutrinos (ν_{\odot}), supernovae

• A puzzling and surprising discovery: the solar ν_e and atmospheric ν_{μ} fluxes... Solar neutrino problem: detection of only 1/3 of expected flux of solar ν_e 's Atmospheric neutrino problem: detection of $\nu_e \sim \nu_{\mu}$ (expected $\nu_e \sim 2\nu_{\mu}$)

Unsettling hypotheses:

"Unexpected" production of ν_{α} : do charged currents violate lepton flavours? "Disappearance" of propagating ν_{α} : do neutrinos oscillate?

Neutrino oscillations: massive states, leptonic mixing!

► A simple solution to both problems! Illustrative 2-family example

Two massive states $(\Delta m_{\nu} \neq 0)$ related to flavour eigenstates as $\nu_{\alpha} = U_{\alpha i} \nu_{i}$

$$\begin{pmatrix} \nu_{\mu} \\ \nu_{\tau} \end{pmatrix} = \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} \nu_{2} \\ \nu_{3} \end{pmatrix}$$

▶ What is the **story of a relativistic neutrino**, produced (e.g.) in muon decay??

(i) Production of weak eigenstate at t = 0: $|\nu_{t=0}\rangle = |\nu_{\mu}\rangle = \cos\theta |\nu_{2}\rangle + \sin\theta |\nu_{3}\rangle$

(ii) Travel distance L to the detector, during which it oscillates

$$|\nu(t)\rangle = \cos\theta e^{-iE_2t}|\nu_2\rangle + \sin\theta e^{-iE_3t}|\nu_3\rangle$$

(iii) At the detector, it produces μ in charged current scattering, with probability

$$\mathcal{P}^{2\nu}_{\mu\to\mu}(L,t) = |\langle \nu_{\mu}|\nu(t)\rangle|^2 = 1 - \sin^2 2\theta \sin^2 \left(\frac{\Delta m_{\nu}^2 L}{4E}\right) \neq 1$$

Oscillations: if and only if neutrinos are massive and mix!

► Huge breakthrough of SuperKamiokande in 1998 ⇒ Physics beyond SM!

A first look at flavours in the SM

Quark sector:

The SM electroweak interactions preserve u, d, etc flavours After EWSB, there is a **misalignment** of physical and interaction eigenstates **Quark flavour violated** by **charged current** interactions $V_{ij}^{CKM} W^{\pm} \bar{q}_i q_j$ Observed in many oscillation/decay processes: **very good agreement with SM!** [see Nazila's talk next week on beyond SM contributions...]

Lepton sector:

Original SM formulation only includes ν_L (no ν_R , no Higgs triplet)

 $m_{\nu_i} = 0$ - to all orders! [accidental U(1)_{B-L} symmetry]

Strict conservation of total lepton number (L) and lepton flavours (L_i)

Revisiting the SM lepton sector: leptonic mixing

A new lepton sector: flavour violated in charged current interactions
 Just as in the quark sector, misalignment of physical and interaction eigenstates
 Misalignement of mass and SU(2)_L states parametrized by "mixing matrix" (à la V_{CKM})
 Pontecorvo-Maki-Nakagawa-Sakata matrix: U_{PMNS}

$$\mathcal{L}_{\text{charged}}^{\text{lepton}} = U_{\text{PMNS}} \, \bar{\ell}_L \, W^{\pm} \, \nu_L \, + \text{h.c.} \qquad \begin{array}{l} (\nu_e, \, \nu_\mu, \, \nu_\tau) \stackrel{U_{\text{PMNS}}}{\leadsto} \, (\nu_1, \, \nu_2, \, \nu_3) \\ |\nu_\alpha\rangle \, = \, U_{\alpha i}^* \, |\nu_i\rangle \end{array}$$

$$\boldsymbol{U}_{\mathsf{PMNS}} = \begin{pmatrix} c_{12} c_{13} & s_{12} c_{13} & s_{13} e^{-i\delta} \\ -s_{12} c_{23} - c_{12} s_{23} s_{13} e^{-i\delta} & c_{12} c_{23} - s_{12} s_{23} s_{13} e^{-i\delta} & s_{23} c_{13} \\ s_{12} s_{23} - c_{12} c_{23} s_{13} e^{-i\delta} & -c_{12} s_{23} - s_{12} c_{23} s_{13} e^{-i\delta} & c_{23} c_{13} \end{pmatrix} \times \begin{pmatrix} 1 & 0 & 0 \\ 0 & e^{i\phi_1} & 0 \\ 0 & 0 & e^{i\phi_2} \end{pmatrix}$$

$$U_{PMNS}$$
: 3 anglesSolar $\theta_{12}, \theta_{\odot}$ CPV phasesDirac δ Atmospheric $\theta_{23}, \theta_{\odot}$ Majorana $\phi_{1,2}$ Reactor $\theta_{13}, \theta_{Chooz}$

Revisiting the SM lepton sector: oscillation data

▶ A huge number of facilities devoted to determining ν -data!

SuperK, K2K, MINOS, OPERA, KamLAND, SNO, MiniBoone, Chooz, Double Chooz, Daya Bay, Reno,...

► Status of U_{PMNS} (Summer 2012):

$$|U| = \begin{pmatrix} 0.795 \to 0.846 & 0.513 \to 0.585 & 0.126 \to 0, 178 \\ 0.205 \to 0.543 & 0.416 \to 0.730 & 0.579 \to 0.808 \\ 0.215 \to 0.548 & 0.409 \to 0.725 & 0.567 \to 0.800 \end{pmatrix}.$$

 $heta_{23} pprox \pi/4 \pm \pi/40$, $heta_{12} pprox \pi/6$, $heta_{13} pprox 0.15 \ (8.6^\circ)$

Large mixing! ... quite different scenario from quark mixing! Recall that

 $heta_{23}\, \rightsquigarrow\, V_{cb}\simeq\, 0.04$, $heta_{12}\, \rightsquigarrow\, V_{us}\simeq\, 0.225$, $heta_{13}\, \rightsquigarrow\, V_{ub}\simeq\, 0.004$

Revisiting the SM lepton sector: oscillation data

	Free Fluxes + RSBL		Huber Fluxes, no RSBL	
	bfp $\pm 1\sigma$	3σ range	bfp $\pm 1\sigma$	3σ range
$\sin^2 \theta_{12}$	0.30 ± 0.013	0.27 ightarrow 0.34	0.31 ± 0.013	0.27 ightarrow 0.35
$\theta_{12}/^{\circ}$	33.3 ± 0.8	$31 \rightarrow 36$	33.9 ± 0.8	$31 \rightarrow 36$
$\sin^2 \theta_{23}$	$0.41^{+0.037}_{-0.025} \oplus 0.59^{+0.021}_{-0.022}$	0.34 ightarrow 0.67	$0.41^{+0.030}_{-0.029} \oplus 0.60^{+0.020}_{-0.026}$	0.34 ightarrow 0.67
$\theta_{23}/^{\circ}$	$40.0^{+2.1}_{-1.5} \oplus 50.4^{+1.2}_{-1.3}$	$36 \rightarrow 55$	$40.1^{+2.1}_{-1.7} \oplus 50.7^{+1.1}_{-1.5}$	$36 \rightarrow 55$
$\sin^2 \theta_{13}$	0.023 ± 0.0023	$0.016 \rightarrow 0.030$	0.025 ± 0.0023	$0.018 \rightarrow 0.033$
$\theta_{13}/^{\circ}$	$8.6\substack{+0.44\\-0.46}$	$7.2 \rightarrow 9.5$	$9.2^{+0.42}_{-0.45}$	$7.7 \rightarrow 10.$
$\delta_{ m CP}/^{\circ}$	300^{+66}_{-138}	0 ightarrow 360	298^{+59}_{-145}	$0 \rightarrow 360$
$\frac{\Delta m^2_{21}}{10^{-5}~{\rm eV}^2}$	7.50 ± 0.185	$7.00 \rightarrow 8.09$	$7.50\substack{+0.205 \\ -0.160}$	7.04 ightarrow 8.12
$\frac{\Delta m_{31}^2}{10^{-3}~{\rm eV}^2}~({\rm N})$	$2.47\substack{+0.069\\-0.067}$	$2.27 \rightarrow 2.69$	$2.49\substack{+0.055\\-0.051}$	$2.29 \rightarrow 2.71$
$\frac{\Delta m_{32}^2}{10^{-3} \ {\rm eV}^2} \ ({\rm I})$	$-2.43\substack{+0.042\\-0.065}$	$-2.65 \rightarrow -2.24$	$-2.47\substack{+0.073\\-0.064}$	$-2.68 \rightarrow -2.25$

- **Global** ν fits: www.nu-fit.org
- ▶ Oscillation data: typically $\theta_{ij} \iff \Delta m_{ij}^2$

What about neutrino masses??

Revisiting the SM lepton sector: massive neutrinos

Oscillation data: only two squared-mass differences ...

$$\Delta m^2_{12} = \Delta m^2_{\odot} pprox 7.5 imes 10^{-5} ext{ eV}^2$$

 $\Delta m^2_{23} = \Delta m^2_{\odot} pprox \pm 2.4 imes 10^{-3} ext{ eV}^2$

What about the mass hierarchy?

Normal: $m_{\nu_1} < m_{\nu_2} \ll m_{\nu_3}$ or Inverted: $m_{\nu_3} \ll m_{\nu_1} \lesssim m_{\nu_2}$ Data from PINGU (Icecube upgrade)? large scale reactors? long baseline?

What about the absolute mass scale?

- Tritium decays (³H \rightarrow ³H $+\bar{\nu}_e + e^-$): $m_{\nu_e} \lesssim 2.2 \text{ eV}$
- Cosmology: m_{ν} is a parameter in cosmological fits! (recombination, DM, ...) CMB data $\sum m_{\nu_i} < 0.3 \rightarrow 1 \text{ eV}$ [WMAP, HST+LSS, Planck+EUCLID,...] Formation of cosmic structures: $\sum m_{\nu_i} < 0.65 \text{ eV}$ Z-bursts (UHE-peV cosmic rays) $m_{\nu}^{\text{th}} > 0.25 \text{ eV}$

- ... other possibilities?? ...

Revisiting the SM lepton sector: massive neutrinos

► Neutrinos are Dirac fermions $(\nu^c \neq \nu)$:

 $-\mathcal{L}_{\text{mass}}^{\text{lepton}} = Y^{\ell} \, \bar{L} \, \phi \, e_R + Y^{\nu} \, \bar{L} \, \tilde{\phi} \, \nu_R + \text{h.c.} \qquad \qquad L_{\text{SU}(2)} = (\nu_L, \ell_L)^T, \ \phi \rightsquigarrow H^{\text{SM}}$

After EWSB, Dirac mass term $\rightsquigarrow m_D^{\nu} = Y^{\nu} v$ $m_{\nu_i} \lesssim 1 \text{ eV} \Rightarrow Y^{\nu} \lesssim 10^{-11}$

Neutrino spectrum: 3 light mass eigenstates

▶ Neutrinos are Majorana fermions $(\nu^c = \nu)$:

 \Rightarrow Experimental confirmation: observation of $0\nu 2\beta$ decay

 \Rightarrow Add **new states** to the SM content: usually 3 ν_R

$$-\mathcal{L}_{\text{mass}}^{\text{neutrino}} = \boldsymbol{Y^{\nu}} \, \bar{L} \, \tilde{\phi} \, \boldsymbol{\nu_R} + \boldsymbol{M_R} \, \bar{\boldsymbol{\nu}_R} \, \boldsymbol{\nu_R}^{\boldsymbol{c}} + \text{h.c.} \quad \rightsquigarrow \quad \boldsymbol{m_D^{\nu}} \, \bar{\nu}_L \, \boldsymbol{\nu_R} + \boldsymbol{M_R} \, \bar{\boldsymbol{\nu}_R} \, \boldsymbol{\nu_R}^{\boldsymbol{c}} + \text{h.c.}$$

 M_R allowed by Lorentz & gauge invariance; renormalisable; not related to SM dynamics; violates total lepton number $L : \Delta L = 2$

Neutrino spectrum: 6 Majorana mass eigenstates!

Revisiting the SM lepton sector: seesaw mechanism $- \mathcal{L}_{\text{mass}}^{\text{lepton}} = Y^{\ell} \bar{L} \phi e_R + Y^{\nu} \bar{L} \tilde{\phi} \nu_R + \frac{1}{2} \bar{\nu}_R M_R \nu_R^c + \text{h.c.} \qquad [Y^{\ell} = Y_{\ell}^{\text{diag}} \text{ and } M_R = M_R^{\text{diag}}]$

• After EW symmetry breaking, an effective neutrino mass matrix M^{ν} [6×6]

 $M^{\boldsymbol{\nu}} = \begin{pmatrix} 0 & \boldsymbol{m}_{\boldsymbol{D}} \\ \boldsymbol{m}_{\boldsymbol{D}}^{\boldsymbol{T}} & \boldsymbol{M}_{\boldsymbol{R}} \end{pmatrix} \qquad \qquad \boldsymbol{m}_{\boldsymbol{D}} \to \boldsymbol{\mathsf{Dirac}} \text{ mass matrix}; \quad \boldsymbol{m}_{\boldsymbol{D}} = v \boldsymbol{Y}^{\boldsymbol{\nu}} \\ M_{\boldsymbol{R}} \to \boldsymbol{\mathsf{Heavy neutrino}} \text{ mass matrix} - \text{ diag } (\boldsymbol{m}_{R_i})$ • Seesaw equation: $m_{\nu}^{\text{light}} = -m_D M_R^{-1} m_D^T$ $m_D \ll M_R$ SEESAW $M_R \sim \text{few TeV} \Rightarrow Y^{\nu} \sim Y^{\ell}$ IECHANISM $Y^{\nu} \sim 1 \Rightarrow M_R \sim \mathcal{O}(10^{15} \text{ GeV})$ ν_L ν_L $\frac{1}{\Lambda}LLHH \qquad \nu_{R} \text{ (fermion singlet)} \qquad \Delta \text{ (scalar triplet)} \qquad \Sigma_{R} \text{ (fermion triplet)}$ "Seesaw mechanism" Type I Type II Type III

A second look at flavour violation in the SM

► Quark sector: flavour violated by charged current interactions $V_{ij}^{\text{CKM}} W^{\pm} \bar{q}_i q_j$ Observed in many oscillation/decay processes: very good agreement with SM!

► Lepton sector: neutral & charged lepton flavours strictly conserved

"Observable" cLFV \Rightarrow New Physics in the lepton sector - beyond SM_{m_{ν}}

Lepton flavour violation: Observables and facilities

Lepton Flavour Violation: Observables

Many candidate observables! (No SM theoretical background!)

- ► Rare leptonic decays and transitions
- ► Leptonic angular distributions ; P- and T-odd asymmetries
- Meson decays: violation of lepton flavour universality, LFV final states lepton Number violating decays
- ► Rare (new) heavy particle decays (typically model-dependent):

 $H
ightarrow au \mu$, ...

impact of LFV for new physics searches at colliders, ...

CP violation in the leptonic sector

Lepton Flavour Violation: 1947 - 2012

► A world-wide experimental commitment for more than 60 years!

Process	present bound	future	
$\mu ightarrow e\gamma$	2.4×10^{-12}	10^{-14}	MEG at PSI
$\mu \rightarrow eee$	1.0×10^{-12}	10^{-14}	Mu3e at PSI
$\mu-e$ (Au)	7×10^{-13}	—	SINDRUM-II
$\mu-e$ (AI)	_	10^{-16}	Mu2e/COMET
$\mu - e$ (Ti)	4.3×10^{-12}	10^{-18}	PRISM
$ au o e\gamma$	1.1×10^{-7}	$10^{-9} - 10^{-10}$	super KEKB/B
$ au o e\gamma$	3.6×10^{-8}	$10^{-9} - 10^{-10}$	super KEKB/B
$\tau \to \mu \gamma$	4.5×10^{-8}	$10^{-9} - 10^{-10}$	super KEKB/B
$ au o \mu \mu \mu$	3.2×10^{-8}	$10^{-9} - 10^{-10}$	super KEKB/B

(super)LHCb??

Lepton Flavour Violation: $\mu \rightarrow e\gamma$

► Event signature: $E_e = E_{\gamma} = m_{\mu}/2$ (~ 52.8 MeV) Back-to-back e^+ - γ ($\theta \sim 180^\circ$); Time coincidence

► Backgrounds ⇒ prompt physics & accidental

Prompt: radiative μ decays $\mu \rightarrow e\nu_e \nu_\mu \gamma$ (very low E_ν)

Accidental: positron from $\mu \rightarrow e\nu_e \nu_\mu$;

photon from $\mu \to e \nu_e \nu_\mu \gamma$; photon from in flight $e^+ e^-$ annihilation

MEG Experiment: $3 \times 10^7 \mu/s$ at **PSI** (Switzerland)

2.7 ton liquid Xenon scintillation detector (good time, position and energy resolution) 2009 + 2010 data: 2.4×10^{-12} Upper Limit (90% CL)

2011 + 2012 data: 10^{-13} Upper Limit (90% CL)

MEG II (proposal to appear 2013): sensitivity $\approx 10^{-14}$

Lepton Flavour Violation: $\mu \rightarrow eee$

• Event signature: $\sum E_e = m_{\mu}$; $\sum \vec{P_e} = \vec{0}$ common vertex; Time coincidence

Backgrounds \Rightarrow physics & accidental

Physics: $\mu \rightarrow ee\nu\nu e$ decay (very low E_{ν})

Accidental: positrons from $\mu \rightarrow e\nu\nu$;

electrons from $\mu \rightarrow eee\nu\nu$ and/or $\mu \rightarrow e\nu\nu\gamma$; ...

Mu3e Experiment at PSI (Switzerland)

Stage I (2014 - 2017): $2 \times 10^8 \mu/s$ at IIE5 muon source Stage II (2018 -): $2 \times 10^9 \mu/s$ at new muon source

Future sensitivity: $\approx 10^{-14}$

Lepton Flavour Violation: $\mu - e$ conversion in atoms

\triangleright Consider the fate of a **1s** μ -state in a muonic atom:

SM-like muon decay in orbit $\mu^- \rightarrow e^- \nu \nu$

SM-like nuclear muon capture $\mu^- + (A, Z) \rightarrow \nu_{\mu} + (A, Z - 1)$

Beyond SM - neutrinoless muon nuclear capture

$$\iota^- + (A,Z) \rightarrow e^- + (A,Z)$$

Event signature: single mono-energetic electron

$$E_e \sim 100 \,\,\mathrm{MeV}$$

► SINDRUM-II at PSI (max $10^8 \mu$ /s beam intensity): $CR(\mu - e, Au) < 7 \times 10^{-13}$ Improving the bound $\rightsquigarrow O(10^{-17})$: increase beam intensity $10^{11} \mu$ /s (10^7 sec running)

improve background rejection...

Lepton Flavour Violation: $\mu - e$ conversion in atoms

▶ Mu2e at Fermilab: $CR(\mu - e, AI) < 10^{-16}$ (90% CL)

Reincarnation of MECO at BNL;

Approved, CDO 2009, CD1 review 2012; data taking 2019

COMET (E21) at J-PARC: $CR(\mu - e, AI) < 6 \times 10^{-17}$ (90% CL)

 10^{11} muon stops/s for 56kW proton beam power Stage-I approved in 2009

DeeMe at J-PARC/MLF: $CR(\mu - e, Si) < 3.5 \times 10^{-14} (90\% CL)$

SiC target; 15×10^9 muon stopped for 2×10^7 s running quick and not expensive... *not yet stage-I approved...*

Lepton Flavour Violation: τ decays at e^+e^- colliders & LHCb

B-factories are also τ -factories (excess of 10^8 in total ...)

Radiative tau decays $(\tau \rightarrow \ell \gamma)$ are **background limited**; sensitivity improved by $1/\sqrt{N}$

Super-B factories will produce $\mathcal{O}(10)$ times more taus!

 $\Rightarrow BR(\tau \rightarrow \mu \gamma) \sim \mathcal{O}(10^{-9})$; $BR(\tau \rightarrow \mu \mu \mu) \sim \mathcal{O}(10^{-10})$ at 50 ab⁻¹

LHCb searching for LFV and LNV τ decays;

data still a bit less restrictive; present limits expected to improve soon!

Lepton Flavour Violation: meson decays

- Meson decays: excellent testing grounds for lepton flavour dynamics! Examples...
 - **•** Lepton Universality Violation in K and π decays

 $R_{P} = \frac{\Gamma(P \to e\nu)}{\Gamma(P \to \mu\nu)} \quad \text{comparison with SM th predictions} \quad \Delta r_{P} = \frac{R_{P}^{exp}}{R_{P}^{SM}} - 1$ $\blacktriangleright \text{ NA62 at CERN:} \quad \Delta r_{K} = (4 \pm 4) \times 10^{-3} \quad ; \quad \Delta r_{\pi} = (-4 \pm 3) \times 10^{-3}$ Future sensitivity: $\delta R_{K}/R_{K} \sim 0.1\% \Rightarrow \text{ measure } \Delta r_{K} \sim \mathcal{O}(10^{-3})$

► Majorana neutrinos and LNV in *B* meson decays

Allows to test Majorana u hypotesis; probe $M_{
u} \lesssim 3-5$ TeV

► LHCb at CERN: (also BaBar, Cleo, Belle) BR $(B^- \to D^+ \mu^- \mu^-) < 7 \times 10^{-7}$; BR $(B^- \to D^0 \pi^+ \mu^- \mu^-) < 2 \times 10^{-6}$ **Lepton flavour violation:** New Physics contributions

Lepton Flavour Violation: pheno approach

▶ What is required of a SM extension to have "observable" cLFV?

• **cLFV** \Leftrightarrow $\Lambda \sim \mathcal{O}(\text{TeV})$ (testable at colliders ?) (suggested by neutrino mixing ...)

One method: Synergy of observables

peculiar patterns, dominances - id/exclude candidates...

cLFV: what are "patterns"?

New Physics can change SM in two ways:

(i) new sources of flavour violation (corrections to SM vertices, or new SM-NP vertices);

(ii) new Lorentz structure in the four-fermion interaction ⇒ new effective operators

Consider the following ratios of observables:

Depending on underlying NP model, expect "peculiar ranges for correlation ratios"

cLFV: the effective approach

- ► At higher scales (TeV? M_{GUT}? M_{Planck}?) additional "heavy" degrees of freedom
- ▶ Integrate out "new heavy fields" (as those required to generate ν masses)
- ► Effective Lagrangian: "vestigial" (new) interactions with SM fields at low-energies $\mathcal{L}^{\text{eff}} = \mathcal{L}^{\text{SM}} + \text{higher order (non-renormalisable) terms}$ [e.g. to break SM B - L accidental symmetry, $m_{\nu} \neq 0$]

$$\Delta \mathcal{L}^{d \geq 5} \sim \sum_{n \geq 5} \frac{1}{\Lambda^{n-4}} \mathcal{C}^n(g, Y, ...) \mathcal{O}^n(\ell, q, H, \gamma, ...)$$

 Λ : mass scale of new physics

 C^{n} : dimensionless couplings - coupling constants, Yukawas, loop factors $((4\pi)^{m})$, ... $\Rightarrow C^{n}_{ij}$: matrices in flavour space!

 \mathcal{O}^n : "external legs" of the diagrams - SM fields only!

cLFV: the effective approach

► Dimension 5 $\Delta \mathcal{L}^5$ (Weinberg): neutrino masses ($\Delta L = 2$)

Common to all models with Majorana neutrinos [seesaws, radiative (Zee, RpV), ...]

Dimension 6 $\Delta \mathcal{L}^{6}$: kinetic corrections, **cLFV** (dipole and 3-body), EW precision, t physics... Differs from model to model - used to disentangle scenarios...

▶ Higher order $\Delta \mathcal{L}^{7,8,..}$: ν (transitional) magnetic moments, NSI, unitarity violation...

cLFV bounds and \mathcal{L}^{eff}

• Apply experimental bounds on cLFV observables to constrain $\frac{C_{ij}}{\Lambda^2}$

1. hypothesis on size of "new couplings" 2. hypothesis on scale of "new physics"

► Natural values of the couplings $C_{ij}^6 \sim \mathcal{O}(1)$ $BR(\mu \to e\gamma)|_{MEG} \Rightarrow \Lambda \gtrsim 50 \text{ TeV}; \quad BR(\mu \to 3e) \Rightarrow \Lambda \gtrsim 15 \text{ TeV}$ $BR(\tau \to \ell\gamma) \Rightarrow \Lambda \gtrsim 3 \text{ TeV}; \quad BR(\tau \to 3\ell) \Rightarrow \Lambda \gtrsim 1 \text{ TeV}$ [Davidson, La Thuile '12]

► Natural scale? more delicate - well motivated: direct discovery, ...

Example: discovery of type II seesaw (scalar triplet) mediator at LHC, $M_{\Delta} \sim 1$ TeV BR $(\mu \rightarrow e\gamma)|_{\text{MEG}} \Rightarrow |Y_{\mu\mu}^{\Delta\dagger}Y_{\mu e}^{\Delta} + Y_{\tau\mu}^{\Delta\dagger}Y_{\tau e}^{\Delta}| \lesssim 2 \times 10^{-3}$ [Abada et al, '07-'09]

► Can we reconstruct the New Physics Lagrangian? not likely...

R

We can **identify operators** (combining distinct observables) and learn about **flavour structure** (same observable, different flavours)

Models of New Physics

► Model-independent approach is quite "hard"...

Be prepared! - master "theoretical expectations" of N models to falsify them!

But "theoretical expectations" is an oxymoron:

different theorists expect different New Physics at the TeV scale because it is

- motivated by the naturalness of the weak scale
- motivated by precision unification of couplings
- not motivated, but why not
- to their personal taste or prejudice!

[Jäger, NA62 Workshop, '09]

Here: consider examples of (well motivated?) models of New Physics
with potentially observable cLFV implications!

cLFV: models of New Physics

SM extensions introduce new particles, new flavour violating couplings...

▶ In the absence of cLFV (and other) signals:

 \Rightarrow constraints on parameter space (scale and couplings)

- CLFV observed: compare with peculiar features of given model
 - ⇒ predictions for cLFV observables
 - ⇒ intrinsic patterns of correlations of observables

Generic cLFV extensions - general MSSM, LHT, RS, 4th generation, ... les: cLFV from m_{ν} { SM seesaw (TeV scale) - type II & inverse seesaw Extended frameworks - SUSY seesaw, GUTs, ...

Generic cLFV extensions

cLFV in Little Higgs models (T-parity)

Higgs is a **pseudo-Goldstone** boson of **spontaneously broken global symmetry**

▶ SU(5) \rightarrow SO(5) (@ TeV scale); augmented gauge group $[SU(2) \times U(1)]^2$

 \Rightarrow new (heavy) gauge bosons - A_H , Z_H , W_H^{\pm}

- ► T parity ⇒ prevents contributions to EW observables (tree-level) Lightest T-odd particle stable ↔ dark matter candidate
- ▶ New scale as low as 500 GeV [$f \sim \text{decay const of NL sigma model (NG)}$]
- Only 10 new parameters in flavour sector, only SM operators relevant
- Sources of cLFV: couplings of leptons mirror leptons heavy gauge bosons

[Hubisz et al '05; Blanke et al '06-'09; Ray et al '07; Goto et al '09-'11, del Aguila et al '09-'10, ...]

cLFV in Little Higgs models (T-parity): an example

- **Strong correlation** of some cLFV observables: $\mu \rightarrow e\gamma$ and $\mu \rightarrow 3e$
- Asymmetries for polarised τ and μ decays $\leftrightarrow \rightarrow$ chirality structure of LHT

[Goto et al, 1012.4385]

► Typically large contributions to cLFV ~>> some fine-tuning required

hierarchical mixing matrices $(V_{H\ell}, V_{H\nu})$, quasi degenerate states, ...

Geometric flavour violation: RS warped extra dimensions

t Embed **4dim space-time** into **5dim AdS space** (extra dim compactified on orbifold)

► Two branes (UV, IR) and bulk between; $M_{\text{TeV}} = M_{\text{Planck}}e^{-\pi L_5}$

► Localise fields:

interactions ******* overlap of wave functions

Geometrical distribution of fermions in bulk:

hierarchy in 4dim Yukawas for "anarchic" O(1) couplings!

Circumvent pheno issues: enlarge bulk symmetry (prevent violation of custodial SU(2)); additional "rescue" ingredients to avoid excessive FCNCs, protect EW precision observables, …

[Burdman '02; Agashe et al '04 -; Csaki et al '08; Blanke et al & Buras et al '08-'09]

Geometric flavour violation: RS warped extra dimensions

- CLFV processes mediated by KK-lepton excitations, new gauge fields
- Electroweak precision observables: $M_{KK} \ge 3$ TeV ;

cLFV: $M_{KK} \ge 10$ TeV (5 TeV only marginally compatible)

▶ Possible ways out... flavour structure (non-geometrical), increase gauge symmetry, ...

[Very recent... Vempati et al, 1206.4383]

General Minimal Supersymmetric extension of the SM

► Supersymmetry is broken in Nature: different masses for SM particles and superpartners Generic soft-SUSY breaking terms introduce new sources of flavour violation (q and ℓ) non-diagonal masses for sleptons and sneutrinos $(M_{\tilde{\ell}}^2)_{ij} \neq 0!$ $(M_{\tilde{\nu}}^2)_{ij} \neq 0!$

► Misalignement of flavour and physical eigenstates: $R^{\tilde{\ell} \dagger} M_{\tilde{\ell}}^2 R^{\tilde{\ell}} = \text{diag}(m_{\tilde{\ell}_i}^2) \quad R^{\tilde{\ell}} \neq 1!$

 $\{\tilde{e}_L, \tilde{\mu}_L, \tilde{\tau}_L, \tilde{e}_R, \tilde{\mu}_R, \tilde{\tau}_R\} \iff \{\tilde{\ell}_1, \dots, \tilde{\ell}_6\}$

 $\tilde{\chi}^0 \; (\tilde{\chi}^{\pm})$

manifest in neutral and

 $ilde{\ell_i}$ • $\propto R^{ ilde{\ell}}_{ij}$

"almost everything is possible - depending on the regime"...

e.g.
$$\mathsf{BR}(\mu \to e\gamma) \sim \frac{\alpha}{4\pi} \left(\frac{M_W}{M_{\mathsf{SUSY}}}\right)^4 \sin^2 \theta_{\tilde{e}\tilde{\mu}} \left(\frac{\Delta m_{\tilde{\ell}}^2}{M_{\mathsf{SUSY}}^2}\right)^2$$

[Ellis et al, Hisano et al, Lavignac et al, Raidal et al, Brignole & Rossi, Paradisi, Buras et al, Herrero et al...]

4th generation* - and beyond!

- Extend the SM via a fourth family of quarks* and leptons (Dirac or Majorana νs)
 *LHC excluded...
- Additional mixing angles and CP phases in the lepton sector
- ► Radiative and 3-body decays: all as large as current bounds (not simultaneously)
- Distinctive patterns for correlations of observables in SM4

[Babu, Ma, Hill, Kribbs et al, Soni et al, Eilam et al, Hou et al, Burdman, Rajamaran et al, Lenz et al, Aparici et al, Buras et al, Schmidt et al, ...]

* * * * * * * * * *

And many other models ... LR symmetric, multiHiggs, Leptoquarks, ...

Comparing predictions - finding fingerprints

ratio	LHT	MSSM (dipole)	MSSM (Higgs)	SM4
$\frac{BR(\mu \to eee)}{BR(\mu \to e\gamma)}$	0.021	$\sim 6 \times 10^{-3}$	$\sim 6 \times 10^{-3}$	0.06 2.2
$\frac{BR(\tau \to eee)}{BR(\tau \to e\gamma)}$	0.040.4	$\sim 1 \times 10^{-2}$	$\sim 1 \times 10^{-2}$	0.07 2.2
$\frac{BR(\tau \to \mu \mu \mu)}{BR(\tau \to \mu \gamma)}$	0.04 0.4	$\sim 2 \times 10^{-3}$	$0.06\ldots 0.1$	0.06 2.2
$\frac{BR(\tau \to e \mu \mu)}{BR(\tau \to e \gamma)}$	0.040.3	$\sim 2 \times 10^{-3}$	$0.02 \dots 0.04$	0.03 1.3
$\frac{BR(\tau \to \mu e e)}{BR(\tau \to \mu \gamma)}$	0.04 0.3	$\sim 1 \times 10^{-2}$	$\sim 1 \times 10^{-2}$	0.04 1.4
$\frac{BR(\tau \to eee)}{BR(\tau \to e\mu\mu)}$	0.82	~ 5	0.30.5	$1.5 \dots 2.3$
$\frac{BR(\tau \to \mu \mu \mu)}{BR(\tau \to \mu e e)}$	0.71.6	~ 0.2	510	$1.4 \dots 1.7$
$\frac{CR(\muTi \rightarrow eTi)}{BR(\mu \rightarrow e\gamma)}$	$10^{-3}\dots 10^2$	$\sim 5 \times 10^{-3}$	$0.08\ldots 0.15$	$10^{-12} \dots 26$

[Buras et al, 1006.5356]

Most models predict/accommodate extensive ranges for observables

(no new physics yet discovered, only bounds on new scale!)

But... Peculiar patterns to correlation of observables (model-specific)

Correlations might allow to disentagle models of cLFV in the absence of discovery of new states! ... or inability to identify mechanism of LFV!

 \blacktriangleright cLFV from ν mass generation mechanisms - seesaw

cLFV and the seesaw mechanism

cLFV and the seesaw mechanism

★ Seesaw mechanism: explain small ν masses with "natural" couplings via new dynamics at "heavy" scale

Seesaw	$ ilde{\mathcal{C}}_5$	New Physics scales	$\tilde{\mathcal{C}}_{6}$	cLFV obs
Fermionic singlet (type l)	$Y_N^T \frac{1}{M_N} Y_N$	$Y_N \sim \mathcal{O}(1) \Rightarrow M_N \approx 10^{15} \text{GeV}$ $M_N \sim M_{\text{GUT}}???$	$\left \left(Y_N^{\dagger} \frac{1}{M_N^{\dagger}} \frac{1}{M_N} Y_N \right)_{\alpha\beta} \right.$	
Fermionic triplet (type III)	$Y_{\Sigma}^T \frac{1}{M_{\Sigma}} Y_{\Sigma}$		$\left \left(Y_{\Sigma}^{\dagger} \frac{1}{M_{\Sigma}^{\dagger}} \frac{1}{M_{\Sigma}} Y_{\Sigma} \right)_{\alpha\beta} \right _{\alpha\beta}$	
Scalar triplet	$AV_{\Lambda} \frac{\mu_{\Delta}}{\Delta}$	$Y_\Delta \sim \mathcal{O}(1) \Rightarrow M_\Delta pprox ext{TeV}$	$\frac{1}{V}$ V^{\dagger}	large BRs !
(type II)	$\frac{41\Delta}{M_{\Delta}^2}$	$(\mu_{\Delta} \ll 1!)$	$ M_{\Delta}^{2 \ \mathbf{I} \ \Delta \alpha \beta \ \mathbf{I} \ \Delta \gamma \delta } $	constrain model!

Type II seesaw: rich phenomenology, predictive (correlations), observable cLFV!

▶ cLFV bounds \Rightarrow constraints on Y_{Δ} and M_{Δ} ; $\mu \rightarrow eee$: $Y_{\Delta} \sim O(1) \Rightarrow M_{\Delta} \geq 300$ TeV

[for a review: 0707.4058]

▶ If $M_{\Delta} \sim \text{TeV}$ (smaller Y_{Δ}), possible discovery at LHC

• "Inverse seesaw": similar decorrelation between m_{ν} suppression and cLFV - large BRs (?)

[TeV-scale seesaws recent review: Dinh et al 1205.4671]

Inverse seesaw: flavour universality violation in kaon decays

- ▶ NA62 expected to probe SM th predictions for Δr_K up to $\mathcal{O}(10^{-3})$
- ▶ Models of new physics (2HDM, SUSY, etc) typically lead to $\Delta r_K < O(10^{-3,-4})$

• Unconstrained MSSM: LFV corrections to $H^+\ell\nu$ vertex [\checkmark \rightsquigarrow viable points]

Maximise Δr_{K} : explicit LFV δ_{31}^{RR} , low mass regimes

► Inverse seesaw: corrections to $W^+ \ell \nu$ vertex

 $\Delta r_K \sim \mathcal{O}(1)$

Deviation from "unitarity" of U_{PMNS} due to light singlets $M_R \in [0.1, 200] \text{ MeV}; M_R \in [1, 10^6] \text{ GeV}$

CLFV from m_{ν} in extended frameworks

The supersymmetric seesaw(s) and cLFV

★ Embed seesaw in the framework of (otherwise) **flavour-conserving SUSY models** (cMSSM, supergravity-inspired, etc)

Right-handed $\nu \rightarrow \tilde{\nu}_R$ [Type I]In addition toScalar triplets \rightsquigarrow "triplinos"[Type II]Fermion triplets \rightsquigarrow "s-triplets"[Type III]

with same couplings, same interactions!

- ► mSUGRA-like SUSY seesaw: Y^{ν} unique source of FV (observables strongly related)
 - * low-energies: $l_j \rightarrow l_i \gamma$, $l_j \rightarrow 3l_i$, μe in Nuclei \Rightarrow large rates
- * high-energies: study charged sleptons from $\chi_2^0 \to \ell^{\pm} \ell^{\mp} \chi_1^0$ decays [LHC, LC] \Rightarrow sizable $\tilde{e} - \tilde{\mu}$ mass differences, new edges in $m_{\ell\ell}$: $\chi_2^0 \to \tilde{\ell}_X^j \ell_i \to \chi_1^0 \ell_i \ell_i$
- Even if correlations, etc... difficult to disentangle from "generic" MSSM cLFV... On the other hand \Rightarrow some scenarios are falsifiable!

Type I SUSY seesaw cLFV: low- and high-energies

Beyond the type I SUSY seesaw: examples ...

★ Type II SUSY seesaw

• More predictive (up to overal scale) - $(\Delta m_{\tilde{L}}^2)_{ij} \propto m_{\nu\alpha}^2 U_{\alpha i} U_{\beta j}^*$

correlations between cLFV observables controled by ν -parameters !

[Rossi et al, ...]

Distinctive prospects for cLFV at colliders

Beyond the type I SUSY seesaw: examples ...

★ Supersymmetric Grand Unified Theories

- ▶ Reduce arbitrariness of Y^{ν} [SO(10) CKM- and U_{PMNS} -inspired patterns..]
- SO(10) type II example

 (leptogenesis motivated)
 highly correlated cLFV observables!

[Calibbi et al, 0910.0377]

correlated CPV and FV observables

in lepton and hadron sectors!

[Buras et al, 1011.4853]

► Lepton flavour violation: some final words ...

Lepton Flavour Violation - February 2013

▶ What is the role of flavour physics in the LHC era?

Why Lepton flavour Violation?

Neutrino experiments and cLFV searches will offer a "clean", complementary avenue in our quest for New Physics

▶ Will the LPC join??

Find me in room 6210a

to discuss lepton flavour violation, neutrinos,

and share other not-so-leptonic flavours !

