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NB: This lecture => Focus on WIMPs
(Weakly Interacting Massive Particles)
=> weak couplings to matter fields
=> can be produced in pairs in the early Universe if 
temperature > mass
=> indirect detection if self-annihilation/decay allowed
(very large fraction of WIMP models: SUSY, Xdim, 
sterile neutrinos, etc.)



Dark Matter candidates

What does particle physics tell us about DM ?

Motivations

Framework & 
Candidate(s)

Additional benefits

Neutrino masses
[keV]

Strong CP problem
in QCD [sub-eV]

Peccei-Quinn
++ axion ++

or axion-like (ALPs)
(string-inspired)

Dark matter
[GeV-TeV]

RH-neutrinos + seesaw
++ sterile neutrino ++

++ Asymmetric DM ++

Origin, stability and naturalness 
of the Higgs sector (EWSB)

[GeV-TeV]

SUSY, Xdim, IDM
++ LWP ++

(lightest whatever particle)

 GUT

++ Neutral scalar,
Fermion, or vector ++

Different mass/energy scale depending on
inherent theoretical motivations

e.g.: EWSB, GUT, 
inflation

Leptogenesis

Hints for new physics?
* asymmetry matter/antimatter
* neutrino masses
* if new scale < Planck, then hierarchy problem in the Higgs sector.
* (dark matter and dark energy)

What do particle experiments tell?
* gmu-2 (but theoretically contrived)
* vanilla SUSY in tension, other well motivated still racing (eg NMSSM)
* LHC found the first elementary (?) scalar … 50 yrs after prediction … let's be a little bit more patient ...



Indirect dark matter detection in the Milky Way

Main arguments:
● Annihilation final states lead to: gamma-rays + antimatter
● γ-rays : lines, spatial + spectral distribution of signals vs bg
● Antimatter cosmic rays: secondary origin of astro contrib, 
therefore low bckgd (in principle)
● Neutrinos: Sun most promising target

But:
● Do we control backgrounds?
● Specific spectral differences in signals vs backgrounds?
● Careful estimates of theoretical errors for signals and 
backgrounds very important (difficult exercise in practice)



Dark matter has long been discovered !

HEAT/PAMELA/AMS positron excess
Bergström++, Cirelli++ 08 → DM around 300-1000 GeV 

Agnese++ 13
DAMA, CoGenT, CRESST … + CDMSII(SI)

versus XENON-10, XENON-100
→ DM around 10 GeV

Around the GC
Weniger++, Su++ 12

→ DM around 130 GeV 

511 keV, Knödlsëder/Weidenspointner++ 05 - 08
Boehm, Hooper++ 04 → DM around 1 MeV 

Hooper++ 12: gamma-rays + radio at GC
→ DM around 10 GeV 



Dark matter has long been discovered !

HEAT/PAMELA/AMS positron excess
Bergström++, Cirelli++ 08 → DM around 300-1000 GeV 

Agnese++ 13
DAMA, CoGenT, CRESST … + CDMSII(SI)

versus XENON-10, XENON-100
→ DM around 10 GeV

All point toward different mass scales :
1 MeV / 10 GeV / 130 GeV / 500 GeV

Hard to explain with a single DM candidate
(except maybe for XDM,

Weiner++ 04-12, Cline++, etc.)

Around the GC
Weniger++, Su++ 12

→ DM around 130 GeV 

Close to threshold:
Systematics?

Hooper++ 12: gamma-rays + radio at GC
→ DM around 10 GeV 

511 keV, Knödlsëder/Weidenspointner + 05 - 08
Boehm, Hooper++ 04 → DM around 1 MeV 

X-ray binaries + 
radiaoactive species

Astro contribs?

Instrumental?

Pulsars?



Indirect dark matter detection in the Milky Way

But:
● Do we control backgrounds?
● Specific spectral differences in signals vs backgrounds?
● Careful estimates of theoretical errors for signals and 
backgrounds very important (difficult exercise in practice)

Main arguments:
● Annihilation final states lead to: gamma-rays + antimatter
● γ-rays : lines, spatial + spectral distribution of signals vs bg
● Antimatter cosmic rays: secondary origin of astro contrib, 
therefore low bckgd (in principle)
● Neutrinos: Sun most promising target

Particle physics input
Astrophysics (gravitational)
Cosmic-ray transport (trivial for gamma-rays)



Early universe considerations (1)

Production:
● Coupling to matter fields => thermal production in 
pairs if T > m

wimp
 (NB: implicit assumption about 

reheating).
●

 
Weak couplings => thermal/chemical equilibrium 

quickly reached (WIMPs) <=> 
production/annihilation rates >> expansion rate.
● Feeble (weaker) couplings => equilibrium never 
reached <=> slow production (large density of 
plasma), annihilation inefficient (low density of DM 
particles).

General conclusions for WIMPs:
● Cosmological abundance fixes annihilation 
cross section.
● Canonical value for ~100 GeV WIMPs

Hall++ (10)

Decoupling:
● Occurs when expansion rate >> annihilation rate 
(equilibrium before, e.g. WIMPs), or when T < m (e.g. 
FIMPs).
→ see e.g. Gondolo & Gelimini 91, Gondolo & Edsjo 97

FIMPs
WIMPs

In practice:
● Solve the Boltzmann equation



Early universe considerations (2)

How accurate is the canonical cross-section value < σv> = 3.10-26 cm3/s ?

Advice: beware of standard lores (unless clearly understood):
=> The canonical value is not accurate!
*** QCD phase transition effect! Relativistic degrees of freedom 
strongly reduced (factor of 4) when quarks get confined into hadrons.
=> < σv> larger by factor of 1.5 below 10 GeV
=> < σv> smaller by factor of 1.3 below 10 GeV More in Geneviève's course!



Particle physics considerations (1)

WIMPs annihilate almost at rest (non-relativistic velocities).
Models predict their nature: boson/fermion (Dirac/Majorana).

=> Simple symmetry arguments may help figure out
whether indirect detection is relevant or not.

=> P-wave contribution (dependent on v) is suppressed in Galaxies by 5 orders of magnitude wrt early universe
=> In general, indirect searches only relevant to models with dominant S-wave contributions.

** Focus on S-wave
=> Annihilation at rest implies a few additional features, if one looks at a pair of WIMPs more closely
=> Majorana fermion pair at rest: C=1; S-wave => L=0 => S=0 => CP=-1 => process selection!

=> important for complementarity 
with direct searches!

++ Helicity suppression



Particle physics considerations (2)

Exception: Sommerfeld effect (mediator mass << WIMP mass)
<=> long-range attractive force in some cases

=> P-wave contribution (dependent on v) is suppressed in Galaxies by 5 orders of magnitude wrt early universe
=> In general, indirect searches only relevant to models with dominant S-wave contributions.

** Focus on S-wave
=> Annihilation at rest implies a few additional features, if one looks at a pair of WIMPs more closely
=> Majorana fermion pair at rest: C=1; S-wave => L=0 => S=0 => CP=-1 => process selection!

=> important for complementarity 
with direct searches!

Exception: Sommerfeld effect

++ Helicity suppression
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Cosmo/astro considerations (1-4)
Viel++ (11)

Indirect proofs for DM:
Observed (gravitational effects) from sub-galactic to cosmological scales

CDM successes:
●  Leads to successful theory of structure formation
=> CDM seeds galaxies, galaxies embedded in DM halos
●  Non-linear collapse probed with cosmological N-body simulations
●  Including baryons is an ongoing (difficult) task but seems promising
●  Most of observed properties (CMB / clusters / galaxies) reproduced 

from theory

Alternatives to DM: Modified gravity ????
●  Interesting and difficult theoretical direction
●  Fails in forming galaxies without DM (eg large CMB multipoles)
=> DM required even in modified gravity models!!!!

Free-streaming scale must at least allow for Dwarf Galaxies:
Fermionic DM => Tremaine & Gunn 79, Boyarsky+ 06: m > 1 keV
=> WDM and/or CDM allowed

Small scale issues for CDM (too much power on small scales):

So-called “Cusp-core problem”
=> CDM predicts cusps + concentrated centers, observations  cores

(e.g. Navarro-Frenk-White profile)

More subhalos than observed ( dwarf galaxy mass)
*** more have been detected recently (SDSS)

***  inefficient star formation, feedback effects (UV pressure, SN)



The core-cusp problem
(mostly in late-type LSB galaxies, e.g. de Blok 10)

Villaescuela-Navarro & Dalal (10)
WDM does not prevent cusp formation
(Core radius / virial radius < 0.001)  

Conclusions:
→ WDM alone does not solve the issue:
* must be close to CDM to form DSphs (> 1-10 keV)
* then core radii are way too small wrt observations

→ CDM in better shape when baryons are included
(still some debate)

Governato++ (12)
CDM + more realistic physics for baryons => cusps are flattened

(star formation: radiative feedback from massive star + SN feedback)



The subhalo problem: too many, too concentrated

Carlberg (arXiv:1109.6022):
Gaps in star streams: NW (M31), Pal 5, Orphan, EBS (MW)
=> ~ 105 subhalos with M > 105 Msun
(potentially large systematic errors)

See also Ly-alpha studies.

Via Lactea II simulation (MW-like galaxy)
Diemand++ (08) – CDM only
=> > 20,000 subhalos with  M >106-7 Msun 

Bringmann (09):
The minimal proto-halo scales for SUSY WIMPs 

“Too big to fail”:
* CDM => massive, concentrated subhalos => should form stars, but 
not observed (ultra-faint SDSS DSphs not enough)

Potential solutions come from baryonic effects:
* feedback (Governato ++12)
* H2-regulated star formation (Kuhlen++ 12-13)

Other solutions from particle physics:
* Self-interacting DM (Spergel & Steinhard 00)

=> Biggest challenge for CDM
=> Investigate baryonic effects in detail



How to constrain the DM density in the Galaxy?

Dynamical methods (rotation curves)
* rely on assumption for DM profile + baryon modeling
* assume hydrodynamical equilibrium
* many degeneracies in parameters
=> typical results:
Widrow++ 09: ρ(local) = 0.3+-0.1 GeV/cm3
Catena & Ullio 09: ρ(local) = 0.39+-0.02 GeV/cm3

Vertical velocity dispersion (à la Oort 1930's)
* accurate star velocities required
* less dependent on DM profile assumption
=> typical results:
Salucci++ 10: ρ(local) = 0.43+-0.11 GeV/cm3
Bovy & Rix 13: ρ(local) = 0.3+-0.1 GeV/cm3

Bovy & Rix 13

Summary:
* reasonable constraints on (averaged) local DM density
* central parts of the Galaxy poorly constrained
=> baryons play an important role
=> need more observations/tests (numerical simulations)

Gaia will help!
(launch expected Nov. 2013)
=> accurate positions and 
velocities for 108 stars!

Klypin++ 02

Combine both:
=> constraints on profile index
Bovy & Rix 13: index < 1.5



Indirect dark matter detection in the Milky Way

But:
● Do we control backgrounds?
● Specific spectral differences in signals vs backgrounds?
● Careful estimates of theoretical errors for signals and 
backgrounds very important (difficult exercise in practice)

Main arguments:
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Gamma-rays

Bergström++

Indirect dark matter detection in the Milky Way



Gamma-ray signals: spectral signatures

DM signals depend on annihilation final states:
1) Gamma-ray lines/boxes: the cleanest signatures! (but loop suppressed)
=>eg: γγ, γX, ϕϕ → 4γ
2) quarks, massive bosons => typical hadronization spectra (pion 
production/decay) => continuous spectrum, close to E-2, with exponential 
cut-off => rather soft spectrum
3) Virtual internal Bremsstrahlung (VIB) may be significant if final 
states are bosons and mediator mass degenerate with WIMP mass 
(strongly model-dependent) => hard spectrum
…
x) (mostly for non-susy): FSR for annihilation into charged leptons
=> hard spectrum.

Beacom++ 05

FSR VIB

Bringmann++ 09

Bringmann & Weniger 12



Gamma-ray targets

Big DM subhalos
* unknown objects if star formation inefficient
=> potential unidentified gamma-ray sources.
* known Dwarf Spheroidal Galaxies (~20) – no 
other HE astrophysical processes expected there.

Diffuse gamma-ray emission
=> check spectral/spatial 
properties wrt background

Galactic Center
* Closest/Largest expected 
annihilation rate
* Large theoretical uncertainties 
(signal and background)

Pieri, JL++ 11

@kek



Gamma-ray targets

Big DM subhalos
* unknown objects if star formation inefficient
=> potential unidentified gamma-ray sources.
* known Dwarf Spheroidal Galaxies (~20) – no 
other HE astrophysical processes expected there.

If no line observed 
elsewhere, DSphs are the 
most secure for a discovery.

Galactic Center
* Closest/Largest expected 
annihilation rate
* Large theoretical uncertainties 
(signal and background)

Diffuse gamma-ray emission
=> check spectral/spatial 
properties wrt background

Pieri, JL++ 11

@kek



Gamma-rays from the Galactic Center: recipe

Assume spherical DM halo (a piece of it)
* Line-of-sight integral
* Aperture angle given by experimental resolution
NB: PSF should be included for very accurate 
calculations.
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Gamma-rays from the Galactic Center: recipe

Summary:
* large theoretical uncertainties due to unknown halo shape 
=> several orders of magnitude in the very center.
NB: recipe valid for any DM (sub)halo

Assume spherical DM halo (a piece of it)
* Line-of-sight integral
* Aperture angle given by experimental resolution
NB: PSF should be included for very accurate 
calculations.

Annihilation concentrates at the very center in most 
of cases (cuspy halos)!!!
=> makes it much simpler for rough estimates!

Bergström++ 98



Gamma-rays from the Galactic Center: data? (1)

HESS Collab. 04 TeV GC data:
* Point source detected – Sg A*
* looks like standard astro source 
* large theoretical uncertainties due to unknown halo shape 
=> several orders of magnitude in the very center.



Gamma-rays from the Galactic Center: data? (1)

All you cannot (do not want to) 
use as signal interpretation can be 

used for setting limits!

=> This implies assuming a 
density profile (keep that in mind)

TeV GC data:
* Point source detected – Sg A*
* looks like standard astro source 
* large theoretical uncertainties due to unknown halo shape 
=> several orders of magnitude in the very center.

Abazajian & Harding 12

HESS Collab. 04



Gamma-rays from the Galactic Center: data? (2)

Fermi data are public: enjoy!

The point:
=> After “background” subtraction in a 1° 
region, some authors find some gamma-ray 
excess around a few GEV.

Criticism:
=> Which background?
* CR physics not under control at GC
* ISM loosely constrained there
* Contamination by unresolved sources (eg 
millisecond pulsars).

Hooper & Linden 12
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Gamma-rays from the Galactic Center: data? (2)

Fermi data are public: enjoy!

The point:
=> After “background” subtraction in a 1° 
region, some authors find some gamma-ray 
excess around a few GEV.

Criticism:
=> Which background?
* CR physics not under control at GC
* ISM loosely constrained there
* Contamination by unresolved sources (eg 
millisecond pulsars).

=> pulsars promoted to most important 
background in indirect searches! (see later)

Hooper++ 12

=> Reverse game: go to limits!
(assuming DM profile)

Hooper & Linden 12



Gamma-ray backgrounds (at last)

Backgrounds:
* CR interaction with ISM => neutral pions + 
IC (diffuse background)
* unresolved astrophysical sources
* extragalactic astro contributions
* (for other DM sources – eg DSphG) smooth 
DM halo contribution

=> Despite rather good understanding (except in 
some cases), difficult to predict with good 
accuracy.

Total Galactic diffuse
Neutral pions (p+H)
Inverse Compton
Bremsstrahlung

Detected sources
Isotropic background

Real skymap of signal + backgrounds
(Fermi Collab.)

Fermi Collab. 12
Galprop model(s)
(neglecting DM!)



Gamma-ray signal / background

Signal / noise ratio

Pieri, JL++ 11

DM annihilation maps assuming 
Aquarius (Springel++) model (top), 

and Via Lactea II (Diemand++) 
model (bottom)

Pieri, JL++ 11



Gamma-ray signal / background

Real residuals!

Pieri, JL++ 11

DM annihilation maps assuming 
Aquarius (Springel++) model (top), 

and Via Lactea II (Diemand++) 
model (bottom)

Pieri, JL++ 11

Signal / noise ratio



Diffuse emission: a top bottom approach

Advantages:
* all ingredients are identified and localized (sources and gas)

*  check the relevance of current assumptions
Limits: spatial resolution

=> preliminary results encouraging, work in progress

DM Gas
CR distrib. 
(prediction)

Nezri, JL, Teyssier,1204.4121

Stars/SNRs

Cosmological simulation:
self-consistent modeling of a galaxy (DM, gas, stars) 

 Compare e.g. with Weniger 12
(optimized region for 130 GeV line)

Skymaps:
DM (100 GeV b-bbar) – astro processes – DM/astro



Defining optimal regions: example of the 130 GeV line

Weniger 12

Methodology:

1) consider different possibilities for DM halos
2) for each, determine regions where signal/background 
is maximal
3) look for DM features in these regions (eg lines)
4) compare analysis with regions where signal should be 
absent

=> Weniger (12) found a gamma-ray line at 130 GeV
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Defining optimal regions: example of the 130 GeV line

BUT:
* a few events
* same feature observed in albedo events (close to Earth)
* systematic effects likely significant – hard to estimate

Weniger 12

Methodology:

1) consider different possibilities for DM halos
2) for each, determine regions where signal/background 
is maximal
3) look for DM features in these regions (eg lines)
4) compare analysis with regions where signal should be 
absent

=> Weniger (12) found a gamma-ray line at 130 GeV



Defining optimal regions: example of the 130 GeV line

Status of 130 GeV line:
* no more significant
* but still something which
cannot be due to known 
systematics
=> wait for data 
accumulation + new 
analysis (PASS8)

and …. HESS-2 !!!!

Fermi Collab. 13
(PASS6 → PASS7)

Weniger 12

BUT:
* a few events
* same feature observed in albedo events (close to Earth)
* systematic effects likely significant – hard to estimate



Gamma-ray targets/features:
● Dwarf Spheroidal Galaxies: DM-dominated
● Galactic center
● Diffuse gamma-ray sky (high latitudes)
● Gamma-ray lines (all targets)

Best running experiment is Fermi (ACTs like HESS have 
larger energy thresholds and limited fields of view).

Indirect detection with gamma rays: Summary

Constraints from DSphs:
● Geringer-Sameth & Koushiappas (11), 
Fermi collab. (11)
● Constraints on WIMP masses < 20-30 GeV 
(DM  → tau leptons, quarks)
● Start probing WIMP parameter space
● Sensitivity will have increased by factor of 3 
in 2018 => 100 GeV mass range within reach

Fermi Collab (11-13)

Julien Lavalle, Journées SF2A @ Montpellier, 7 VI 2013

Constraints from Diffuse emission (high-latitude constraints):
● Fermi collab. (12), Abazadjan++ (11-12), etc.
● Constraints on the so-called PAMELA region



Gamma-ray targets/features:
● Dwarf Spheroidal Galaxies: DM-dominated
● Galactic center
● Diffuse gamma-ray sky (high latitudes)
● Gamma-ray lines (all targets)

Best running experiment is Fermi (ACTs like HESS have 
larger energy thresholds and limited fields of view).

Future:
* Fermi until 2016/2018
* HESS-2
* Gamma-400 + CTA + ????

Indirect detection with gamma rays: Summary

Constraints from DSphs:
● Geringer-Sameth & Koushiappas (11), 
Fermi collab. (11)
● Constraints on WIMP masses < 20-30 GeV 
(DM  → tau leptons, quarks)
● Start probing WIMP parameter space
● Sensitivity will have increased by factor of 3 
in 2018 => 100 GeV mass range within reach

Fermi Collab (11-13)

Julien Lavalle, Journées SF2A @ Montpellier, 7 VI 2013

Constraints from Diffuse emission (high-latitude constraints):
● Fermi collab. (12), Abazadjan++ (11-12), etc.
● Constraints on the so-called PAMELA region

Extragalactic sources: galaxies and galaxy clusters
● M31 detected, some clusters scrutinized
… But: background contamination difficult to estimate
=> local is best for gamma-rays.



CTA sensitivity?

Survey of the GC region very important
=> CTA very competitive

Other targets more difficult (DSphG, etc.) – 
Fermi likely better for those targets.

Doro++ 13 – central MW region



Antimatter cosmic rays

Bergström++
Bottino++
Salati++
Silk++

Indirect dark matter detection in the Milky Way



Transport of Galactic cosmic rays:
The standard picture

408 MHz all-sky map

From Haslam++ 82
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Transport of Galactic cosmic rays:
The standard picture

408 MHz all-sky map

From Haslam++ 82

Galactic Disk:

Astrophysical CR sources + Interstellar gas + Interstellar radiation field + Magnetic field

Convection from winds

Diffusion on magnetic turbulences
(confinement)

~100 pc

15-20 kpc

~5 kpc

e.g. Ginzburg & Syrovastkii 64; Berezinsky, 
Ptuskin++ 90; Longair 92; Schlikeiser 02



Indirect detection with antimatter CRs

2 types of messenger:
* “antinuclei”: antiproton / antideuteron
* positrons
=> different propagation properties.

Antinuclei: spatial diffusion + spallation + 
convection
Positrons: spatial diffusion + energy losses

=> different propagation scales!
=> probe different parts of the MW
=> less sensitive to halo shape
NB: boundary effects when l>L or/and l>RJL++ 08

Bergström 09



Annihilation spectra

Cirelli++ 10



Propagated spectra

Cirelli++ 10

Antiprotons:
* inherent large propagation scale above 1 GeV
=> more sensitive to transport and halo shape 
(depending on L)

Delahaye++ 08

Positrons:
* High-energy flux (close to WIMP mass) set by local 
quantities => independent of transport and halo shape.
* Low energy very sensitive to transport and halo shape 
(the latter if L permits)



Solving the transport equation

2 main classes of semi-analytic methods:
* Green function approach
→ easy to use when possible 
* Bessel expansions
→ rely on cylindrical symmetry assumption
→ suited for nuclei/antinuclei

Two main approaches:
* Full numerical solvers (e.g. Galprop):
→ allow to include many details (spatial dependencies, different 
functional forms for diffusion coefficient, etc.)
→ but often used as a blackbox (loss of physical insight for non-
expert, convergence check not automatic
* Semi-analytic methods:
→ catch the physics
→ fast for inferring theoretical uncertainties



Backgrounds

Bringmann & Salati 07

Antiprotons:
* very good matching to data
=> use them as constraints

Delahaye++ 09, 
Lavalle 11

Positrons:
* good matching below 10 GeV, rather large uncertainties 
due to transport
* above 10 GeV ? 



Antiprotons as powerful constraints

DAMA+CDMS+COGENT mass regions
(+ GC fit by Hooper++)

=> WIMP mass ~10 GeV

Couplings to quarks => annihilation may produce
antiprotons (not generic for Majorana fermions, 

only s-wave contributions)
Large antiproton flux expected (scales like 1/m2)

** Uncertainties due to the size of the diffusion zone?

CoGeNT Collab (2010), Bottino+ (2010)

Lavalle 10



Back to the size of the diffusion zone
Bringmann & Salati (2007)

Maurin, Donato, Fornengo (2008)

Maurin++ 01 & Donato++ 02
=> attempts to bracket theoretical uncertainties

Besides best fit transport  model (dubbed med), proposal for 2 
extreme configurations:

min: L = 1 kpc
max: L = 15 kpc

minimizing and maximizing the DM-induced fluxes, respectively.

NB: much less effect on high-energy positrons (Lavalle++ 07, 
Delahaye++ 08) – short propagation scale.

The game people usually play:
1) you want your model to survive antiproton 
constraints:
=> take a small L
2) you want to advertise your model for detection:
=> take L from med to max.



Where do constraints on L come from?

Putze++ 11

Leaky Box (LB) model: the simplest approach.
* Assume steady state, forget about specific diffusion zone.
* Consider 2 timescales: escape from Galaxy + spallation timescale
=> Equilibrium equation (Ni averaged CR density for species labelled i):

Assume only 1 primary (p) and 1 secondary species (s), write down s/p:

Compare with data:

~ 20 Myr (1 GeV/n)

Secondary CR (eg B)

Interstellar gas

Primary CR (eg C)
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* Assume steady state, specify diffusion zone (boundary conditions).
* Consider isotropic/homogeneous diffusion + realistic spallation
=> Diffusion equation (for a primary species):

Solve for z≠0, reinject in diff. eq., then integrate over z in vanishing slice ±ε:

Clear analogy with escape =>

Diffusion coefficient amplitude degenerate with diffusion halo size L!

1D diffusion model: the next-to-mininal approach
Putze++ 11

Leaky Box (LB) model: the simplest approach.
* Assume steady state, forget about specific diffusion zone.
* Consider 2 timescales: escape from Galaxy + spallation timescale
=> Equilibrium equation (Ni averaged CR density for species labelled i):

Assume only 1 primary (p) and 1 secondary species (s), write down s/p:

Compare with data:

~ 20 Myr (1 GeV/n)
L
h<<L
R>>L

Small-scale example of a 
potentially leaky box ...

Secondary CR (eg B)

Interstellar gas

Primary CR (eg C)
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Breaking degeneracies?
→ Use secondary CR species that do not reach boundaries!
→  Radioactive species as cosmic clocks! (lifetime < residence time ~ 20 Myr)
Diffusion equation for radioactive secondary CRs (neglect spallation):

If                                           then:

K(E) / L degeneracy broken!

=> K(E)/L from stable secondaries, then K(E) from radioactive (e.g. Strong++ 07)

Strong++ 07



Breaking degeneracies?

CAVEATS:
* Low quality data (difficult measurements)
* Propagation length scale  ~ 100 pc => must account for details of the ISM 
down to this scale
=> local under-dense region (dubbed “local bubble”, e.g. Cox 97)
=> impact on transport parameter estimates (e.g. Donato++ 02; Putze++ 11)

1D model with local bubble (void)
Putze++ 11

→ Use secondary CR species that do not reach boundaries!
→  Radioactive species as cosmic clocks! (lifetime < residence time ~ 20 Myr)
Diffusion equation for radioactive secondary CRs (neglect spallation):

If                                           then:

K(E) / L degeneracy broken!

=> K(E)/L from stable secondaries, then K(E) from radioactive (e.g. Strong++ 07)

Strong++ 07



Uncertainties in the diffusion halo size?
(digression to positrons)

Small L models in tension with positron data

=> L > 1 kpc => Very conservative statement!

Perspectives:
●  PAMELA/AMS data still to come

=> Ongoing work with Maurin and Putze

Secondary positrons
(eg. Delahaye++09, Lavalle 11)



The positron fraction

We know pulsars can make it in principle.
Going to realistic modeling is complicated (eg Delahaye++ 10).
=> separate distant/local sources, and accommodate the full data (e-, e+, 
e+e-, e+/e+e-) …

=> Pulsar wind nebulae (PWNe) as positron/electron sources
=> SNRs as electron sources (each PWN must be paired with an SNR)

=> you may fit amplitudes / spectral indices … then what?

** Observational constraints!

=> use pulsar period, multiwavelength data for all observed sources … 
but … not that simple.

Aharonian++ 95AMS Collab (2013)



Other astrophysical solution(s)

Associated signatures: rising antiproton fraction (like DM) and B/C ratio

Secondaries generated in SNRs are accelerated like primaries:
Berezhko++ 03, Blasi 09, Blasi & Serpico 09, 

Mertch & Sarkar 09, Ahler++ 09

Positron fraction B/C ratioAntiproton fraction

Blasi & Serpico 09

(from Ahler++ 09)

Ahler++ 09Blasi 09



Modeling the electron/positron sources?

cosmic rays

Horns & Aharonian 04
Crab SED

photons

Very complicated problem:
1) photon data: CRs which are mostly still confined in sources 
(escape issue)
2) coupled evolution of magnetic fields and CR density

Some attempts at the source level (eg Ohira++ 10-11), but
much more work necessary.

Work in prep. with Y. Gallant and A. Marcowith (LUPM).

Crab nebula (ESA)
(just for illustration, 

not relevant for e+/e-)

Different timescales:
1) E-loss time > source age > transport time
2) transport time >> photon time

=> cannot directly use photon data
=> requires dynamical models for sources (time evolution)



Anisotropy as a test?

Linden & Profumo 13

Caveats:

* model-dependent (diffusion halo size again!)
* contributions of other sources (eg dipole from 
GC/antiGC asymmetry in the source distribution)
* cancellations might occur in the dipole

Still:

* physically meaningful information
* should be provided for all CR species separately (eg 
positrons, antiprotons, etc.)
* will provide constraints to the full transport model
* AMS may reach the necessary sensitivity



Main generic points:

* Annihilation cross section too small

* Associated antiproton flux prevents 
large positron flux

=> boost annihilation rate
=> suppress antiprotons < 100GeV

Positron flux

Lavalle++ 08

Xdim, etc.

Antiproton flux

Antiproton flux

Positron flux

SUSYSUSY

Xdim, etc.

Pieri, JL++ 11

Example: could fit PAMELA data 
with 100 GeV DM → e+e- (small 
boost from DM subhalos).
*** but AMS up to 350 GeV
=> blackboard?

DM interpretation of the positron excess?



DM interpretation of the positron excess?

Cirelli, Strumia++ 08-13

Method:
* background (!!!) + annihilation cross-section as free params.
Conclusions:
* severe antiproton constraints => multi-TeV or leptophilic models

But …



DM interpretation of the positron excess?

Method:
* background (!!!) + annihilation cross-section as free params.
Conclusions:
* severe antiproton constraints => multi-TeV or leptophilic models

But … local DM: 0.3 → 0.4 GeV/cm3, DM subhalos => BF ~ 2-3
=> factor of 4-5 possible

Cirelli, Strumia++ 08-13



The role of DM subhalos

(Silk & Stebbins 93)

Indirect searches with antimatter CRs



Boost factor ? … well, in fact, boost factors

The volume over which the average is 
performed depends on the cosmic messenger!

Clumpy galaxySmooth galaxy
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Boost factor ? … well, in fact, boost factors

The volume over which the average is performed 
depends on the cosmic messenger!

Observer

1) Prompt gamma-rays: point a telescope to a certain direction, and average over a volume set by 
the angular resolution

a) To the Galactic center: the smooth halo is singular, clumps have no effect, B ~ 1
b) To high latitudes/longitudes: the smooth halo contributes much less, B>>1

2) Cosmic rays: stochastic motion, define energy-dependent propagation scale.
a) Large propagation scale: if enough to feel regions close to GC, then B ~ 1
b) Small propagation scale: if we are sitting on a clump, then B>>1, otherwise B moderate



Impact of subhalos on the positron flux

Diffuse gamma-rays
Blanchet & JL 12

If DM is cold, subhalos must exist and survive tidal stripping (eg 
Berezinsky++ 05).

Very small masses can be achieved, fixed by the WIMP free 
streaming scale (eg Bringmann 09).

Properties studied in cosmological simulations, but limited by 
resolution =>  M > 104 Msun only.

Latest dedicated studies show profiles more cuspy than NFW at 
cut-off mass (eg Ishiyama++ 10, Anderhalden++ 13).

=> PAMELA could be explained by 100 GeV WIMPs (not AMS) 

Anderhalden, Diemand 13

Bringmann 09

Positron fraction
JL++ 07, Pieri, JL++ 10



Subhalos: summary
Diffuse gamma rays:

Large boost on high latitudes (though still low absolute flux).
Must be included for diffuse gamma-ray analyses, though 

affected by theoretical uncertainties.

Caution:
● Boost factors depends on species!
● Large fluctuations inherent when small number of 
objects concerned (e.g. HE positrons, or predictions of 
subhalos to be resolved with gamma-ray telescopes)

Antimatter cosmic rays:
Moderate boost factor (<20) which depends on energy. 
Potentially large fluctuations expected, depending on 

configurations and energy.

JL++ 07

Bergström++ 98



=> very competitive constraints on leptophilic models!

NB1: formally impossible to exclude DM contribution … 
BUT we know pulsars do exist (with the relevant 
properties) … you bet? 

NB2: the answer will be clear sooner or later (the role of 
scientific research); still an interesting research line: any 
new contribution is encouraged!

(Review on the positron fraction excess in Serpico 10)

Upside down approach to positron data

Bergström++ 13



Production:
* coalescence model(s)
=> have improved the last 2 years
=> collinear momenta of anti-n and anti-p
=> small spatial separation

Detection:
* complicated … (discriminate wrt antip 
and e-)

Predictions:
* favorable signal/noise
* detectable mass range already 
significantly probed by pbars ...

AMS-02 and GAPS will try

To conclude this section: Antideuterons
Fornengo++ 13 – also Donato, Salati++ 00



Radio signals

Indirect dark matter detection



Radio emission

Radio constraints very loose for diffuse component.
=> Get much stronger at the Galactic center (<< 10 pc!)
=> But large uncertainties on B-field and on DM distribution.

Fornengo++ 11



Radio constraints: CMB!

See also: Scott++ 91, Dodelson & Jubas 92, 
Hansen & Haiman 04, Chen & Kamionkowski 
04, Natarajan & Schwarz 09, Galli++ 09, etc.

Cline & Scott 13



Neutrinos

Indirect dark matter detection



Galactic neutrinos

Icecube Collab. 11

Neutrinos are weakly interacting particles
=> huge detection volume = small effective 
detection area

Icecube area (1 TeV) = Fermi area (10 GeV)
(with 1-2° angular resolution, factor of 2 
energy resolution => bckg discrimination 
more difficult).

Galactic searches not competitive :(

Carr++ 07 (ICRC)



Neutrinos from the Sun
(clean DM signature)

WIMPs

WIMPs captured in the Sun
(gravitation + elastic scattering off material)

=> can annihilate
=> at equilibrium: annihilation = capture rate

Super-Kamikande very powerful for GeV particles
Amanda/Icecube and Antares/Km3 only for WIMP masses > 50 GeV

→ Leptophilic WIMPs strongly constrained
→ Quarkophilic WIMPs survive

Kappl & Winkler (11)



Icecube limits

Icecube Collab. 11 



Complementarity

Indirect dark matter detection



Direct detection of DM

Different detection methods, different systematics:
Scintillation: DAMA, CRESST, XENON

Ionization : CDMS
Phonon (Ge): CDMS

=> discriminate electronic/nuclear recoils

Direct detection (Goodman & Witten 85, Drukier++ 86)

Backgrounds: Cosmic-rays, radioactivity
=> deep underground shielded detectors

Smoking-gun signal: annual modulation (a few % of evt rate)
Drukier++ (86), Freese++ (88)

Local DD rate depends on local DM phase-space 
(number density, velocity distribution)

Typical WIMP-nucleon cross section << 10-4 pb !!!!



Direct detection of DM: dazed hints

 

Two types of hints:
* Annual modulation:
Detection by DAMA, not confirmed
*Excess events: (low significance < 3 sigma)
CoGeNT, CRESST, CDMS/Si
**** But constraints by XENON-10/100
=> hard to reconcile/interpret

=> Exciting! (model-building not standard)
=> Close to threshold: large systematics
=> need more data!

Annual modulation detected by DAMA
Bernabei++(98-13)

Kopp++ (11) – spin-independent analysis

CDMS/Si (Agnese++ 13)
=> 3 evts / 0.41 +-0.2 +- 0.25 expected

=> 2-3 sigma “excess”



Direct detection of singlino-like WIMPs

Setup:
● Singlino-like WIMP
● Realistic Higgs sector with 
mixing angles: additional 
singlet-like CP-even (h) and 
CP-odd (a) light Higgs 
bosons

Constraints:
● Some collider constraints 
(=> large singlet fraction)
● Direct detection signal 
dominated by h exchange 
(MSSM Higgs decoupled)
● DD signal region 
encompasses CoGeNT
● 2 mchi > ma + mh

CoGeNT region

Free parameters:
● Masses

● Couplings
● tanbe

Color index:
● Excluded relic d.
● Relic d. OK
● Relic d. OK 
   but pbar excess

Cerdeno, Delahaye & JL 11



Julien Lavalle, TAUP @ München, 6–IX–2011

Understanding the results:
S-to-P wave ratio and mass range

m < 2 mp or m~2 mb~10 GeV
 do not produce antiprotons 

Indirect detection signal => pure S-wave required Light Higgs bosons masses



Colliders?

Usually model-dependent

=> likely best model-independent is monojet + 
missing ET (b/t tagging).

Lin++ 13



Conclusions

- Dark matter particle scenario strongly motivated
- WIMP excellent candidate because naturally arising in BSM models + 
detectable/excludable

- Best indirect targets: gamma-ray line(s), DSphG, HE solar neutrinos
- Antimatter and diffuse: provide strong constraints, more difficult for discovery
- Exciting because experiments unveil “excesses” very often … but standard astrophysics 
can also very often explain afterward …
- Lot of theoretical efforts to reduce systematic errors in signal and background predictions 
(eg. CR transport, galaxy simulations, etc.)
- Many running experiments: Fermi, AMS-02, HESS2, Planck, etc.

- Complementarity with other search approaches is the best strategy => mandatory, but 
difficult (interdisciplinary)

- Fascinating (though difficult) topic: frontier of particle physics, cosmology, astrophysics
- Most of the WIMP parameter space will be probed within 10 yrs (LHC + direct + indirect 
searches) => discovery or despair … stay tuned!



Backup

Julien Lavalle, MPIK, Heidelberg, 1st VII 2013



-rays: theoretical uncertainties

Via Lactea II

Predictions (Fermi 5 yrs):
(i) signal from GC provided understanding of Bg
(ii) few (~ 5) observable subhalos

Analytical & MC study of 
VLII and Aquarius

Pieri, Lavalle, Bertone & Branchini 09

Different simulations give different results, eg: 
* Via Lactea II (Diemand et al 08)
* Aquarius (Springel et al 08)

Aquarius

Flux: smooth wins against clumps 
on small l, but loses on large l

Bergström et al 99           

Density profiles

Among differences:
subhalo properties!
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