

LCG-France Tier-1 & AF

Quelques éléments à propos de l'accès aux données sur bande

Fabio Hernandez fabio@in2p3.fr

Lyon, 21 mars 2008

Spécifications dérouleurs T10.000

Opération	Valeur limite
Mount time (time needed by the robot to take the cartridge and insert it into the drive. Estimated)	30 sec
Tape load and thread time	16 sec
Average file access time (not including load and thread time)	46 sec
Maximum rewind time	91 sec
Average rewind time	48 sec
Unload time	23 sec
Data transfer rate (native, uncompressed)	120 MB/sec

Source: Sun STK T10.000 Tape Drive Data Sheet

Débits théoriques

- Hypothèses:
 - La cartouche est montée pour la lecture d'un seul fichier
 - Taille du fichier: 1 GB
 - La lecture se fait à la vitesse nominale du dérouleur
 - Le serveur de bande a toute la bande passante réseau pour envoyer les données vers les serveur de disque cache HPSS
 - Le temps de transport de la cartouche du dérouleur à son casier n'est pas inclus

Opération	Temps nécessaire		
Montage	30 sec		
Amorçage	16 sec		
Positionnement	46 sec		
Lecture effective et transfert des données	9 sec		
Rembobinage	48 sec		
Désamorçage et éjection	23 sec		
Total	172 sec		

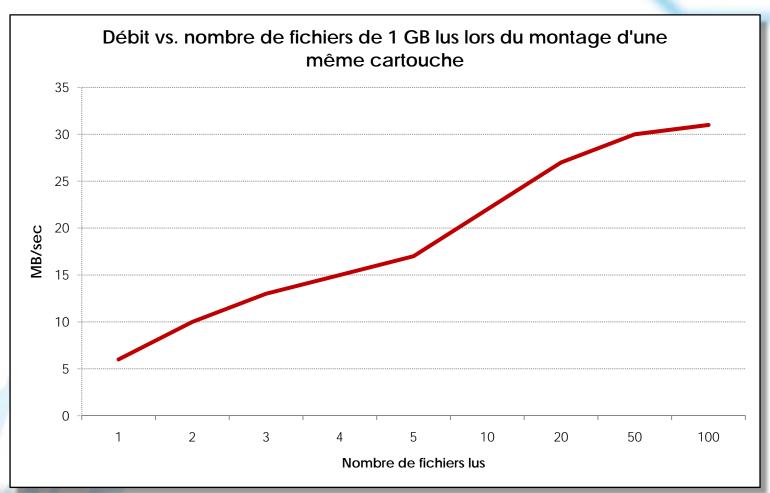
Débit total par dérouleur: 5,9 MB/sec Débit cumulé pour 30 dérouleurs: 178 MB/sec

Besoins en débit **moyen** d'exportation de données vers d'autres sites: 480 MB/sec

Lecture de plusieurs fichiers d'une même cartouche

Nombre de fichiers	Temps de montage + amorçage + rembobinage + désamorçage [sec]	Temps positionn ement [sec]	Temps Lecture [sec]	Temps Total [sec]	Débit [MB/sec]
1	117	46	9	172	6
2	117	69	18	204	10
3	117	92	26	235	13
4	117	115	35	267	15
5	117	138	43	298	17
10	117	253	86	456	22
20	117	483	171	771	27
50	117	1173	427	1717	30
100	117	2323	854	3294	31

Hypothèse (positionnent chaotique): se positionner sur le premier fichier à lire prends 46 sec et pour chacun des fichiers suivants il faut 23 sec.


Cette hypothèse ne correspond probablement pas au fonctionnement de HPSS.

F Herna

Lecture de plusieurs fichiers d'une même cartouche (cont.)

F.Hernandez

Mes conclusions préliminaires

- L'optimisation du débit de lecture de données sur cartouche passe par
 - L'augmentation sensible du nombre de fichiers à lire par montage de cartouche
 - En supposant que nous restons avec des fichiers dans la zone du gigaoctet
 - L'ordonnancement intelligent de la lecture des fichiers à l'intérieur de chaque cartouche
 - Afin de diminuer l'impact du temps de positionnement
- Ma compréhension est que HPSS a des fonctionnalités intelligentes qui nous permettent d'optimiser ces opérations
 - Pouvons-nous faire en sorte que les clients de HPSS (dCache et xrootd) lui fournissent toute l'information nécessaire à optimiser son fonctionnement?
 - Qu'est-ce que ceci implique?
- De quelles informations brutes disposons-nous actuellement pour mesurer la performance de la chaîne d'accès aux données
 - Entre dCache et HPSS, par exemple?

Questions/Commentaires

F.Hernandez