Heavy Flavours
 Saveurs Lourdes

Daniel Decamp* \& Philippe Ghez

LAPP - Summer 2013

Outline

I. the Standard Model
2. from Antimatter to CP violation
3. the CKM matrix and the Flavours
4. the Beautiful Factories
5. Heavy Flavour physics today
6. Conclusion: Outlook

I - the Standard Model

- Basic Principles
- Matter
- Forces
- Conservation laws and Symetries
- CPT
- This is IT!

the Standard Model

Basic Principles

- Goal : describe microscopic matter
- matter:"particles", motion\&interactions :"forces"
- elementary building blocks \& fundamental forces
- Relativistic world
- $\mathrm{E}=\mathrm{mc}^{2} \rightarrow$ particles decay into other particles
- Quantic world
- $\lambda=\mathrm{h} / \mathrm{p} \rightarrow$ particles AND waves (collisions/interferences)
- $\Delta \mathrm{E} \Delta \mathrm{t} \geq \mathrm{h} / 2 \rightarrow$ virtual interactions/states

the Standard Model

Matter

- Observation: splitting of spectral lines
- Pauli (1924) : we need (for electrons) a " two-valued quantum degree of freedom"

Spin $+1 / 2$

Spin-I/2

- Spin $=I / 2,3 / 2, \ldots:$ FERMIONS

$$
\text { Matter } \leftarrow \rightarrow \text { Fermions }
$$

the Standard Model

Forces

- Compton effect (1923) : light scattering on matter changes λ !
- interaction "mediated" by exchange particles
- relativistic QM : particles ~ fields
- interacting particles ~ particle exchange
- perturbation theo. + renorm. : calculable
- "rules" : Feynman diagrams
- Spin $=0$, I, 2, $\ldots:$ BOSONS

$$
\text { Forces } \leftarrow \rightarrow \text { Bosons }
$$

the Standard Model

Convervation laws and Symetries

- Continuous symmetries $\rightarrow+$ Conservation laws
- Energy, angular momentum, etc ...
- Additive quantum numbers : charge, color, weak charge
- Local gauge symetries
- Discrete symmetries $\rightarrow \mathbf{x}$ Conservation laws
- particle-antiparticle transfo. C : charge conjugation
- parity ("handedness") \mathbf{P} : left-right flip
- time reversal \mathbf{T} :go backward in time

the Standard Model

CPT	\mathbf{C}	\mathbf{P}	\mathbf{T}
Space	\mathbf{x}	$\mathbf{- x}$	\mathbf{x}
Time	\mathbf{t}	\mathbf{t}	$\mathbf{- t}$
Momentum	\mathbf{P}	$\mathbf{- p}$	$\mathbf{- p}$
Spin	\mathbf{s}	\mathbf{s}	$\mathbf{- s}$
Elec. field	$\mathbf{- E}$	$\mathbf{- E}$	\mathbf{E}
Magn. field	$\mathbf{- B}$	\mathbf{B}	$\mathbf{- B}$

(all vectors except h)

- orbital momentum :

$$
L=x^{\wedge} p
$$

- total angular momentum :

J = L + S

- helicity :
$h=$ S. Pnorm $($ Pnorm $=p /|p|)$
"left-handed/right-handed"
- The CPT theorem (1954):
"Any Lorentz-invariant local quantum field theory is invariant under the successive application of C, P and T "
- particles and antiparticles have equal mass and lifetime, equal magnetic moments with opposite sign, and opposite quantum numbers (OK up to $\sim 10^{-18}$)

the Standard Model This is IT!

$80.4 \mathrm{GeV} / \mathrm{C}^{2}$

the Standard Model This is IT !

Standard Model Interactions (Forces Mediated by Gauge Bosons)

U is a up-type quark;
D is a down-type quark.

2 - from Antimatter to $C P$ violation

$$
\begin{aligned}
& \text { - movemu } \\
& -e^{+} \\
& \text {- S } \\
& -\mathrm{K}^{0} \text { mixing } \\
& \text { - } \theta \text {-т puzzle } \\
& \text {-(b) } \\
& \text { - } V \text { helicity } \\
& \text { - } \theta_{c} \\
& \text { - (CP) }\left(\mathrm{K}^{0}\right)
\end{aligned}
$$

from Antimatter to $\mathbf{C P}$ violation

10. 0 Y m

- from classical to quantic:

$$
E=\frac{\vec{p}^{2}}{2 m}+V \underset{c=h=\|}{\longrightarrow} E=i \frac{\partial}{\partial t}, p_{x}=-i \frac{\partial}{\partial x}
$$

- from classical to quantic\&relativistic (free particle) :

$$
\mathrm{E}^{2}=\overrightarrow{\mathrm{P}}^{2}+\mathrm{m}^{2}
$$

$$
\longrightarrow \text { quadratic eq. in } \mathrm{E}
$$

$$
\longrightarrow E<0 \text { solutions ! }
$$

- Dirac :
- this is a problem
- spin cannot be included in $\Psi(\mathrm{x}, \mathrm{t})$ as a simple complex nb

from Antimatter to CP violation

1004Fmy

- Dirac (encore!) :
- get rid of negative energies $\rightarrow \Psi=\left(\Psi, \Psi_{2}\right)$
- don't forget spin:
- BUT ... still E < 0 solutions !
- 4 components $\Psi: 2$ spins +2 signs(E)
- E < 0 :"holes" in the (Dirac) "sea"

$$
\left(\beta \mathrm{m}+\sum_{\mathrm{k}=1}^{3} \alpha_{\mathrm{k}} \mathrm{P}_{\mathrm{k}}\right) \psi(\overrightarrow{\mathrm{x}}, \mathrm{t})=\mathrm{i} \frac{\partial \psi(\overrightarrow{\mathrm{x}}, \mathrm{t})}{\partial \mathrm{t}}
$$

- $\Psi: 4$-compo. (e-) wave function; $\alpha, \beta: 4 \times 4$ matrices
from Antimatter to $\mathbf{C P}$ violation e^{+}
- Anderson (1932) with :
- cosmic rays
- vertical Wilson chamber
- he sees this
- which comes from here
- a proton would give this
- an electron would give this

First evidence of the existence of antiparticles: Positron (\mathbf{e}^{+})
Every particle has its own antiparticle (sometimes it is the same)

from Antimatter to CP violation

S

- Rochester and Butler (1947) :

Evidence for the existence of new unstable elementary particles

Nature 160, 855-857 (1947)

Among some fifty counter-controlled cloud-chamber photographs of penetrating showers which we have obtained during the past year as part of an investigation of the nature of penetrating particles occurring in cosmic ray showers under lead, there are two photographs containing forked tracks of a very striking character. These photographs have been selected from five thousand photographs taken in an effective time of operation of 1,500 hours. On the basis of the analysis given below we believe that one of the forked tracks, shown in Fig. 1 (tracks a and b), represents the spontaneous transformation in the gas of the chamber of a new type of uncharged elementary particle into lighter charged particles, and that the other, shown in Fig. 2 (tracks a and b), represents similarly the transformation of a new type of charged particle into two light particles, one of which is charged and the other uncharged.

from Antimatter to CP violation

S

Back

from Antimatter to CP violation

from Antimatter to CP violation

S

- Rochester and Butler (1947) :

Evidence for the existence of new unstable elementary particles
Nature 160, 855-857 (1947)
We conclude from all the evidence that Photograph 1 represents the decay of a neutral particle, the mass of which is unlikely to be less than 770 m or greater than $1,600 \mathrm{~m}$, into the two observed charged particles. Similarly, Photograph 2 represents the disintegration of a charged particle of mass greater than 980 m and less than that of a proton into an observed penetrating particle and a neutral particle. It may be noted that no neutral particle of mass $1,000 \mathrm{~m}$ has yet been observed; a charged particle of mass $990 \mathrm{~m} \pm 12$ per cent has, however, been observed by Leprince-Ringuet and L'héritier.

- further observations (later) :
- large cross-sections \rightarrow strong interactions
- long lifetime $\left(10^{-10} \mathrm{~s}\right) \rightarrow_{18}$ weak interactions !
from Antimatter to $\mathbf{C P}$ violation
K^{0} mixing
- C (not yet violated) !) flip quantum numbers
- $S=+I: K^{0} \rightarrow \pi^{+} \pi^{-}$then $S=-I: \bar{K}^{0} \rightarrow \pi^{+} \pi^{-}$
- Gell-Mann, Pais (1955) :
$\rightarrow K^{0} \leftarrow \rightarrow \pi^{+} \pi^{-} \leftarrow \bar{K}^{0}$ ("mixing" predicted)
- real (observed) particles are ($\mathbf{C P}$ conserved): $\mathrm{K}_{1}=\left(\mathrm{K}^{0}+\overline{\mathrm{K}}^{0}\right) / \sqrt{ } 2, \mathrm{~K}_{2}=\left(\mathrm{K}^{0}-\bar{K}^{0}\right) / \sqrt{ } 2$
- $\mathrm{K}_{1}\left(\pi^{+} \pi^{-}\right)$- \mathbf{C} even - observed
- $\mathrm{K}_{2}(3 \pi)$ - C odd - predicted
- Lederman... (1956) discovers K_{2}^{0} ("mixing" observed)
- $\mathrm{T}_{2} \sim 500 \mathrm{~T}_{1}$
from Antimatter to $\mathbf{C P}$ violation

θ-t puzzle

- Football : Bristol wins over Manchester 3-2

- Physics :
- Manchester (1947) : $\theta \rightarrow 2 \pi$
- Bristol (1949) : т $\rightarrow 3$ ш

from Antimatter to $\mathbf{C P}$ violation

θ-t puzzle

- THE puzzle :
- θ and $\mathrm{T}: \sim$ same masse + lifetime (same particle ?) BUT
- $\mathbf{P}(\theta)=-I$ and $\mathbf{P}(\mathrm{T})=+\mid$ (Ist Dalitz plot)

Is Parity violated ?

- THE solution :Yang,Lee (1956) : why not?
"The conservation of parity is usually accepted without questions concerning its possible limit of validity being asked. There is actually no a priori reason why its violation is undesirable."
- they suggest several experiments to test it !

from Antimatter to CP violation

- Principe of measurement : ${ }_{27}^{60} \mathrm{Co} \rightarrow{ }_{28}^{60} \mathrm{Ni}^{*}+\mathrm{e}^{-}+\bar{v}+2 \gamma$

$$
\stackrel{{ }^{60} \mathrm{Co}}{\Rightarrow} \rightarrow{ }^{60} \mathrm{Ni}+\underset{\mathrm{e}^{-}}{\Rightarrow}+\underset{\overline{\bar{V}}^{\mathrm{e}}}{\Rightarrow}
$$

- "simply" count the e^{-}rate when flipping \vec{B}
- γ 's (conserve \mathbf{P}) detecterı d : check the Co polarization

from Antimatter to CP violation

- Experiment
- Want spin aligned in one direction and compare to not-aligned case
- Adiabatic demagnetization of 60Co in a magnetic field at very low temperatures (~0.01 K!). Extremely challenging in I956!
- Insert solenoid to polarize (20 s !)
- ~ 7 minutes to do the measurements once polarized (heating)

from Antimatter to CP violation

- Results

this is Parity violation

from Antimatter to CP violation

V helicity

- the "Goldhaber" idea (1958)
- ${ }_{63}^{152} \mathrm{Eu}+\mathrm{e}^{-} \rightarrow{ }_{62}^{152} \mathrm{Sm}^{*}+v_{\mathrm{e}}: \mathrm{K}$ capture
- $\mathrm{J}=0 \rightarrow \mathrm{~J}=\mathrm{I}, \mathrm{s}=0$ captured $\mathrm{e}^{-} \Rightarrow \mathrm{Sm}^{*} \& \mathrm{~V}_{\mathrm{e}}$ same h sign
- ${ }^{152} \mathrm{Sm}^{*} \rightarrow{ }^{152} \mathrm{Sm}+\gamma: \gamma$ desexcitation
- forward γ same h sign than V_{e}
- $\gamma+{ }^{152} \mathrm{Sm} \rightarrow{ }^{152} \mathrm{Sm}^{*} \rightarrow{ }^{152} \mathrm{Sm}+\gamma$: resonant scattering
- resonant scattering selects forward γ
- select sign of $h(\gamma)$ by (magnetically) spin flipping the e^{-}

from Antimatter to $\mathbf{C P}$ violation

V helicity

- the "Goldhaber" experiment (1958)
- source : $\mathrm{Eu} \rightarrow \mathrm{Sm}^{*} \rightarrow \mathrm{Sm}+\gamma$
- flip e^{-}spin $=$flip $h\left(\mathrm{~V}_{\mathrm{e}}\right)$
- capture/emit (resonant) γ
- detect γ
- check resonant scattering
- measure asymmetry A

Result : A = (1.7 ± 0.3) \% V_{e} are left-handed! (and \mathbf{C} is violated ...)

from Antimatter to $\mathbf{C P}$ violation
$\theta_{\text {c }}$

- Nicola Cabibbo (I963)
- known : $\mathrm{e} \mathrm{v}_{\mathrm{e}} \mu \mathrm{v}_{\mu}$ ("leptons") and uds ("quarks" = "trick")
- known: | \uparrow | 0 | v_{e} | v_{μ} | $+2 / 3$ | \mathbf{u} | | \mathbf{W}^{+} |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | | | | |
| | \mathbf{W}^{-} | -1 | \mathbf{e} | μ | $-1 / 3$ | \mathbf{d} | \mathbf{s} |
- BUT lifetimes ("g") problems :
- $g_{1}\left(l^{-} \rightarrow W^{-} v_{1}\right)>g_{2}\left(d \rightarrow W^{-} u\right) \gg g_{3}\left(s \rightarrow W^{-} u\right)$
- universality of the couplings ???
- Trick :
- $g_{1}=g, g_{2}=g \cos \theta_{c}, g_{3}=g \sin \theta_{c}$
from Antimatter to $\mathbf{C P}$ violation
$\theta_{\text {c }}$
- and it "works" !!!
- $\Gamma(K \rightarrow \mu v) / \Gamma(\pi \rightarrow \mu v) \Rightarrow \tan ^{2} \theta_{c} \Rightarrow \theta_{c} \sim 0.257$
- then $: g\left(l^{-} \rightarrow W^{-} v_{1}\right)=g\left(d \cos \theta_{c}+s \sin \theta_{c}\right)$
- describes correctly FCCC (... almost)
- consequences :
- d (weak interaction) $\neq \mathrm{d}$ (mass eigenstates)
- $\left(V_{\mathrm{e}} \mathrm{e}\right) \mathrm{L},\left(\mathrm{V}_{\mu} \mu\right)_{\mathrm{L}},\left(\mathrm{u} \mathrm{d}^{\prime}\right)$ with $\mathrm{d}^{\prime}=\mathrm{d} \cos \theta_{\mathrm{c}}+\mathrm{s} \sin \theta_{\mathrm{c}}$
- same for $s \rightarrow$ Cabibbo matrix $\left(\frac{d^{\prime}}{s^{\prime}}\right)=\left(\begin{array}{cc}\cos \theta_{c} & \sin \theta_{c} \\ -\sin \theta_{c} & \cos \theta_{c}\end{array}\right)\left(\frac{d}{s}\right)$... there is \bar{s}_{8} more to come ...

from Antimatter to $\mathbf{C P}$ violation

(8) $\left(\mathrm{K}^{0}\right)$

- \mathbf{P} broken/C broken $\rightarrow \mathbf{C P}$ looks like The "good" symmetry!
- use K^{0} and wait ...
- until short-lived K^{0} ("K।") has disappeared
- then check that " K_{2} " is $\mathbf{C P}$ odd
- reminder : $2 \pi=$ even, $3 \pi=$ odd

from Antimatter to CP violation
 (C) $\left(\mathrm{K}^{0}\right)$

- Cronin\&Fitch (I964) - Experiment

from Antimatter to CP violation

(8) $\left(\mathrm{K}^{0}\right)$

- Cronin\&Fitch (1964) - Results

3 - the CKM matrix and the Flavours

- interlude : seeing K^{0} mixing in bubbles

Gell-Mann, Zweig 1964 T

- GIM

Glashow, Illiopolous, Maiani 1970 T

- CKM matrix - I Kobayashi, Maskawa 1973 T
- interlude : modern particle physics detectors E
- C
- T
- b
$-B^{0}{ }_{d}$ mixing
$-\mathrm{t}$

Ting..., Richter... Perl...

Lederman...
ARGUS
CDF, DO
1995 E
the CKM matrix and the Flavours seeing the K^{0} mixing in bubble chambers

--=-=- + tracks
----=- - tracks
........... neutrals $(w \& b \rightarrow b \& w) 33$

- collision vertex (on p)
- desintegration vertex

the CKM matrix and the Flavours

Quarks

- proposed (indeptly) by Gell-Mann\&Zweig (1964)
- main motivation : put some order in the hadron zoo !
- classify (remember Mendeleïev)
- How to classify ?
- classify : Spin
- classify : Isospin
- introduced by Heisenberg (I932) : $\mathrm{p} \sim \mathrm{n} \rightarrow \mathrm{p} \uparrow(+\mathrm{I} / 2), \mathrm{n} \downarrow(-\mathrm{I} / 2)$
- related to $\mathrm{B}, \mathrm{S}, \mathrm{Q}: \mathrm{Q}=\mathrm{I}_{3}+\frac{\mathrm{B}+\mathrm{S}}{2} \quad$ (Gell-Mann, Nakano, Nishijima ~ 1956)
- insensitivity to "flavour" (strange or not strange)
- Consequences ...
(The antiparticles are assumed to have the same spins, masses, and mean lives as the particles listed)

	Particle	Spin	Mass (Errors represent standard deviation) (Mev)	Mass difference (Mev)		Mean life (sec)		Decay rate number per second)
Photon	γ	1	0			stable		0
	v	$\frac{1}{2}$	0			stable		0
	e^{-}	$\frac{1}{2}$	0.510976 (a)			stable		0
	μ^{-}	$\frac{1}{2}$	105.70 ± 0.06 (a)			$(2.22 \pm 0.02) \times 10^{-6}$		0.45×10^{6}
	π^{+}	0	139.63 ± 0.06	4.6 (a)		$(2.56 \pm 0.05) \times 10^{-8}$	(a)	0.39×10^{8}
	π^{0}	0	135.04 ± 0.16 (a))			<4	(d)	$>2.5 \times 10^{15}$
	K^{+}	0	$494.0 \pm 0.2 \quad$ (g)	0.4 ± 1.8		$(1.224 \pm 0.013) \times 10^{-8}$	(h)	0.815×10^{8}
	K^{0}	0	494.4 ± 1.8 (i) $\}$		K_{1} :	(0.95 $\pm 0.08)$	(e)	1.05×10^{10}
					K_{2} :	$(4<\tau<13) \times 10^{-8}$	(c)	$(0.07<\tau<0.25) \times 10^{8}$
	p	$\frac{1}{2}$	938.213 ± 0.01			stable		0.0
	n	$\frac{1}{2}$	$939.506 \pm 0.01 \quad$ (a)			$(1.04 \pm 0.13) \times 10^{+3}$	(a)	0.96×10^{-3}
	Λ	$\frac{1}{2}$	1115.2 ± 0.14 (j)			$(2.77 \pm 0.15) \times 10^{-10}$	(k)	0.36×10^{10}
	$\Sigma{ }^{+}$	$\frac{1}{2}$	1189.4 ± 0.25 (l)	$\begin{gathered} 7.1 \pm 0.4 \\ 6.0^{+1.4} \\ =0.4 \end{gathered}$		$(0.83 \pm .06) \times 10^{-10}$	(m)	1.21×10^{10}
	Σ^{-}	$\frac{1}{2}$	1196.5 ± 0.5 (n) $\}$			(1.67 ± 0.17)	(o)	0.60×10^{10}
	Σ^{0}	$\frac{1}{2}$ $\frac{1}{2}$	$1190.5_{-1.4}^{+0.9}$ (p) $\}$			$\begin{array}{ll} (<0.1) & \times 10^{-10} \\ \text { theoretically } & 10^{-19} \end{array}$	(b)	$\begin{aligned} & >10 \times 10^{10} \\ & \text { theoretically } \sim 10^{19} \end{aligned}$
	三	?	1320.4 ± 2.2 (q)			$(4.6<\tau<200) \times 10^{-10}$	(f)	$(>0.005,<0.2) \times 10^{10}$
	$\equiv 0$?	?			?		

the CKM matrix and the Flavours
 Quarks

- This is the building block :

- "collateral damages"
- fractional charges !!!
- what is the "charge" of the strong interaction ?!?

the CKM matrix and the Flavours
 Quarks

- and these are some blocks

- $I_{3} @ S=0$ (meson octet), $S=-I$ (baryon decuplet), $S=I$ (baryon octet)
- Ω^{-}was not existing \rightarrow predicted
- discovered in 1964!
- don’t you remember Mesndeleïev :-)

the CKM matrix and the Flavours
 GIM

- remember : $\left(V_{e} e\right)_{L},\left(V_{\mu} \mu\right)_{L},\left(u d^{\prime}\right)$
- $d^{\prime}=d \cos \theta_{c}+s \sin \theta_{c}$
- there should be an $s^{\prime}=-d \sin \theta_{c}+s \cos \theta_{c}$
- but if (u^{\prime}) then ($\mathrm{x} \mathrm{s}^{\prime}$)
- without X :

- $\operatorname{Br}\left(\mathrm{K}_{\mathrm{L}} \rightarrow \mu^{+} \mu^{-}\right) \sim 7 \times 10^{-9} \lll g^{8} \sin ^{2} \theta_{c} \cos ^{2} \theta_{c}$

the CKM matrix and the Flavours
 GIM

- with \mathbf{X}, add a new (-) amplitude :

- almost fully destructive $\rightarrow \operatorname{Br}\left(\mathrm{K}_{\mathrm{L}} \rightarrow \mu^{+} \mu^{-}\right) \mathrm{OK}$!
- almost : $\mathrm{m}_{\mathrm{u}} \neq \mathrm{m}_{\mathrm{x}}$!
"We propose a model of weak interactions in which the currents are constructed out of four basic quark fields (...) The model features a remarkable summetry between leptons and quarks" Glashow, Iliopoulos, Maiani (1970)

the CKM matrix and the Flavours
 GIM

- This is it :

$$
\begin{aligned}
& \binom{v_{\mathrm{e}}}{\mathrm{e}}_{\mathrm{L}},\binom{v_{\mu}}{\mu}_{\mathrm{L}} \\
& \binom{\mathrm{u}}{\mathrm{~d}^{\prime}}_{\mathrm{L}},\binom{\mathrm{c}}{\mathrm{~s}^{\prime}}_{\mathrm{L}}
\end{aligned}
$$

- " x " is called charm
- last little tiny problemº: does C exist?

the CKM matrix and the Flavours
 CKM : the idea

"It is concluded that no realistic models of CP-violation exist in the quartet scheme without introducing any other new fields"

Kobayashi, Maskawa (1973)

- the Cabibbo matrix $V=\left(\begin{array}{cc}\cos \theta_{c} & \sin \theta_{c} \\ -\sin \theta_{c} & \cos \theta_{c}\end{array}\right)$ describes the (weak) transitions from I flavour to an other
- with 4 flavours ~ 2 "generations"
- can it explain $? \rightarrow \mathrm{NO}$!
- what do we need to explain it ?
the CKM matrix and the Flavours
CKM : the idea
- V is a 2×2 matrix and $|\mathrm{V}|^{2}$ are transition probabilities $\rightarrow \mathrm{V}$ should be unitary !
- V elements have to be complex
- Schrödinger equation invariant under \mathbf{T} only if Hamiltonian is real
- \mathbf{T} is violated $(\sim \mathbf{C P}) \rightarrow \mathrm{H}$ complex $\rightarrow \mathrm{V}$ complex
- $\mathrm{VV}^{+}=\mathrm{I} \Leftrightarrow \sum_{\mathrm{j}=1}^{\mathrm{N}} \mathrm{V}_{\mathrm{ij}} \mathrm{V}_{\mathrm{jk}}^{*}=\delta_{\mathrm{ik}} \rightarrow$ many constraint on V_{ij}
- with $\mathrm{N}=2 \rightarrow \mathrm{I}$ angle $\left(\theta_{c}\right)$
- with $N=3 \rightarrow 3$ angles +1 phase \rightarrow (CR)
- this 3×3 complex matrix is called the CKM matrix - $3 \times 3 \rightarrow$ would there be $a^{2} 3^{\text {rd }}$ generation?

the CKM matrix and the Flavours interlude : modern particle physics detectors

the CKM matrix and the Flavours

C ... experimentalists strike back!

- I2 November 1974 (publication day) : J
- J.J.Aubert et al. (coc ico)
-30 GeV p on Be target
- $\mathrm{e}^{+} \mathrm{e}^{-} 2$-arms spectrometer

$$
p+p \rightarrow \mathrm{e}^{+}+\mathrm{e}^{-}+\mathrm{x}
$$

- M's : dipole magnets
- $\mathrm{A}_{0} \mathrm{~A}, \mathrm{~B}, \mathrm{C}: 8000$-wires proportionnal chambers
- a,b : hodoscopes
- S : lead-glass counters
- $\mathrm{C}_{\mathrm{B}}, \mathrm{C}_{0}, \mathrm{C}_{\mathrm{e}}: C$ counters

Acceptance :

$$
\begin{aligned}
& \Delta \theta= \pm 1^{\circ} \\
& \Delta \Phi= \pm 2^{\circ} \\
& \Delta \mathrm{m}=2 \mathrm{GeV}
\end{aligned}
$$

(a) Plan view

the CKM matrix and the Flavours

C ... experimentalists strike back!

- I2 November 1974 (publication day) : J
- J.J.Aubert et al. (coc ico)
"We report the observation of a heavy particle J, with mass $m=3.1 \mathrm{GeV}$ and width approximatively zero "
"The most striking feature of J is the possibility that it may be one of the theoretically suggested charmed particles ..."
" It is also important to note the absence of an $\mathrm{e}^{+} \mathrm{e}^{-}$continuum, which contradicts the preditions of parton models* ..."

the CKM matrix and the Flavours

C ... experimentalists strike back!

- I3 November 1974 (publication day) : Ψ
- J.E.Augustin et al. (coc ico)
- scan [m] differently !
- SPEAR : 2 - $8 \mathrm{GeV} \mathrm{e}^{+} \mathrm{e}^{-}$
- can vary E_{cm} !
- to study:
$\sigma\left(\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow\right.$ hadrons $) / \sigma\left(\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mu^{+} \mu^{-}\right)$
- measure X-sections !
"We have observed a very sharp peak in the cross-section for
$\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow$ hadrons, $\mathrm{e}^{+} \mathrm{e}^{-}$and possibly $\mu^{+} \mu^{-}$at a center-of-mass energy of $3.105 \pm 0.003 \mathrm{GeV}$.
The upper limit to the full width at half-maximum is $1.3 \mathrm{MeV} . " 46$:ummostry montor

the CKM matrix and the Flavours

C ... experimentalists strike back!

c discovery

there is a 4th quark (GIM were right !)

the CKM matrix and the Flavours

T ... experimentalists strike back!

- same machine : $\operatorname{SPEAR}=\mathrm{e}^{+} \mathrm{e}^{-}$
- $\mathrm{E}_{\mathrm{cm}}=4.8 \mathrm{GeV}$
- ~ first large solid angle detector
- Mark I (2.6T)
- looking for "new heavy leptons"
- count total charge seen
- count "prongs"
- count nb of γ 's
- estimate coplanarity

$$
\begin{gathered}
\text { "We have found } \frac{{ }^{4 \mathrm{~h}}}{64} \text { events of the form }{ }_{11}^{16} \\
\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{e}^{ \pm} \mu^{\mp}+\geq 2^{3} \text { undetected particles } 4 \\
\text { for which we have no conventional explanation" }
\end{gathered}
$$

"(...) production and decay of a pair new particles
each having a mass in the ranfere of 1.8 to 2.0 GeV

the CKM matrix and the Flavours

T ... experimentalists strike back!

T discovery

there is a 3rd lepton (KM were probably right !)

the CKM matrix and the Flavours

b ... experimentalists strike back!

- once again : 2-arms spectrometer
- looking for $\mathrm{m}_{\mu \mu}>5 \mathrm{GeV}$
- filter hadrons with Be
- NEW machine : 400 GeV protons !
- 1.6×10^{16} p.o.t.
- a lot of events (~9000)
 produced in prot@AGOPGeleus collisions shaws significant structerfe* in the $9-10-\mathrm{GeV}$ region on an exponentially falling continuum fane structure is 1.5 .jer than theapparatus resolution." $0.5-$ 国 CH_{2} Pwc

the CKM matrix and the Flavours

b ... experimentalists strike back!

b discovery

there is a 5th quark (KM were absolutely right !)

the CKM matrix and the Flavours

$\mathrm{B}^{0}{ }_{\mathrm{d}}$ mixing ... experimentalists strike back!

- reminder: $\mathrm{B}_{\mathrm{d}}^{0}=" \mathrm{~B}^{0} "=\bar{b} \mathrm{~d}, \overline{\mathrm{~B}}_{\mathrm{d}}^{0}=\overline{\mathrm{B}}^{0}=\mathrm{b} \overline{\mathrm{d}}$
- $B^{0} \sim K^{0} \rightarrow$ mixing ; BUT lifetimes very similar $\left(\neq K^{0}\right)$
- $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{Y}(4 \mathrm{~S})$ is good: enough E for $\mathrm{Y}(4 \mathrm{~S}) \rightarrow \mathrm{B}^{0} \overline{\mathrm{~B}}^{0}$

the CKM matrix and the Flavours

$\mathrm{B}^{0}{ }_{\mathrm{d}}$ mixing ...experimentalists strike back!

- machine : DORIS II $\rightarrow \mathrm{e}^{+} \mathrm{e}^{-} \sim 5+5 \mathrm{GeV}$
- detector :ARGUS
- $88000 \mathrm{Y}(4 \mathrm{~S})$ events $\sim 103 \mathrm{pb}^{-1}$

- 24.8 events with like-sign dilepton
- 4.I events with $B^{0}+$ fast lepton
- I "explicit" event

$$
-B_{1}^{0} \rightarrow D^{*}{ }_{-1} \mu^{+} V_{1}
$$

$$
\begin{aligned}
D^{*--} & \rightarrow \Pi^{-}, \overline{\mathrm{D}}^{0} \\
{\overline{D^{0}}}^{0} & \rightarrow \mathrm{~K}^{+}, \Pi^{-},
\end{aligned}
$$

$$
-\mathrm{B}_{2}{ }_{2} \rightarrow \mathrm{D}^{*}{ }_{2} \mu^{+}{ }_{2} \mathrm{~V}_{2}
$$

$$
D^{*}-2 \rightarrow \Pi^{0} D^{-}
$$

$$
\mathrm{D}^{-} \rightarrow \mathrm{K}^{+}{ }_{2} \mathrm{~T}^{-}{ }_{2} \mathrm{~T}^{-} 2
$$

"This leads to the conclusion that $B^{0} \geq \bar{B}^{2+2}$ mixing is substantial. For the mixing parameter we obtain $\mathrm{r}=0.21 \pm 0.08$,

the CKM matrix and the Flavours

t ... experimentalists strike back!

- machine : "Tevatron" = p $\overline{\mathrm{P}} @ \mathrm{E}_{\mathrm{CM}}=1.8 \mathrm{TeV}$
- detectors : CDF/D0
- "modern" = ~ 4T with "everything" inside

- main decay : tt $\rightarrow \mathrm{Wb} \mathrm{Wb}$ (weak/deak.) strip Tracker

the CKM matrix and the Flavours

t ... experimentalists strike back!

the CKM matrix and the Flavours

t ... experimentalists strike back !

- analyses \Leftrightarrow topologies
- example I : 2 (s.l.) $\mathrm{W} \rightarrow 2 I+2 v+2$ bjets
- 2 high pt leptons
- 2 b-quark jets
- missing transverse E_{T}
- D0 : topological selection to separate

Signal/Background and b-tagging analyses

- CDF : topological selection and selection with b-quark jet identification (b-tag)
- example 2 : I (s.l.) $\mathrm{W} \rightarrow \mathrm{I}+\mathrm{v}+\mathrm{qq}+2$ bjets
- I high pt lepton
- 2 b-quark jets
-2 light quark jets
- missing transverse E_{T}
- D0 : topological (likelyhood) and b-tagging analyses
- CDF : topological (neural net.) and selection and b-tagging analyses

the CKM matrix and the Flavours

t ... experimentalists strike back!

- results :
- CDF : 5σ evidence, $m_{\text {top }}=176 \pm 8 \pm 10 \mathrm{GeV}$
- D0 : 4.6 σ evidence, $m_{\text {top }}=199^{+19}{ }_{-21} \pm 22 \mathrm{GeV}$

Have the FNAL experiments found the top quark?
Well ...
\rightarrow B. Pietrzyk - Moriond I994-Top searches summary :

$$
\mathrm{m}_{\mathrm{T}}=\mathrm{I} 74 \pm|\mathrm{I}|+17-19 \mathrm{GeV}
$$

the CKM matrix and the Flavours

t ... experimentalists strike back!

t discovery

$=$

All fermions are there!

if you don't believe it ...

the CKM matrix and the Flavours

t ... experimentalists strike back!

Original Paper :ALEPH (1989), D.Decamp et al. : $\mathrm{N}_{\mathrm{v}}=3.27 \pm 0.30$ Today value : $\mathrm{N}_{\mathrm{v}}=2.92 \pm 0.05$

4 - the Beautiful Factories

- CKM matrix - 2
- Mixing \& Oscillations
- Triangle - status I
- R \& B factories
- (B) $\left(B^{0}{ }_{d}\right)$
- B^{0} oscillations

CKMfitter
1995 ??
PEPII, KEKB 1999 E
BaBar (Belle) 2001 E
CDF 2006 E

the Beautiful Factories

CKM matrix - 2/writing the elements

- reminder:
- Mass eigenstates \neq Flavour eigenstates
- 3x3 unitary matrix, 4 parameters (3 angles, I phase)
- now we can write it with the 3 L doublets:

$$
\left.\begin{array}{c}
d^{\prime} \\
s^{\prime} \\
b^{\prime}
\end{array}\right)=\left(\begin{array}{ccc}
V_{u d} & V_{u s} & V_{u b} \\
V_{c d} & V_{c s} & V_{c b} \\
V_{t d} & V_{t s} & V_{t b}
\end{array}\right) \times\left(\begin{array}{l}
d \\
s \\
b
\end{array}\right) \text { and }\binom{u}{d},\binom{c}{s},\binom{t}{b} \text { with } \left\lvert\, \begin{gathered}
W- \\
Q=+2 / 3 \\
Q=-1 / 3
\end{gathered}\right.
$$

- matrix elements by definition
- Vii for particles
- Vii* for antiparticles

the Beautiful Factories
CKM matrix - 2/measuring the elements
- matrix elements determination (example I)

$$
\left(\begin{array}{ccc}
\mathrm{V}_{\mathrm{ud}} & \mathrm{~V}_{\mathrm{us}} & \mathrm{~V}_{\mathrm{ub}} \\
\mathrm{~V}_{\mathrm{cd}} & \mathrm{~V}_{\mathrm{cs}} & \mathrm{~V}_{\mathrm{cb}} \\
\mathrm{~V}_{\mathrm{td}} & \mathrm{~V}_{\mathrm{ts}} & \mathrm{~V}_{\mathrm{tb}}
\end{array}\right)
$$

$\left|\mathrm{Vul}_{\mathrm{ud}}\right|^{2} \sim$ neutron decay rate / muon decay rate

$$
\left|V_{\mathrm{ud}}\right| \sim 1
$$

the Beautiful Factories

CKM matrix - 2/measuring the elements

- matrix elements determination (example 2)

$\left|V_{\text {us }}\right|^{2} \sim K^{-}$semileptonic decay rate / muon decay rate

$$
\left|\mathrm{V}_{\mathrm{us}}\right| \sim 0.22\left(=\sin \theta_{\mathrm{c}}=\lambda\right)
$$

the Beautiful Factories
CKM matrix - 2/measuring the elements

- matrix elements determination (example 3)

$\left|V_{c b}\right|^{2} \sim B^{0} \rightarrow D^{*}-I^{+} V$ decay rate / muon decay rate

$$
\left|\mathrm{V}_{\mathrm{cb}}\right| \sim 0.04 \sim \sin ^{2} \theta_{\mathrm{c}}\left(\lambda^{2}\right)
$$

the Beautiful Factories

CKM matrix - 2/measuring the elements

- matrix elements determination (example 4)

$\left.\begin{array}{c}V_{u b} \\ V_{c b} \\ V_{\mathrm{tb}}\end{array}\right)$

Decay rates of $B^{0} \rightarrow D^{*}-I^{+} V / B^{0} \rightarrow \pi^{-} I^{+} V \sim\left|V_{c b} / V_{u b}\right|^{2}$

$$
\left|\mathrm{V}_{\mathrm{ub}} / \mathrm{V}_{\mathrm{cb}}\right|=0.090 \pm 0.025
$$

the Beautiful Factories
CKM matrix - 2/parametrizing the elements

- parametrizations
- Wolfenstein (1983) : write matrix elements as powers of λ
- put latest results and a complex term

$$
\left.\begin{array}{ccc}
\mathrm{V}_{\mathrm{ud}} & \mathrm{~V}_{\mathrm{us}} & \mathrm{~V}_{\mathrm{ub}} \\
\mathrm{~V}_{\mathrm{cd}} & \mathrm{~V}_{\mathrm{cs}} & \mathrm{~V}_{\mathrm{cb}} \\
\mathrm{~V}_{\mathrm{td}} & \mathrm{~V}_{\mathrm{ts}} & \mathrm{~V}_{\mathrm{tb}}
\end{array}\right)=\left(\begin{array}{ccc}
\mathrm{I}-\lambda^{2} / 2 & \lambda & \mathrm{~A} \lambda^{3}(\rho-i \eta) \\
-\lambda & \mathrm{I}-\lambda^{2} / 2 & \mathrm{~A} \lambda^{2} \\
\mathrm{~A} \lambda^{3}(\mathrm{I}-\rho-i \eta) & -\mathrm{A} \lambda^{2} & \mathrm{I}
\end{array}\right)+\mathrm{O}\left(\lambda^{4}\right)
$$

- transitions on diagonal $\sim 1 \rightarrow$ I
- transitions $I^{\text {st }} \rightarrow 2^{\text {nd }}$ family $\sim \lambda \rightarrow$ small
- transitions $2^{\text {nd }} \rightarrow 3^{\text {rd }}$ family $\sim \lambda^{2} \rightarrow$ very small
- transitions $I^{\text {st }} \rightarrow 3^{\text {rd }}$ family $\sim \lambda^{3} \rightarrow$ very very small
- $(\rho-\mathrm{in}) \rightarrow$ complex ($\mathbf{C P}_{6}$ violation)
the Beautiful Factories
CKM matrix - 2/applying unitarity
- reminder : CKM matrix is (complex) unitary)
- consequences :
- $\sum_{\text {proba }}=1$

$$
\left|\mathrm{v}_{\mathrm{id}}\right|^{2}+\left|\mathrm{v}_{\mathrm{is}}\right|^{2}+\left|\mathrm{v}_{\mathrm{ib}}\right|^{2}=1, \forall \mathrm{i} \in\{\mathrm{u}, \mathrm{c}, \mathrm{t}\}
$$

- Column x Column*

$$
\begin{aligned}
& \sum_{\mathrm{j}=1}^{3} \mathrm{~V}_{\mathrm{ij}} \mathrm{~V}_{\mathrm{kj}}^{*}=0, \forall \mathrm{i} \neq \mathrm{k}\{\mathrm{I}, 2,3\} \\
& \sum_{\mathrm{i}=1}^{3} \mathrm{~V}_{\mathrm{ji}} \mathrm{~V}_{\mathrm{ik}}^{*}=0, \forall \mathrm{i} \neq \mathrm{k}\{\mathrm{I}, 2,3\}
\end{aligned}
$$

- each of the $6 \mathrm{VV}^{*}=0 \rightarrow$ I triangle in complex plane
- area of all triangles are equal and is a phase convention
- they are "equivalent" BUT not equally "interesting" ...
the Beautiful Factories
CKM matrix - 2/defining the Unitarity Triangle
- unitarity of the $\quad\left(\begin{array}{lll}\mathrm{v}_{\mathrm{ud}} & \mathrm{v}_{\mathrm{us}} & \mathrm{v}_{\mathrm{ud}}^{*} \\ \mathrm{v}_{\mathrm{cd}} & \mathrm{v}_{\mathrm{cs}} \\ \mathrm{v}_{\mathrm{cd}} & \mathrm{v}_{\mathrm{ts}} & \mathrm{v}_{\mathrm{tb}}\end{array}\right) \rightarrow \mathrm{v}_{\mathrm{ud}} \mathrm{V}_{\mathrm{ub}}^{*}+\mathrm{V}_{\mathrm{cd}} \mathrm{V}_{\mathrm{cb}}^{*}+\mathrm{V}_{\mathrm{td}} \mathrm{v}_{\mathrm{tb}}^{*}=0$
- each term of the sum is $\sim A \lambda^{3}$
- "best" (= largest) case
- sides of the triangle

- angles of the triangle
- phase convention
- normalization

- remember : $(\beta, \gamma, \bar{\rho}, \bar{\eta}) \sim f(A, \lambda, \rho, \rho) \sim 3$ angles $+I$ complex phase

the Beautiful Factories
 Mixing \& Oscillation/first steps

- reminder : mixing predicted in 1955 (then observed)
- $(\mathbf{C P}$ conserved $): \quad\left|\mathrm{K}_{1}\right\rangle=\frac{1}{\sqrt{2}}\left(\left|\mathrm{~K}^{0}\right\rangle+\left|\bar{K}^{0}\right\rangle\right), \quad[\mathrm{CP}=+1]$

$$
\left|\mathrm{K}_{2}\right\rangle=\frac{1}{\sqrt{2}}\left(\left|\mathrm{~K}^{0}\right\rangle-\left|\overline{\mathrm{K}}^{0}\right\rangle\right), \quad[\mathrm{CP}=-1]
$$

- but \mathbb{C} : physical (mass) eigenstates $\neq C P$ eigenstates!
- $\left(\mathrm{K}_{1}, \mathrm{~K}_{2}\right) \rightarrow\left(\mathrm{K}_{\mathrm{s}}, \mathrm{K}_{\mathrm{L}}\right)$
$\binom{\left|\mathrm{K}_{\mathrm{s}}\right\rangle}{\left|\mathrm{K}_{\mathrm{L}}\right\rangle}=\frac{1}{\sqrt{1+|\varepsilon|^{2}}}\binom{\left|\mathrm{~K}_{1}\right\rangle+\varepsilon\left|\mathrm{K}_{2}\right\rangle}{\varepsilon\left|\mathrm{K}_{1}\right\rangle+\left|\mathrm{K}_{2}\right\rangle}=\sqrt{\frac{1}{2}}\left(\begin{array}{cc}\mathrm{p} & \mathrm{q} \\ \mathrm{p} & -\mathrm{q}\end{array}\right)\binom{\left|\mathrm{K}^{0}\right\rangle}{\left|\overline{\mathrm{K}}^{0}\right\rangle}$
- $|q / p|=|(I-\varepsilon) /(I+\varepsilon)| \sim 0.995 \neq 1$
- how does this evolve with time ? interferences ?

the Beautiful Factories
 Mixing \& Oscillation/one experiment

- CPLEAR (1999) :
- time evolution of
- (clever) method :
- flavour tagged with
- $\mathrm{P} \overline{\mathrm{P}}$ at rest!
- results :
- $\bigcirc \bigcirc$!
- non-exp. compon ϵ

Neutral-kaon decay time $\left[\tau_{s}\right.$]

- oscillations

Fig. 1. The measured decay rates for K^{0} (open circles) and $\overline{\mathrm{K}}^{0}$ (solid circles) after acceptance correction and background subtraction.

the Beautiful Factories
 Mixing \& Oscillation/box

- it's weak decays : C, P, Strangeness
- described by"box" diagram ($\Delta S=2$)

- $\Delta \mathrm{m}=\mathrm{m}\left(\mathrm{K}_{\mathrm{L}}\right)-\mathrm{m}\left(\mathrm{K}_{\mathrm{s}}\right)=3.5 \mathrm{I} 0^{-12} \mathrm{MeV}>0 \rightarrow \mathrm{~K}^{0} \rightleftarrows \overline{\mathrm{~K}^{0}}$
- how do we (time) describe this ?

the Beautiful Factories
 Mixing \& Oscillation/time evolution

- write time dependence

$$
|\mathrm{K}(\mathrm{t})\rangle=\mathrm{g}(\mathrm{t})\left|\mathrm{K}^{0}\right\rangle+\mathrm{h}(\mathrm{t})\left|\overline{\mathrm{K}}^{0}\right\rangle
$$

- with Schrödinger equation

$$
i \frac{d}{d t}\binom{\left|\mathrm{~K}^{0}(\mathrm{t})\right\rangle}{\left|\overline{\mathrm{K}}^{0}(\mathrm{t})\right\rangle}=\left(\mathrm{M}-\frac{\mathrm{i}}{2} \Gamma\right)\binom{\left|\mathrm{K}^{0}(\mathrm{t})\right\rangle}{\left|\overline{\mathrm{K}}^{0}(\mathrm{t})\right\rangle}
$$

- M - $\mathrm{i} / 2 \Gamma: 2 \times 2$ matrix ; off-diagonal : $\Delta \mathrm{m}, \Delta \Gamma \neq 0 \rightarrow$ mixing

- results : time-dependent intensities

the Beautiful Factories

Mixing \& Oscillation/interferences and violations

- Rates in terms of observables (\%) neglected)

$$
\begin{aligned}
& I_{k^{0}}(t) \sim e^{-\Gamma_{s^{t}} t}+e^{-\Gamma_{\mathrm{L}} t}+2 e^{-\left(\Gamma_{\mathrm{s}}+\Gamma_{\mathrm{L}}\right) t / 2} \cos (\Delta \mathrm{~m} . \mathrm{t}) \\
& \mathrm{I}_{\overline{\mathrm{K}}^{0}}(\mathrm{t}) \sim \mathrm{e}^{-\Gamma_{s^{t}}}+\mathrm{e}^{-\Gamma_{\mathrm{L}} \mathrm{t}}-2 \mathrm{e}^{-\left(\Gamma_{\mathrm{s}}+\Gamma_{\mathrm{L}}\right) t / 2} \cos (\Delta \mathrm{~m} . \mathrm{t})
\end{aligned}
$$

- $\cos ()$ due to interference !
- Rates in terms of $\mathbf{C P}$ violation
, 3 terms : $\left|\frac{\bar{A}_{\bar{f}}}{A_{f}}\right|,\left|\frac{\mathrm{p}}{\mathrm{q}}\right|, I\left(\frac{\mathrm{p}}{\mathrm{q}} \frac{\bar{A}_{f}}{A_{f}}\right)$ with $A_{f}=\langle f| H_{W}\left|\mathrm{~K}^{0}\right\rangle$
- CP in decay (term $\neq \mathrm{I}$)
- CP in mixing (term $\neq \mathrm{I}$)
- CP in interference ${ }_{73}$ ixing/decay (term $\neq 0$)
the Beautiful Factories
Triangle - status I (1995-200I)
from now on : (bd) triangle

$$
\begin{aligned}
& \alpha=\arg \left(\frac{\mathrm{V}_{\mathrm{td}} \mathrm{~V}_{\mathrm{tb}}^{*}}{\mathrm{~V}_{\mathrm{ud}} \mathrm{~V}_{\mathrm{ub}}^{*}}\right) \\
& \beta=\arg \left(\frac{\mathrm{V}_{\mathrm{cd}} \mathrm{~V}_{\mathrm{cb}}^{*}}{\mathrm{~V}_{\mathrm{td}} \mathrm{~V}_{\mathrm{tb}}^{*}}\right) \\
& \gamma=\arg \left(\frac{\mathrm{V}_{\mathrm{ud}} \mathrm{~V}_{\mathrm{ub}}^{*}}{\mathrm{~V}_{\mathrm{cd}} \mathrm{~V}_{\mathrm{cb}}^{*}}\right) \\
&
\end{aligned}
$$

the Beautiful Factories

A \& B Factories

- $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{Y}(4 \mathrm{~S})$ is good
- measure $\mathrm{B}^{0} / \overline{\mathrm{B}}^{0}$ decays \rightarrow overconstrain UT!
- many possible decays but I golden decay

- and there is more ...

the Beautiful Factories

B \& B Factories

- more $\mathrm{B}^{0} \rightarrow \mathrm{~J} / \Psi \mathrm{K}^{0}{ }_{S}$
- B^{0} also can mix and decay to $\mathbf{C P}$ eigenstates !

- then K^{0} must mix for interference !

the Beautiful Factories

B \& B Factories

- summarizing $B^{0} \rightarrow \mathrm{~J} / \Psi \mathrm{K}^{0}{ }_{S}$
- B^{0} mixing $\rightarrow \mathrm{B}^{0}$ decay $\rightarrow \mathrm{K}^{0}$ mixing !!!
- and Ω in the decay:

- rates $\sim \mathrm{V}_{\mathrm{cb}} \mathrm{V}_{\mathrm{cs}}{ }^{*}($ real $), \mathrm{V}_{\mathrm{tb}} \mathrm{V}_{\mathrm{ts}}^{*}$ (real), $\mathrm{V}_{\mathrm{ub}} \mathrm{V}_{\mathrm{us}}{ }^{*}(\gamma)$
- observable : $A_{C P}(t)=\frac{\Gamma\left(\bar{B}^{0}(t) \rightarrow J / \psi K_{s}\right)-\Gamma\left(B^{0}(t) \rightarrow J / \psi K_{s}\right)}{\Gamma\left(\overline{\mathrm{B}}^{0}(t) \rightarrow J / \psi K_{s}\right)+\Gamma\left(B^{0}(t) \rightarrow J / \psi K_{\mathrm{s}}\right)}$
- $=\sin (2 \beta) \cdot \sin (\Delta m \cdot t)$
- need to measure the decay time \neq between the 2 B’s !!!

the Beautiful Factories

- but $\mathrm{T}(\mathrm{B}) \sim 1.5 \mathrm{IO}^{-12} \mathrm{~s} \rightarrow$ make it live longer !
- Oddone simple/clever idea
- remember Einstein : "time dilatation" \rightarrow give B’s high speed
- produce high speed $\mathrm{Y}(4 \mathrm{~S})$
- ... with asymetric $\mathbf{e}^{+} \mathbf{e}^{-}$collisions !
- they are called "B Factories"
- PEP-II (SLAC) : $9 \mathrm{GeV} \mathrm{e}^{-} \times 3.1 \mathrm{GeV} \mathrm{e}^{+}$
- KEKB (Tsukuba) : $8 \mathrm{GeV} \mathrm{e}^{-} \times 3.5 \mathrm{GeV} \mathrm{e}^{+}$
- for both $: \mathrm{E}_{\text {см }}=10.58 \mathrm{GeV}$
- coherent B pairs production and P-wave decay
- $\gamma(4 \mathrm{~S})$ boot : $\beta \gamma=0.56 / 0.42 \rightarrow$ B's decay length $=\sim 200-250 \mu \mathrm{~m}$

the Beautiful Factories
 (C) $\left(\mathrm{B}^{0}{ }_{\mathrm{d}}\right)$ - Analyses in B factories

B-Flavor Tagging
rec $=$ flav, $\overline{\text { flav }}, C P$

$$
\begin{aligned}
f_{\text {flav }} & =D^{*-} \pi^{+}, \ldots \\
f_{C P} & =J / \psi K_{S}^{0}, J / \psi K_{L}^{0}, \ldots
\end{aligned}
$$

$$
\operatorname{tag}=B^{0}, \bar{B}^{0}
$$

Vertexing \& Time Difference Determination

$$
f_{B^{0}}=X \ell^{+} \nu, X K^{+}, X \pi_{s}^{-}, \ldots
$$

$\Delta t \approx \Delta z / c\langle\beta \gamma\rangle_{\Upsilon(4 S)}$
$\langle\Delta z\rangle_{B \bar{B}} \approx 260 \mu \mathrm{~m}$

the Beautiful Factories

(C8) $\left(\mathrm{B}_{\mathrm{d}}{ }_{\mathrm{d}}\right)-\mathrm{BaBar}$

the Beautiful Factories

(8) $\left(\mathrm{B}^{0}{ }_{\mathrm{d}}\right)$ - BaBar - 200 I

- CP in interference mixing/decay
- can be written : $\mathrm{Sf}_{\mathrm{fP}} \sin (\Delta \mathrm{m} . \mathrm{t})-\mathrm{Cf}_{\mathrm{CP}} \cos (\Delta \mathrm{m} . \mathrm{t})$
- $\mathrm{Sf}_{\mathrm{CP}}=\sin (2 \beta), \mathrm{Cf}_{\mathrm{CP}}=0$ for $B \rightarrow \mathrm{~J} / \Psi \mathrm{K}^{0}, \Phi, \ldots$

2001 results $: \sin \left(2 \beta_{91}=0.34 \pm 0.20\right.$ (stat) ± 0.05 (sys)

the Beautiful Factories
 Belle

the Beautiful Factories

B^{0} s oscillations - CDF - 2006

- reminder : CDF $=P \overline{\mathrm{P}} @ \sqrt{ } \mathrm{~s}=1.96 \mathrm{TeV}$
- results for Ifb^{-1}
- 36000 fully reconstructed hadronic B_{s}
- 37000 partially reconstructed semi-leptonic B_{s}
- Measurements :
probability as a function of proper decay time that a B_{s} decays with same/opposite flavor than at production
- Signal consistent with $\mathrm{B}_{\mathrm{s}}^{0}-\overline{\mathrm{B}}_{\mathrm{s}}^{0}$ oscillations

the Beautiful Factories
 B^{0} s oscillations - CDF - 2006

Run 204720, Event 109026

- SSKT Track
- Tag Muon
- Other Track
- Candidate Track
- Beam Line
- Primary Vertex
- B Vertex
- D Vertex
---- Path

the Beautiful Factories
 B^{0} s oscillations - CDF - 2006

$$
\Delta \mathrm{m}_{\mathrm{s}}=17.77 \pm 0.10 \text { (stat) } \pm 0.07 \text { (sys) } \mathrm{ps}^{-1}
$$

Results: $\quad \frac{\left|\mathrm{V}_{\mathrm{tt}}\right|}{\left|\mathrm{V}_{\mathrm{ts}}\right|}=0.0260 \pm \underset{85}{0.0007(\exp)}{ }_{-0.0060}^{+0.0081}$ (theor)

5 - Heavy Flavour physics today

- CKM status before LHC
- a beautiful experiment : LHCb
- LHCb on CKM
- LHCb on Penguins
- LHCb on Rare decays

Heavy Flavour physics today
CKM status before LHC

Heavy Flavour physics today

a beautiful experiment : LHCb

- beauty is at small angle :

YES

b

Heavy Flavour physics today

a beautiful experiment : LHCb

- constrains :
- forward
, small lifetime
Computer Farm
- frequent

Heavy Flavour physics today a beautiful experiment : LHCb

Heavy Flavour physics today
 a beautiful experiment : LHCb

Heavy Flavour physics today a beautiful experiment : LHCb

Silicium microstrips
R pitch : 40-102 $\mu \mathrm{m}$
φ pitch : 36-97 $\mu \mathrm{m}$
172000 channels
Vacuum
Cooled @ - $5^{\circ} \mathrm{C}$

Heavy Flavour physics today a beautiful experiment : LHCb
 Hybrid Photon Detector

Heavy Flavour physics today

 a beautiful experiment : LHCb

Dipole - Vertical Field (4Tm) - Can Switch Direction

Heavy Flavour physics today

 a beautiful experiment: LHCbTT
1.4 m

4 tilted planes
144000 channels Pitch $198 \mu \mathrm{~m}$
Pitch $198 \mu \mathrm{~m}$
Length II, 22 and 33 cm
Cooled @-5 ${ }^{\circ} \mathrm{C}$

Silicium microstrips 4 tilted planes 130000 channels Pitch $198 \mu \mathrm{~m}$
Length II and 22 cm Cooled @-5 ${ }^{\circ} \mathrm{C}$

Straw Tubes 4 tilted double planes

56000 channels
Diameter 5 mm
Length 5 m
$\mathbf{G a z} \mathbf{A r} / \mathbf{C O}_{2}$

Heavy Flavour physics today a beautiful experiment : LHCb

1368 chambers : MWPC 4 "gaps", 24 GEM Wires (~ $\mathbf{3}$ millions): $\mathbf{2 ~ m m / 2 5 0 ~ a ̀ ~} \mathbf{3 1 0} \mathbf{~ m m}$

Gaz : 5 mm , Ar/CO2/CF4 (40:50: 10)
26 000/120000 logical channels/physical

Heavy Flavour physics today

HLT : I350 CPU

Heavy Flavour physics today
 a beautiful experiment : LHCb

VELO

Heavy Flavour physics today

a beautiful experiment : LHCb

Heavy Flavour physics today a beautiful experiment: LHCb

VELO

RICH

RICH2 panel: single pp-interaction event

Heavy Flavour physics today a beautiful experiment : LHCb

RICH2 panel: single pp-interaction event

Heavy Flavour physics today a beautiful experiment: LHCb

VELO

RICH

RICH2 panel: single pp-interaction event

TRACK

Heavy Flavour physics today
a beautiful experiment : LHCb

Heavy Flavour physics today a beautiful experiment：LHCb

VELO

CALO

RICH

RICH2 panel：single pp－interaction event

TRACK

Heavy Flavour physics today
a beautiful experiment : LHCb

Heavy Flavour physics today a beautiful experiment : LHCb

VELO

CALO

RICH

RICH2 panel: single pp-interaction event

TRACK

Heavy Flavour physics today
a beautiful experiment : LHCb

Heavy Flavour physics today
 a beautiful experiment : LHCb

VELO

CALO

RICH

RICH2 panel: single pp-interaction event

MUON

TRACK

DAQ

2011:
~ 10 M collisions /s ~ 800000 LO /s
~ $\mathbf{3} 000$ bb/s
~ 10 m bb recorded and analysed !

Heavy Flavour physics today LHCb on CKM

- measuring the γ angle :

- diagrams : no contribution \rightarrow "clean"

B^{-}

- $\mathrm{b} \rightarrow \mathrm{c}\left(\mathrm{V}_{\mathrm{cb}}\right) \& \mathrm{~b} \rightarrow \mathrm{u}\left(\mathrm{V}_{\mathrm{ub}}\right)$ interferences
- difficult but allow to access $\gamma\left(\mathrm{V}_{\mathrm{ub}}\right)$

Heavy Flavour physics today
 LHCb on CKM

- measuring the γ angle : observable

$$
\begin{aligned}
& \mathrm{R}_{\mathrm{CP+}}=\frac{\Gamma\left(\mathrm{B}^{-} \rightarrow\left[\mathrm{h}^{+} \mathrm{h}^{-}\right]_{\mathrm{D}} \mathrm{~K}^{-}\right)+\Gamma\left(\mathrm{B}^{+} \rightarrow\left[\mathrm{h}^{+} \mathrm{h}^{-}\right]_{\mathrm{D}} \mathrm{~K}^{+}\right)}{\mathrm{I} / 2\left[\Gamma\left(\mathrm{~B}^{-} \rightarrow\left[\mathrm{K}^{+} \pi^{-}\right]_{\mathrm{D}} \mathrm{~K}^{-}\right)+\Gamma\left(\mathrm{B}^{+} \rightarrow\left[\mathrm{K}^{-} \pi^{+}\right]_{\mathrm{D}} \mathrm{~K}^{+}\right)\right]}=1+\mathrm{r}_{\mathrm{B}}^{2}+2 \mathrm{r}_{\mathrm{B}} \cos \delta_{\mathrm{B}} \cos \gamma \\
& \mathrm{~A}_{\mathrm{CP}+}=\frac{\Gamma\left(\mathrm{B}^{-} \rightarrow\left[\mathrm{h}^{+} \mathrm{h}^{-}\right]_{\mathrm{D}} \mathrm{~K}^{-}\right)-\Gamma\left(\mathrm{B}^{+} \rightarrow\left[\mathrm{h}^{+} \mathrm{h}^{-}\right]_{\mathrm{D}} \mathrm{~K}^{+}\right)}{\mathrm{I} / 2\left[\Gamma\left(\mathrm{~B}^{-} \rightarrow\left[\mathrm{h}^{+} \mathrm{h}^{-}\right]_{\mathrm{D}} \mathrm{~K}^{-}\right)+\Gamma\left(\mathrm{B}^{+} \rightarrow\left[\mathrm{h}^{+} \mathrm{h}^{-}\right]_{\mathrm{D}} \mathrm{~K}^{+}\right)\right]}=+\frac{2 \mathrm{r}_{\mathrm{B}} \cos \delta_{\mathrm{B}} \cos \gamma}{\mathrm{R}_{\mathrm{CP}+}}
\end{aligned}
$$

Heavy Flavour physics today LHCb on CKM

- measuring the γ angle : results

Heavy Flavour physics today

LHCb on Penguins

- gamma with 贝: diagrams
- also with B_{s}
- puts for d
- get K^{-}for π^{-}

- $\mathrm{b} \rightarrow \mathrm{u}\left(\mathrm{V}_{\mathrm{ub}}\right)$ (tree)
\&
$b \rightarrow s($ or d) Ω interferences
- measure A_{CP}
as $f(t)$ or integ.

$$
\begin{aligned}
& \mathrm{i}=\mathrm{u}, \mathrm{c}, \mathrm{t}
\end{aligned}
$$

Heavy Flavour physics today

LHCb on Penguins

- gamma with Ω : observables

$$
\begin{aligned}
A_{C P}(t) & =\frac{\Gamma\left(B_{(s)}^{0}(t=0) \rightarrow f\right)-\Gamma\left(\bar{B}_{(s)}^{0}(t=0) \rightarrow f\right)}{\Gamma\left(B_{(s)}^{0}(t=0) \rightarrow f\right)+\Gamma\left(\bar{B}_{(s)}^{0}(t=0) \rightarrow f\right)} \\
& =\frac{A_{f}^{\operatorname{dir}} \cos \left(\Delta m_{(s)} t\right)+A_{f}^{m i x} \sin \left(\Delta m_{(s)} t\right)}{\cosh \left(\frac{\Delta \Gamma_{(s)}}{2} t\right)-A_{f}^{\Delta \Gamma} \sinh \left(\frac{\Delta \Gamma_{(s)}}{2} t\right)}
\end{aligned}
$$

- Mixing induced CP violation : $\mathrm{A}_{\mathrm{f}}^{\text {mix }}$
- $C P$ violation in decay : $A_{f}{ }^{\text {dir }} \rightarrow \gamma$

Heavy Flavour physics today
 LHCb on Penguins

- gamma with Ω : results
$\mathrm{B}^{0} \rightarrow \mathrm{~K}^{+} \Pi^{-}$
$\mathrm{B}^{0 \mathrm{bar} \rightarrow \mathrm{K}^{-} \pi^{+}}$
$\mathrm{A}_{\mathrm{CP}}=$

Heavy Flavour physics today
LHCb on rare decays

- $\mathrm{B}^{0}(\mathrm{~s}) \rightarrow \mu \mu$
- $b \rightarrow s(d)=$ FCNC : best place for NP
- extremely well (SM) known but
- ... very small : many suppression effects !
- Predictions (SM) :
- $\operatorname{Br}\left(\mathrm{B}_{\mathrm{s}} \rightarrow \mu \mu\right)=(3.23 \pm 0.27) \times 10^{-9}$
- $\operatorname{Br}\left(\mathrm{B}_{\mathrm{d}}{ }^{0} \rightarrow \mu \mu\right)=(1.07 \pm 0.10) \times 10^{-10}$
- \sim I $\left(\mathrm{B}_{\mathrm{s}}\right)$ or $0.1\left(\mathrm{~B}_{\mathrm{d}}\right)$ in a BILLION B^{0} decay !

Heavy Flavour physics today
LHCb on rare decays

- $\mathrm{B}_{\mathrm{d}(\mathrm{s})} \rightarrow \mu \mu$: graphs

SM : FCC

NP

Heavy Flavour physics today LHCb on rare decays

- $\mathrm{B}_{\mathrm{d}(\mathrm{s})}^{0} \rightarrow \mu \mu$: results as of

$\mathrm{BR}\left(B^{0} \rightarrow \mu^{+} \mu^{-}\right)<7.4 \times 10^{-10}$ at $95 \% \mathrm{CL}$
$\operatorname{BR}\left(B^{0} \rightarrow \mu^{+} \mu^{-}\right)=\left(3.7_{-2.1}^{+2.4}(\text { stat })_{-0.4}^{+0.6}(\right.$ syst $\left.)\right) \times 10^{-10}$

Heavy Flavour physics today
 LHCb on rare decays

- $\mathrm{B}_{\mathrm{d}(\mathrm{s})} \rightarrow \mu \mu$: results as of LASTWEEK!
- World average :

Observation:

$\mathrm{BR}\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right)=(2.9 \pm 0.7) \times 10^{-9}$

6 - Conclusion

Extra sub-chapters for chapter 4

 (prepared but not presented)
4 - the Beautiful Factories

- CKM matrix - 2
- Mixing \& Oscillations
- Triangle - status I
- R \& B factories
$-(B)\left(B^{0}{ }_{d}\right)$
- Direct (8) (B_{d})
- B^{0} s oscillations
- D^{0} mixing

CKMfitter
PEPII, KEKB
BaBar (Belle)
Belle (BaBar)
CDF
BaBar (Belle) 2007 E

the Beautiful Factories
 Direct (8) $\left(\mathrm{B}^{0}{ }_{\mathrm{d}}\right)$ - Belle

the Beautiful Factories
 Direct (P) $\left(\mathrm{B}^{0}{ }_{\mathrm{d}}\right)$ - Belle - 2004

- observable :
$\mathrm{P}_{\pi \pi}(\Delta \mathrm{t})=\frac{\mathrm{e}^{-|\Delta \mathrm{t}| / \tau_{\mathrm{B}^{0}}}}{4 \tau_{\mathrm{B}^{0}}}\left[1+\mathrm{q} \cdot\left\{\mathrm{S}_{\pi \pi} \sin \left(\Delta \mathrm{m}_{\mathrm{d}} \Delta \mathrm{t}\right)+\mathrm{A}_{\pi \pi} \cos \left(\Delta \mathrm{m}_{\mathrm{d}} \Delta \mathrm{t}\right)\right\}\right]$
with $\Delta \mathrm{t}=\mathrm{t}_{\mathrm{m} \pi}-\mathrm{t}_{\mathrm{tag}}$ and $\mathrm{q}: B$ flavour of tagged B
"We report the first observation of CP-violating asymmetries in $B^{0} \rightarrow \pi^{+} \pi^{-}$decays based on a $140 \mathrm{fb}^{-1}$ data sample (...).
We reconstruct one neutral B meson as a $B^{0} \rightarrow \pi^{+} \pi^{-} C P$ eigenstate and identify the flavor of the accompanying B meson from its decay products. (...) The fit yields the CP-violating asymmetry amplitudes

$$
\begin{gathered}
\text { A } \pi \pi=+0.58 \pm 0.15 \text { (stat) } \pm 0.07 \text { (syst) } \\
\text { S } \pi \pi=-1.00 \pm 0.21 \text { (stat) } \pm 0.07 \text { (syst) }
\end{gathered}
$$

(...) We also find evidence for direct CP violation with a significance at or greater than 3.2 standard deviations for any $S_{\pi} \pi$ value."

the Beautiful Factories
 Direct (A) $\left(\mathrm{B}^{0}{ }_{\mathrm{d}}\right)$ - Belle - 2004

- Results :
- r : evt/evt MC flavor dilution
- $r=0$ fully ambiguous
- $r=1$ fully unambiguous
- Δt distributions for the $483 \mathrm{~B}^{0} \rightarrow \pi^{+} \pi^{-}$
- (a) 264 candidates with $q=+1$, i.e. the tag side is identified as B^{0}
- (b) 219 candidates with $q=-1$.
- (c) Asymmetry, A, in each Δt bin with $0<r \leq 0.5$ and
- (d) with $0.5<r \leq 1.0$.

the Beautiful Factories
D^{0} mixing - BaBar - 2007
- $\mathrm{D}^{0}=\overline{\mathrm{u}} \mathrm{c}, \overline{\mathrm{D}}^{0}=\mathrm{u} \overline{\mathrm{c}}$
- $\mathrm{D}^{0} \rightarrow \mathrm{~K}^{-} \Pi^{+}$: "Cabibbo-favored" (CF) ,"right sign" (RS)
- $\overline{\mathrm{D}}^{0} \rightarrow \mathrm{~K}^{+} \mathrm{T}^{-}$: "Doubly Cabibbo-suppressed" (DCS),"wrong sign" (WS)
- $\mathrm{D}^{0} \rightarrow \overline{\mathrm{D}}^{0} \rightarrow \mathrm{~K}^{+} \Pi^{-}:$rate $\sim 0.3 \%$
- mixing followed by CF : rate $\sim 10^{-4}$
- Identify D^{0} charge conjugation
- at production and at decay :

$$
D^{* \pm} \rightarrow \pi_{s}^{ \pm} D^{0}, D^{0} \rightarrow K^{\mp} \pi^{ \pm}
$$

- Use beamspot to constrain the vertex fits

the Beautiful Factories
 D^{0} mixing - BaBar - 2007

- Analysis
- constrained fit to full decay chain
- kinematic cuts for D^{0} and D^{*}
- Data : $384 \mathrm{fb}^{-1}$
- | 229000 RS
- \quad S/B~99/I
- 64000 WS
- $S / B \sim I / I$
- Sophisticated statistical analysis

Right-sign (RS) decay

the Beautiful Factories

D^{0} mixing - BaBar - 2007

- Results :

Dashed line: standard $R_{\text {ws }}$ fit ($\chi^{2}=24$). Solid, red line: independent $R_{\text {ws }}$ fits to each time bin ($\chi^{2}=1.5$).

- Quantitatively : mixing established @ 3.9σ (stat. + syst.)

