Galactic y-ray sources: I - cosmic-ray activities

Isabelle Grenier (Université Paris Diderot & CEA Saclay)

Annecy septembre 2013

the GeV sky

- 5 years with the Fermi Large Area Telescope
- whole sky every 3 h
- > 2000 sources + interstellar CRay emission + extragalactic background

2FGL source catalogue

2 years of data: 1873 sources

Aim

TeV Galactic survey by HESS

(idogi)

340

 $(0, \tau_{12})$

Sunday, 22 September 13

detection & identification caveats

the Galactic GeV interstellar background

Galactic sources & ISM confusion

at GeV energies: ISM confusion with angular resolution $> 0.1^{\circ}$

- confused neighbours in the Galactic ridge
- un-modelled diffuse excesses filled with sources
- uncertain source properties because of the underlying background
- at TeV energies: background estimation in a ring around the source

• no sensitivity to extended sources $\geq 1^{\circ}$

Veritas survey of Cygnus

identification rationale

) identification **IF**

timing signature (pulsations, orbital variations, flares...)

PSR J1301-6305

2

2012 arXiV:1210.6513

HESS+

- morphological correlation at another λ (shell SNR, PWN,...)
- characteristic spectral/morphological evolution (ex: PWN)

HESS J1303-631

E < 2 TeV

E 2-10 TeV

identification rationale

Sunday, 22 September 13

identification rationale

else

ex: HESS J1843-033C in Scutum with SNR + PWN-like + radiogal

Sunday, 22 September 13

supernova remnants & cosmic rays

 \bigcirc

GeV gallery

AIM

15 extended sources or associations with SNRs

including 4 young historical remnants

middle-aged one often interacting with sur was line abouds

Name	Dist. (Kpc)	Diameter (pc)	Age (ky)	Lγ (10^33 erg/s)	
RXJ0852.0-4622 HESSJ0852-463	0.2 (1)	6.8 (34)	0.4 (5)	0.26 (6.4)	2.24
RXJ1713.7-3946 HESSJ1713-397	1	17.4	1.6	6	2.04
RCW 86 HESSJ1442-624	1-2.5	11-28	1.6-10	1-6	2.5
SN 1006 HESSJ1502-421 HESSJ1504-418	2.2	18.3	1	1.24 0.76 0.48	2.35 2.29
HESS J1731-347	3.2	27	2.5 (14)	10.7	2.32
HESSJ1912+101	4.5?	60?	7?	9.2?	2.7

proton or electon dominated y rays

non- γ -ray information mandatory to constrain the ambient gas density (for π° and brem. emissions)

often in X rays
 opt+Hα for evolved SNRs

signature of freshly accelerated nuclei?

- ex: convincing spectral evidence in W44 + IC443 (previous slide)
- other possibilities = W51C, W49B, W28, CTB37A, G349.7+0.2 (very distant)

in isolated evolved SNRs

ex: Cygnus loop

IC unfavoured because it requires a low gas density at odds with opt+X data

electronic signature

important use of the thermal X rays to give an upper constraint on the ambient gas density thus on the γ(π°) yield
 ex: RXJ 1713 Ellison+ 2010

Single zone fit + thermal X rays

Castro et al. (Slane, Ellison, ...) \bigcirc

mixed case of CTB 109

Flux (counts s⁻¹ keV⁻¹)

Sunday, 22 September 13

collective brigthness trends

Sunday, 22 September 13

collective spectral trends

Sunday, 22 September 13

spectral evolution with age

E² dN/dE (erg cm⁻² s⁻¹)

- O the older, the softer
 - escaped CRays ?
 - particle ageing inside ?
- main drivers
 - decrease in shock speed
 - increase in ambient density
 - increase in Alfven wave damping by neutrals

Sunday, 22 September 13

clouds irradiated by fresh cosmic rays

complex diffusion & escape

irradiated crushed cloud

) radiatively compressed filaments in older SNRs (Uchiyama et al. 2010)

- re-acceleration of pre-existing CRays
 - enhanced radio + γ radiations
 - => large & correlated luminosities

irradiated crushed cloud

Fermi-LAT Collaboration (Uchiyama+) 2011 \bigcirc flat radio index ($\alpha \sim 0.37$) naturally explained 10.00 **W51C** \bigcirc curved GeV π° spectra bright enough 5.00 s⁻¹ 1.00 *ب*لہ [10³⁵ erg **W28** 0.50 **IC443** 0.10 0.05 Cas A (no MC) 0.01 0.1 50.0 100. 0.5 10.0 1.0 5.0 E [GeV] **Model Parameters** 10² f: Preshock cloud filling factor f = 0.2 fixed 101 $\nu L_{\nu} [10^{35} \text{ erg s}^{-1}]$ n: Preshock cloud density in cm⁻³ 10⁰ B: Preshock B-field in µG 10^{-1} $B = 2 n^{1/2}$ fixed R=10, n=30/300, E=1 10-2 R: SNR radius in pc R=5/15, n=100, E=1 =30 n=100 E=5E: SN kinetic energy in 10⁵¹ erg

22

 10^{-3}

10

10⁰

 10^{-1}

10¹

E [GeV

 10^{2}

103

Sunday, 22 September 13

runaway cosmic rays

irradiated clouds around W44

extended GeV flux around W44 but uncertain modelling of the background ISM emission from normal CRs

- \bigcirc if 0.5 10⁵ M \odot uniformly distributed within 100 pc
 - slow case: $D = 0.1 D_{ISM}$
 - $N_{esc}(E) \propto E^{-2.6}$ and $W_{esc} \sim 0.3 \ 10^{50} \text{ erg}$
 - standard case: D = 0.1 D_{ISM} N_{esc}(E) \propto E^{-2.0} and W_{esc} \sim 1.1 10⁵⁰ erg
 - fast case: $D = 3 D_{ISM}$

 $N_{esc}(E) \propto E^{-2.0}$ and $W_{esc} \sim 2.7~10^{50}~erg$

Sunday, 22 September 13

prompt cosmic-ray sources: novae

Baba

mini-supernova shock waves

4 γ-ray novae

- V 407 Cyg
- Mon 2012 (discovered in γ rays)

Sco 2012 Del 2013

- white dwarf + companion
 - 10⁻⁷-10⁻³ M⊙ thermonuclear runaway ejecta, 400-5000 km/s, 10⁴⁴-⁴⁶ erg
- \bigcirc 0.1-2 γ novae yr⁻¹ (95%CL) compared to < 8 yr⁻¹ in the visible
- Fermi acceleration in "real time" radio synchrotron absorbed (free-free radio from stellar wind)

4 Y-ray novae

Sunday, 22 September 13

a mini SNR accelerator

50

acceleration by shock wave (free expansion + Sedov phase), but aspherical

- test particle approximation + equipartition B upstream + Bohm diffusion
- $E_{max}(p)$ from age < few 100 GeV
- $E_{max}(e)$ from IC losses < few 10 GeV
- (small) anisotropy effects on IC yield
- swept-up stellar wind not dense enough => matter accumulation around white dwarf
 - large injection early on (fast rise)
 - acceleration drops when shock exits the zone

(week decline)

Walder, Folini, Shore 2008

Sunday, 22 September 13