Neutrino oscillations

Pablo del Amo Sanchez GraSPA 26/07/13

Overview

Non historical approach: minimal effort

- Atmospheric neutrinos: SK
- The saga of Solar neutrinos
- Closing the trilogy: reactor neutrinos
- Teaser: LBNO/LBNE

Atmospheric neutrinos

Pablo DEL AMO SANCHEZ

- Cosmic rays collisions in upper atmosphere (15 km)
- Plenty of pions from hadronic interactions
- $\pi^+ \rightarrow \mu^+ \nu_\mu$ and $\mu^+ \rightarrow e^+ \nu_e \overline{\nu_\mu}$

SO

$$v_{\mu} : v_{e} = 2 : 1$$

(known better than 3% below 5 GeV)

Water Cerenkov detectors

Huge underground water tanks
 surrounded by photomultiplier tubes (PMTs)

• Interacting particles produce light, light gives electrical signal in PMTs

Cerenkov effect: particles faster than speed of light in medium radiate light (e.g. blueish light in nuclear reactors)

• Ex: (Super-)KamiokaNDE et SNO

23/07/2013 GraSPA

SUPERKAMIOKANDE INSTITUTE FOR COSMIC RAY RESEARCH UNIVERSITY OF TOKYO

NIKKEN SEKKEI

Pablo DEL AMO SANCHEZ

Water Cerenkov detectors

Huge underground water tanks surrounded by photomultiplier tubes (PMTs)

Interacting particles produce light, light gives electrical signal in PMTs

Cerenkov effect: particles faster than speed of light in medium radiate light (e.g. blueish light in nuclear reactors)

Ex: (Super-)KamiokaNDE et SNO

 $d = V_n \cdot$

 $\mathbf{W} = \mathbf{V}_{\mathbf{W}} \cdot \mathbf{t}$

23/07/2013 GraSPA

Pablo DFL AMO SANCHEZ

Water Cerenkov detectors

- SNO et (Super-)KamiokaNDE
- Directionality from Cerenkov cone
- Energy from total collected light
- Distinction between electrons and muons

Electron Electron neutrino shower The Cerenkov radiation from a muon produced by a muon neutrino event yields a well defined circular ring in the photomultiplier detector bank.

> The Cerenkov radiation from the electron shower produced by an electron neutrino event produces multiple cones and therefore a diffuse ring in the detector array. 6

Super-KamiokaNDE

- 1000m deep, 50000 tons of water, 11000 PMTs
- Observed expected number of downgoing v_{μ} , deficit in upgoing
- No excess in v_e , so $v_\mu \rightarrow v_\tau$?

Atmospheric neutrinos disappear?

Atmospheric neutrinos oscillate!

Atmospheric neutrinos oscillate!

But why don't we see this?

Because...

• Two effects:

Neutrinos not monochromatic \rightarrow different oscillation lengths Experimental resolution: if too close, maxima and minima blurred

The solar neutrino saga

Neutrinos from the Sun

• Hydrogen fusion in the Sun requires inverse beta decay:

Solar constant = 1361 J/s m² $\phi_{ve}^{sun} = 6.4 \times 10^{14} v_e/s m^2$

Neutrinos from the Sun

Neutrinos from the Sun

- Neutrino flux from the Sun accurately predicted (Bahcall et al)
- Model in good agreement with results from helioseismology

Homestake experiment

~30%

Late 1960s: Ray Davis set to test v_e flux predictions in underground mine (under 1500m of rock) Experiment run for 30 years (till 1994):

observed 2.56 ± 0.23 SNU

expected 8.2 ± 1.8 SNU

1 Solar Neutrino Unit = 10⁻³⁶ interactions/s atom

23/07/2013 GraSPA

Pablo DEL AMO SANCHEZ

Raymond Davis, Nobel Prize 2002

 $v_e + n \rightarrow p + e^-$ Homestake: $v_e^+ {}^{37}Cl \rightarrow {}^{37}Ar + e^-$

- Located in Lead, SD
- 615 tons of C₂Cl₄ (Cleaning fluid)
- Extraction method:
 - Pump in He that displaces Ar
 - Collect Ar in charcoal traps
 - Count Ar using radioactive decay
- Never Calibrated with source

Problems?

- Problems with experiment? With v_e flux predictions?
- Test other parts of the v_e spectrum with different experimental techniques

Problems?

- Problems with experiment? With v_e flux predictions?
- Test other parts of the v_e spectrum with different experimental techniques

Problems?

- Problems with experiment? With v_e flux predictions?
- Test other parts of the v_e spectrum with different experimental techniques

Experiment type	Observed/Expected
Chlorine	~30%
Gallium	~60%
KamiokaNDE	~40%

Perhaps neutrinos are oscillating after all, as suggested by Pontecorvo et al? These experiments only sensitive to v_e try and detect v_{μ} and v_{τ} too! \rightarrow SNO

Sudbury Neutrino Observatory (SNO)

- 2000 m deep (Sudbury, Ontario)
- Cosmics veto
- 1000 tons of Heavy water (D₂0), shielded by 7000 tons light water (H₂0) seen by 9500 photomultiplier tubes (PMTs)
- So-called Water Cerenkov detector

Particles faster than speed of light in medium radiate light (e.g. blueish light in nuclear reactors)

SNO

• SNO measures well v_e flux:

$\mathbf{CC}: \nu_{e} + \mathbf{d} \rightarrow \mathbf{p} + \mathbf{p} + \mathbf{e}^{-}$

- Good measurement of the ν_e spectrum.
- Some directional information.
- Only sensitive to ν_e .

$\mathbf{ES}:\nu_{e}+e^{-}\rightarrow\nu_{e}+e^{-}$

- Strong directional sensitivity.
- Low statistics.

 e^{-} ν_{e} e^{-} p W^{-} n ν_{e} n

Charged current

• Cannot see v_{μ} / v_{τ} flux in this way: neutrinos from Sun not energetic enough to produce heavy μ or τ particles in interactions

SNO

• But it measures the total $v_e + v_\mu + v_\tau$ flux by means of Neutral Current interactions!

Neutral current

Solar neutrinos oscillate!

Less v_e than predicted but total $v_e + v_\mu + v_\tau$ correct!

Matter effects are important!

Matter effects are important!

• Found oscillation parameters for solar neutrinos:

$$P(v_e \rightarrow v_e) = 1 - \sin^2(2\theta) \sin^2\left(1.27 \frac{\Delta m^2 L m}{E GeV}\right)$$

Closing the trilogy: reactor neutrino experiments

Reactor neutrinos

Liquid scintillator detectors

KamLAND: Kamioka Liquid scintillator AntiNeutrino Detector

e+ prompt

eactor neutrino

geo neutrino

- 1000 ton liquid scintillator:
- Spherical plastic balloon
- 1325 17" + 554 20" PMTs
- Inverse β decay detection

Galibration device

Reactor neutrinos oscillate!

• Confirm solar neutrino oscillations

What have we learnt so far? Neutrinos oscillate! v_3 v_e, v_{μ}, v_{τ} different from v_1, v_2, v_3 θ_{32} MASS Two different oscillation frequencies: $\Delta m_{32}^2 \sim \Delta m_{31}^2$ fast: atmospheric, $\Delta m_{32}^2 \sim \Delta m_{31}^2$ slow: solar, Δm_{21}^2 atm ~ 20 x solar v_{2} Δm_{21}^2

Neutrinos mix a lot! (Mixing angles large!) • atmospheric, maximal $\theta_{32} = 45^{\circ} \pm 6^{\circ}$ solar, large $\theta_{21} = 34^{\circ} \pm 1^{\circ}$

•

What have we learnt so far?

- Neutrinos oscillate!
 ν_e, ν_µ, ν_τ different from ν₁, ν₂, ν₃
- Two different oscillation frequencies: fast: atmospheric, $\Delta m_{32}^2 \sim \Delta m_{31}^2$ slow: solar, Δm_{21}^2 atm ~ 20 x solar
- Neutrinos mix a lot! (Mixing angles large!) atmospheric, maximal $\theta_{32} = 45^{\circ} \pm 6^{\circ}$ solar, large $\theta_{21} = 34^{\circ} \pm 1^{\circ}$
- What is the amount of v_e in v_3 (θ_{13})?

Amount of v_e in faster oscillations (θ_{13})

Amount of v_e in fast oscillations (θ_{13})

Oscillation probability depends on energy \rightarrow search for energy-dependent depletion

Double Chooz: liquid scintillator detector, 1 km away

Amount of v_e in fast oscillations (θ_{13})

Oscillation probability depends on energy \rightarrow search for energy-dependent depletion

 Daya Bay: very similar detector to Double Chooz and Reno, all 1-2 km away from reactors

 $sin^2(2\theta_{13}) = 0.089 \pm 0.012$ $\theta_{13} = 9.1^\circ \pm 0.6^\circ$

Accelerator experiments

- Can also produce neutrino beams: •
- Results in excellent agreement with ۲

Accelerator experiments

- Can also produce neutrino beams: ۲
- Results in excellent agreement with ۲

other neutrino sources:

Recent results: v_e appearance

- T2K observes 28 v_e events, 4.6 background events expected
- Appearance of different flavour at 7.5 σ

Recent results: v_e appearance

- T2K observes 28 v_e events, 4.6 background events expected
- Appearance of different flavour at 7.5 σ

Neutrino mixing matrix

 $s_{ij} = \sin \theta_{ij}$

δ , matter-antimatter asymmetry in neutrinos?

Normal mass hierarchy

Inverted mass hierarchy

Which mass state is the lightest?

Pablo DEL AMO SANCHEZ

Future long baseline projects...

Conclusions

Neutrinos oscillate! Masses ≠ 0

 $\nu_{e}^{},\,\nu_{\mu}^{},\,\nu_{\tau}^{}$ different from $\nu_{1}^{},\,\nu_{2}^{},\,\nu_{3}^{}$

Conclusions

- Neutrinos oscillate! Masses $\neq 0$ v_e, v_{μ}, v_{τ} different from v_1, v_2, v_3
- Two different oscillation frequencies: fast: atmospheric, $\Delta m_{32}^2 \sim \Delta m_{31}^2$ slow: solar, Δm_{21}^2 atm ~ 20 x solar
- Neutrinos mix a lot! (Mixing angles large!) atmospheric, maximal $\theta_{32} = 45^{\circ} \pm 6^{\circ}$ solar, large $\theta_{21} = 34^{\circ} \pm 1^{\circ}$ reactor, not so small $\theta_{13} = 9.1^{\circ} \pm 0.6^{\circ}$
- For the future: matter-antimatter asymmetry in neutrinos? which is the lightest mass state?

Pablo DEL AMO SANCHEZ

BACK UP SLIDES

How many neutrinos are there?

$$\Gamma_{\rm inv} = \Gamma_Z - \Gamma_{\rm had} - 3\Gamma_l$$
$$\Gamma_{\rm inv} = N_\nu \cdot \Gamma_\nu$$

PDG K. Nakamura et el., JPG 37, 075021 (2010)

Number $N = 2.984 \pm 0.008$ (Standard Model fits to LEP data)

Number N = 2.92 ± 0.05 (S=1.2) (Direct measurement of invisible Z width)

Neutrino candidates rate