Ecole de GIF 2013

Principes et méthodes de détection : Particules chargées au sol (II)

Tiina Suomijärvi Institut de Physique Nucléaire IN2P3/CNRS, Université Paris-Sud France

Contents

Ground experiments
Pierre Auger Observatory
Other ground detectors:
Telescope Array
LHAASO
Conclusions

Ground experiments

The Pierre Auger Observatory

Surface Detector (SD) array + Fluorescence Detectors (FD)

- Nearly calorimetric energy calibration of the fluorescence detector transferred to the event gathering power of the surface array.
- A complementary set of mass sensitive shower parameters.
- Different measurement techniques force understanding of systematic uncertainties
- Better determination of the angular and core position

Hybrid measurement

FD: 13% duty cycle Calorimetric measurement

SD: 100% duty cycle

Layout

Surface Array 1600 detector stations 1.5 Km spacing 3000 Km² INFILL array: 60 detector stations 750 m spacing

Fluorescence Detectors 4 Telescope enclosures 6 Telescopes per enclosure 24 Telescopes total HEAT: 3 Telescopes

The full efficiency of the SD trigger is reached at 3 10^{18} eV. For the Infill array the full efficiency is reached at 3 10^{17} eV.

FD telescope and SD detector

3.6 m diameter water tark

Schmidt telescopes using 13 m² mirrors. UV optical filter. Camera with 440 Photonis XP 3062 PMTs.

3.6 m diameter water tank containing a sealed liner with a reflective inner surface.12 000 l of ultra-high purity water.Three 9 inch PMTs, Photonis XP 1805, look downwards through windows of clear polyethylene.

Fluorescence detectors (FD)

Telecommunication system

Construction... sometimes difficult

Construction 2000-08 Data taking started 2004

SD reconstruction

✓ Reconstruct angle (arrival time)
✓ Fit lateral particle density by LDF
✓ Extract S(1000): signal density at 1000m
✓ Use hybrid events to correlate S(1000)
with FD energy

SD acceptance

A typical vertical shower event

ID 762238

FD reconstruction

Stereo hybrid observations

FD energy uncertainty

Absolute fluorescence yield	3.4%		uncertainties on
Fluores. spectrum and quenching param.	1.1%	Ļ	
Sub total (Fluorescence Yield)	3.6%	14%	previous energy
Aerosol optical depth	3% ÷ 6%		scale
Aerosol phase function	1%		
Wavelength dependence of aerosol scattering	0.5%		
Atmospheric density profile	1%		
Sub total (Atmosphere)	3.4% ÷ 6.2%	5% ÷ 8%	
Absolute FD calibration	9%		improvement in each
Nightly relative calibration	2%		improvement in each
Optical efficiency	3.5%	and the second	sector with the
Sub total (FD calibration)	9.9% *	9.5%	exception of FD cal.
Folding with point spread function	5%		(largest contribution)
Multiple scattering model	1%		work in progress to
Simulation bias	2%		reduce it
Constraints in the Gaisser-Hillas fit	3.5% ÷ 1%		reduce it
Sub total (FD profile rec.)	6.5% ÷ 5.6%	10%	
Invisible energy	3% ÷ 1.5%	4%	1 EeV and 10EeV
Statistical error of the SD calib. fit	0.7% ÷1.8%		
Stability of the energy scale	5%		
TOTAL	14%	22% 🔶	12

Angular resolution

Angular resolution of the surface detector about 1°. Hybrid events 0.6° .

Exposure

Energy spectrum: Constant Intensity Cut

Use SD data above 3 EeV: Geometrical acceptance and good statistics

Use FD energy calibration (hybrid data): Calorimetric energy measurement and no uncertainty due to hadronic models and composition

- ✓ Slant depth of the SD varies from 870 g/cm² for vertical showers to 1740 g/cm² for zenith angle of 60°
- ✓ S(1000) signal is attenuated at large slant depth: dependence on zenith angle determined empirically
- ✓ Isotropic intensity of cosmic rays: flat distribution as a function of $\sin^2 \theta$
- => Extract dependence of S(1000) on zenith angle
- ✓ Given S(1000) and θ for any measured shower S38= S(1000)/ CIC(θ)
- ✓ CIC method allows to correct S(1000) for zenith angle dependence

Calibration of SD by FD

Energy spectrum

- Sharp angle at around 4 EeV
- Suppression above 50 EeV

Combined energy spectrum

761 events above $10^{19.5}$ eV, 4 above 10^{20} eV

Mass sensitive parameters

Slant depth of shower maximum (<Xmax>) RMS of Xmax distribution at fixed energy

Composition: Xmax and RMS(Xmax)

Trend to heavier composition Pointing to sources become difficult (magnetic fields) Are hardonic interaction models correct?

Number of muons

Horizontal showers: EM component completely attenuated, only muons arrive to ground.

Simulations don't reproduce the muon number.

Anisotropies

30

40

Number of events (excluding exploratory scan)

50

60

70

80

0

0

10

20

- Correlation of arrival direction with AGN catalog
- E>55 EeV, 3.1°, Dmax 75 Mpc
- First published November 2007, Science
- AGN correlation is now weaker than first indicated but is still present
- Problem: catalogs are not complete

Centaurus A

- Closest radiogalaxy (4.2 Mpc)
- Seen in all wavelengths

Photon limits

Top-down models highly constrained GZK photons within reach

Other ground detectors

Telescope Array (TA) The Large High Altitude Air Shower Observatory

Auger – TA energy spectrum

Composition and anisotropy

The Large High Altitude Air Shower Observatory LHAASO

Science case for LHAASO

- Survey of the gamma sky above 100 GeV
 - Wide FOV and high duty cycle
 - Observation of transient sources
 - Study cosmic accelerators and high-energy phenomena
- Search for cosmic-ray origin among galactic gamma-ray sources
 - Gamma spectra at high energies
 - Visibility for hadronic origin and charged particle acceleration
- Measurement of cosmic rays above 30 TeV
 - Bridge between direct and indirect measurements
 - Unprecedented statistics for anisotropy studies in the knee region

Experimental strategy

- Gamma-ray source survey: Water Cherenkov Detector Array (WCDA) with a total active area of 90,000m²
- High-energy end of the gamma spectra: Particle detector array with an effective area of 1km² (KM2A) including an array of 1200 muon detectors (MD) with 940,000m² active area and an array of 5000 scintillators (ED) (allows to reject hadronic shower background).
- Cosmic-ray spectra and composition: 24 wide FOV Cherenkov telescope array (WFCA) and high threshold core detector array (SCDA) with an effective area of 5000m²

Accurate measurement of composition by combining information from KM2A

Large High Altitude Shower Observatory

Measurement of cosmic rays above 30 TeV

- Connection with direct measurements
- Hybrid detection with WFCTA and KM2A provides accurate measurement of composition and spectrum
- Energy spectrum and anisotropy studies for individual primary particles at the knee region

Conclusions

- Auger results so far:
 - Significant flux suppression above 5 10¹⁹ eV: Propagation effect or end of source power?
 - Weaker AGN correlation but interesting future targets.
 - Change in shower development with E mass increase or hadronic interactions?
 - More muons than predicted by models: interesting particle physics?
 - Several exotic models are ruled out.
- Future plans:
 - Increase composition sensitivity: Auger Upgrade
 - Combined analysis Auger-TA
 - Lower energies are still interesting!

Cosmic rays celebrated 100 years in 2012! But their origin is still a mystery!

Victor Hess 1912

ICRC 2013, Rio de Janeiro, Brasil, 1-9 July 2013