Caractérisation des détecteurs: RICH

Reconstruction de la vitesse (taille de l'anneau) et de la charge nombre de photon dans l'anneau.

refraction du radiateur.

→ Indice de réfraction reconstruit en chaque point de l'aérogel (0.5x0.5 cm²)

X [cm]

Analyses

- Combinaisons des mesures associées aux sous-détecteurs pour sélectionner les différentes composantes
- Redondance des mesures dans AMS :
 - Estimation des efficacités
 - Construction de spectres de référence (templates)
 - Contrôle des systématiques
- Chaque analyse est spécifique:
 - Observable: Flux / rapport de flux

Ex: Flux e⁺, e⁻ -- e⁺/(e⁺+e⁻) -- Flux (e⁺ + e⁻)

- Fonds dans le rayonnement cosmique
- Fonds venant des interactions dans le détecteur
- Mesure de l'énergie / Rigidité

Analyses

- Quelques exemples « illustratifs »:
 - 1. Fraction de positrons.
 - 2. Flux de protons.
 - 3. B/C

• Mais avant, important de comprendre comment est déclenché l'acquisition d'un événement...

Trigger AMS

- Condition de déclenchement de l'acquisition
- Doit avoir la plus grande efficacité possible tout en gardant un taux < 2 kHz.
- Combinaison de l'information venant du TOF, de l'ACC et du ECAL.
- Trigger global = OU entre les triggers suivants :
 - « unbias » : TOF 3/4 HT, réduit d'un facteur 100

→ efficacité proche de 100%, sans dépendance en énergie : va permettre d'estimer l'efficacité des autres triggers.

- « proton » : TOF 4/4 HT, $N_{acc} = 0$
- « ion » : TOF 4/4 SHT, N_{acc} < 3
- « electron » : TOF 3/4 HT, ECAL shower

Trigger

Fraction de positron

- Mesure de l'énergie avec le calorimètre
- Mesure du signe avec le tracker sens de la courbure.
- Contamination principales: p, e-(« spill-over », interaction)
- 3 principales variables que l'on va utiliser:
 - TRD: Likelihood (e/p)
 - E/P: Energie (ECAL)/Impulsion (TRACKER)
 - ECAL: Forme de la gerbe

Analyse Fraction de positron

- Méthode de comptage des e⁻ et e⁺ dans chaque bin en énergie :
 - Coupure (1D, 2D)
 - Fit de spectres de référence (1D,2D)
- Mesure limitée statistiquement: optimisation de la méthode critique.
- 3 variables : beaucoup de combinaisons possibles
 - Présélection avec ECAL et E/P, fit 1D de TRD.
 - Présélection avec TRD et E/P, fit 1D de ECAL.
 - Présélection avec ECAL, fit 2D TRD E/P.

Ecal Stand alone estimator

Transition Radiation Detector.

Leak rate: CO2 ≈ 5 µg/s Storage: 5 kg, >20 years lifetime

TRD performance on ISS TRD estimator = $-\ln(P_e/(P_e + P_p))$

TRD performance on ISS

Electromagnetic Calorimeter

A precision, $17 X_0$, TeV, 3D measurement of the directions and energies of light rays and electrons

50 000 fibers, $\phi = 1$ mm distributed uniformly Inside 1,200 lb of lead

.......................

Tool development: ECAL estimator

 \rightarrow Use fine granularity of ECAL to discriminate e/p showers.

Identification of discriminant variables based on the shower 3D shape properties

Data from ISS: Proton rejection using the ECAL

Tracker

A track in the Tracker containing at least one hit in planes 1 or 2 or 9 and hits in planes (3 or 4), (5 or 6) and (7 or 8). In addition, the projected track must pass within 3 cm in x and 10 cm in y of the center of gravity of the ECAL shower. Primary particles, above 1.2*geomag. cutoff The relative error on the curvature (inverse of the rigidity) value from the track fit is less than 50 %, which ensures that tracks have rigidities well below their Maximum Detectable Rigidity.

DAQ

The detector livetime exceeded 50 %, which excludes, for example, the South Atlantic Anomaly.

TOF

The particle velocity measured by TOF β >0.8. The value of the absolute charge is required to be between 0.8 and 1.4.

TRD

At least 15 TRD hits on the Tracker track traced through the TRD.

ECAL

A shower axis within the ECAL fiducial volume.

The ECAL shower has electromagnetic shape

Event selection.

Analysis: 2D fit to measure Ne[±] and Np

2D reference spectra for the signal and the background are fitted to data in the [TRD estimator- log(E/|P|] plane.

The method combines redundant information from TRD, ECAL, and Tracker; and provides much better statistical accuracy compared to cut-based analysis.

Reconstruction du flux de Proton

- Composante dominante du RC :
 - Pas de contamination
 - Pas limité par la statistique
 - → Mesure de grande précision
 - → Contrôle des systématiques grâce à la redondance des détecteurs
- Mesure de la Rigidité à l'aide du tracker
- Reconstruction d'un flux :
 - Temps d'exposition / Lifetime
 - Acceptance du détecteur / efficacité des coupures
- MC

MC

Efficacité du Trigger

Notion d'acceptance

Notion d'acceptance

Pour un télescope simple avec ε = 1:

$$Acc(E) = \int_{S_2} \int_{\Omega_2} d\vec{\Omega} d\vec{S}$$
$$Acc(E) \approx \frac{S_1 S_2}{l^2}$$

En pratique, estimation MC (GEANT4) :

$$Acc(E) = Acc_{gen} \frac{N_{sel}}{N_{gen}}$$

Où:

$$Acc_{gen} = \pi \ 3.9^2 \ \mathrm{m^2 sr}$$

Proton flux analysis in AMS-02 $F(R) = \frac{N_{obs.}(R)}{T_{exp.}(R) A_{eff.}(R) \varepsilon_{trig.}(R) dR} \text{(For isotropic flux with } \theta_{zen} < 20^{\circ})$

- F : Absolute differential flux (m⁻²sr⁻¹s⁻¹GV⁻¹)
- *R* : Measured rigidity (GV)
- $N_{obs.}$: Number of events after proton selection
- $T_{exp.}$: Exposure life time (s)
- $A_{\text{eff.}}$: Effective acceptance (m² sr)
- $\varepsilon_{trg.}$: Trigger efficiency
- d*R* : Rigidity bin (GV)

Proton flux analysis in AMS-02 $F(R) = \frac{N_{obs.}(R)}{T_{exp.}(R) A_{eff.}(R) \varepsilon_{trig.}(R) dR}$

- F : Absolute differential flux (m⁻²sr⁻¹s⁻¹GV⁻¹)
- *R* : Measured rigidity (GV)
- N_{obs.} : Number of events after proton selection
- $T_{exp.}$: Exposure life time (s)
- $A_{\text{eff.}}$: Effective acceptance (m² sr)
- $\varepsilon_{trg.}$: Trigger efficiency
- d*R* : Rigidity bin (GV)

Rigidity measurement

Proton flux analysis in AMS-02 $F(R) = \frac{N_{obs.}(R)}{T_{exp.}(R) A_{eff.}(R) \varepsilon_{trig.}(R) dR}$

- *F* : Absolute differential flux (m⁻²sr⁻¹s⁻¹GV⁻¹)
- *R* : Measured rigidity (GV)
- N_{obs.} : Number of events after proton selection
- $T_{exp.}$: Exposure life time (s)
- $A_{\text{eff.}}$: Effective acceptance (m² sr)
- $\varepsilon_{trg.}$: Trigger efficiency
- d*R* : Rigidity bin (GV)

Pre selection

- Velocity measured by at least 3 TOF counters (out of 4)
- TOF track pass both Tracker L1 and L9

Full span track selection

- Events with at least one track' with measured hit points both in Layer 1 and 9
- Normalized χ^2 of the track fitting : $\chi^2 < 10$
- Final selected events : $N_{obs.} (R > 1 \text{ GV}) = 3.03 \times 10^8$

Proton flux analysis in AMS-02 $F(R) = \frac{N_{obs.}(R)}{T_{exp.}(R) A_{eff.}(R) \varepsilon_{trig.}(R) dR}$

- F : Absolute differential flux (m⁻²sr⁻¹s⁻¹GV⁻¹)
- *R* : Measured rigidity (GV)
- $N_{obs.}$: Number of events after proton selection
- $T_{exp.}$: Exposure life time (s)
- $A_{\text{eff.}}$: Effective acceptance (m² sr)
- $\varepsilon_{trg.}$: Trigger efficiency
- d*R* : Rigidity bin (GV)

Temps d'exposition

Rigidité dépendant : le temps d'exposition pour une rigidité *R* correspond au temps pendant lequel le détecteur est en une position où la rigidité de coupure géomagnétique est < R:

Data period

- Data taken from : 19 May 2011 to : 19 May 2013 (2 years) • Total exposure time : $T_{exp.}$ (R > 25 GV) = 51.2 × 10⁶ sec
- Average live time fraction : $T_{exp.}/2 \text{ years } = 81.6 \%$

Proton flux analysis in AMS-02 $N_{\rm obs.}(R)$ $F(R) = \frac{1}{T_{\text{exp.}}(R) A_{\text{eff.}}(R) \varepsilon_{\text{trig.}}(R) dR}$

- *F* : Absolute differential flux (m⁻²sr⁻¹s⁻¹GV⁻¹)
- *R* : Measured rigidity (GV)
- N_{obs} : Number of events after proton selection
- $T_{\text{exp.}}$: Exposure life time (s)
- $\begin{array}{l} A_{\rm eff.} & : {\rm Effective\ acceptance\ (m^2\ sr)} \\ \varepsilon_{\rm trg.} & : {\rm Trigger\ efficiency} \end{array}$
- d*R* : Rigidity bin (GV)

Acceptance

• Estimated with MC (Geant 4)

$$A_{\rm eff.}(R) = A_{\rm generated} \times \frac{N_{\rm passed-preselection}(R)}{N_{\rm generaged}(R)}$$

where $A_{\rm generated} = \pi \times 3.9 \times 3.9 \, {\rm m}^2 {\rm sr}$

- Constant for R > 10 GV
- Systematic error : ± 2.8 % due to the uncertainty of energy dependence of the hadronic interaction probability

Spectrum unfolding

Features (1)

R < 20 GV: Daily variation by solar activity

70

Cosmic ray modulation

Simplest model for Solar Modulation: Force-Field

$$J(E, t) = \frac{E^2 - M^2}{(E + \Phi(t))^2 - M^2} J^{IS}(E + \Phi(t))$$

Where $\Phi(t)$ is the modulation parameter \rightarrow all time dependence contained in $\Phi(t)$

- Flux fitted on data: $J^{IS}(E) = a_0 \beta^{a_1} R^{-a_2}$ • AMS02 (2011/06-2013/05) • PAMELA (2006/07-2008/12) • IS flux • TOA flux: $\Phi_{\text{AMS02}} = 0.616 \text{ GV}$ • TOA flux: $\Phi_{\text{PAMELA}} = 0.524 \text{ GV}$
 - \rightarrow Stronger Solar modulation as expected from solar activity
 - High statistics of AMS: posibility to reconstruct a flux for each day and then to study the time fluctuation.

Comparison with Neutron Monitor

- Good agreement but for BESS-TeV and BESS-2000 experiments (Large solar activity)
- Modulation measured on proton spectrum by AMS correspond to what is expected from Solar activity.

Daily normalized flux

Time fluctuation of proton rate for different rigidities from AMS02 data:

Daily normalized flux

Daily proton rate reconstructed from AMS02 data:

Daily proton rate reconstructed from AMS02 data:

Daily proton rate reconstructed from AMS02 data:

Daily proton rate reconstructed from AMS02 data:

Forbush decrease (due to the large magnetic disturbance) lasting ~20 days

Daily proton rate reconstructed from AMS02 data:

Forbush decrease (due to the large magnetic disturbance) lasting ~20 days

Daily proton rate reconstructed from AMS02 data:

Forbush decrease (due to the large magnetic disturbance) lasting ~20 days

Features (2)

Comparison with past measurements

Reconstruction du rapport B/C

Points importants:

- Identifiaction simple (Z=5)/(Z=6) et large redondance de la mesure de charge.
- Rapport → Pas besoin des efficacités, juste des rapports des efficacités.
- Mesure de la rigidité dans le tracker: pour estimer l'énergie on doit faire une hypothèse sur les abondances isotopiques.
- Fond principal: fragmentation (C→B) dans le détecteur

Multiple Measurements of Charge

Identification of Fragmentation Events

Purity Estimation

Selection efficiency is >70% for both Boron and Carbon, ratio is ≈ 1. Boron selected with Inner Tracker and TOF. Background estimated down to accuracy of 0.1%.

Top-of-the-Instrument Correction

Carbon to Boron conversion on materials above L1.

$$\left(\frac{B}{C}\right)_{L1} = \frac{B + C \cdot \epsilon_{C \to B}}{C} = \left(\frac{B}{C}\right)_{TOI} + \epsilon_{C \to B}$$

Correction to the ratio has been estimated with MC: $e_{C \rightarrow B} = 0.005 \pm 0.002$.

B/C Ratio

B/C Ratio (year > 2000)

Conclusions

- Mesure directe du rayonnement cosmique depuis un siècle depuis la haute atmosphère ou l'espace :
 - Sources du RC, accélération du RC, recherche de sources locales.
 - Processus de propagation, propriétés de la Galaxie (taille du halo...)
 - Activité solaire, modulation du RC
 - Origine de l'antimatière dans le rayonnement cosmique, recherche de matière noire
- Combinaisons des mesures associées aux sous-détecteurs pour mesurer les différentes composantes du RC : chaque analyse est spécifique.
- Situation particulière en ce moment : AMS sur l'ISS au moins jusqu'en 2020. Juste au début de l'exploitation des résultats de l'expérience.
 - Autres analyses en cours : He -- e⁻, e⁺, (e⁻+e⁺) -- B,C -- pbar, pbar/p
 - Et d'autres futures : Isotopes Dbar Hebar -- LiBBe (rapports secondaire/ primaire)
- Expériences futures (Calorimétrique) CALET -- ISSCREAM (2014-2015)