

# **Data Management Software Stack Intro**

#### **Mario Jurić**

**LSST Data Management Project Scientist** 

SLAC DM Stack Working Meeting 10-12 December, 2012

XXVIII IAU General Assembly • Beijing, China • August 20-31, 2012



### LSST Data Management Tasks



- Processes the incoming stream of images that the camera system generates.
   → Image Processing and Astronomical Algorithms Libraries
- Produce transient alerts and approximately once per year create and archive a Data Release, a static self-consistent collection of data products generated from all survey data taken from the date of survey initiation to the cutoff date for the Data Release.
   → Middleware for data access and large-scale distributed and/or parallel computing
- Make all LSST data available through an interface that uses community-based standards, and facilitate user data analysis and production of user-defined data products at Data Access Centers (DACs) and external sites.
   →PB-scale databases and data

access services



#### DM: What and Where





UI



Database

"DM Stack"



Astronomical Algorithms ("Apps")



SLAC

Middleware





Infrastructure



#### **DM Stack**



- A rapidly maturing astronomical data reduction system
  - Most recently tested by building co-adds using SDSS Stripe 82 data
  - Will be used in production by the Hyper Suprime-Cam Survey on Subaru
- Well Prototyped (~SDSS level) Features:
  - Instrumental signature removal
  - Point source photometry
  - Extended source photometry (model fitting)
  - Co-addition of images
  - Deblender
  - **—** ...
- Under development (2013/14):
  - Image differencing
  - Object characterization on multi-epoch data (StackFit/MultiFit)
  - Fault-tolerant middleware
  - **–** ...



#### **Languages and Tools**



- LSST DM stack is written in Python 2.7, unless computational demands require the use of C++
- Languages
  - C++:
    - Computationally intensive code
    - Made available to Python via SWIG
  - Python:
    - All high-level code
    - Prefer Python to C++ unless performance demands otherwise
- ~60 packages (git repositories, ~corresponding to python packages)
- Build system: scons
- Version control: git
- Everything wrapped into EUPS packages
  - Allows one to install multiple versions of packages, and mix & match



#### Architecture



Command-line driver scripts

Cluster execution middleware

Tasks (ISR, Detection, Co-adding, ...)

Measurement Algorithms (meas\_\*)

Camera Abstraction
Layer
(obs\_\* packages)

•••

Application Framework (comp. intensive C++, SWIG-wrapped into Python)

Middleware (I/O, configuration, ...)

External C/C++ Libraries (Boost, FFTW, Eigen, CUDA ..)

External Python Modules (numpy, pyfits, matplotlib, ...)

Red: Mostly C++ (but Python wrapped); Blue: Mostly Python; Black: External Libraries



# Module Dependency Tree







# Module Dependency Tree







## **Platforms and Compilers**



- Operating Systems:
  - Red Hat Enterprise Linux 6 (reference platform)
    - Also known to work on:
      - RHEL5
      - Ubuntu 11.10
      - Others may work too.
  - OS X 10.7 (Lion)
    - 10.8 Mountain Lion known to work too
- Compilers:
  - gcc 4.4 or later
  - clang 3.0 or later
  - Note: plan to adopt some C++11 features in 2013
- Python 2.7
  - Currently build our own (except on OS X)





## Application and Measurement Libraries

- afw and meas\_\* modules:
  - Image manipulation classes and algorithms
  - Flexible table classes
  - Image/Table FITS IO routines
  - Source detection routines
  - Source measurement routines (e.g., fluxes, shapes, etc...)
  - •







## Configuration and Data Access Middleware

- pex\_config, daf\_\* modules:
  - Configuration classes (with provenance)
  - Dataset repository management
  - Cons:
    - Less mature than afw and meas\_\*
    - You may already have something better in place

#### Tasks framework

- pipe\_base, pipe\_tasks, obs\_\* module:
  - Pros:
    - Can directly re-use complete DM tasks (e.g., instrumental signature removal)
    - Standardized argument parsing
    - Will work with any future DM orchestration mw / workflow mgmt tools
  - Cons:
    - More up-front effort than "just write main()"





### Command line examples



#### **Process a single SDSS frame**

```
processCcdSdss.py sdss /sdss/dr7/runs\
    --id run=1033 camcol=2 field=111 filter=g \
    --output /sdss/dr7/coadds
```

#### Co-add a number of SDSS frames

```
outlierRejectedCoadd.py sdss coadds_output \
    --id filter=g tract=3..5 patch=113,0^114,0^115,0^116,0
--config \
    coaddName=goodSeeing \
    desiredFwhm=1.7 \
    psfMatch.kernel.active.kernelSize=13 \
    select.camcols=2,2 \
    select.strip=N \
    select.quality=2 \
    select.maxFwhm=2.5
```





- Pipeline Execution Middleware
- Workflow Management



- Database<sup>(\*)</sup>
  - (\*) Jacek and his team may have useful utilities/advice to offer on handling LSST images/catalogs with various database engines.





- Quality Assessment and Visualization
  - PipeQA framework:
    - Framework for writing tests operating on catalogs
    - Cons:





- Pros:
  - Exists. May be better than starting from scratch.
  - Any improvements/development you make may help DM
- PipeQA example: <a href="http://goo.gl/zsQR0">http://goo.gl/zsQR0</a>



## PipeQA Example (http://goo.gl/zsQRO)

Help

next-r ->>

(885335891-r)





Astr C

(none)

C

Isst1.ncsa.uiuc.edu/pipeQA/public/latest/summary.php?test=test\_885335881-r\_pipeQa.PsfShapeQaAnalysis&active=all

<<- prev-r

(none)

Summary





#### Q.A. Test Summary Go to main rerun list.

Group

| Comp | Empt | Phot<br>ap-cat | Phot<br>inst-cat | Phot<br>mod-cat | Phot<br>mod-inst | Phot<br>psf-ap | Phot<br>psf-cat | Phot<br>psf-inst | Phot<br>psf-mod | PsfS | Vign | Zero |  |
|------|------|----------------|------------------|-----------------|------------------|----------------|-----------------|------------------|-----------------|------|------|------|--|

test\_885335881-r\_pipeQa.PsfShapeQaAnalysis

[show description]

<<- prev-group



next-group ->>

(none)

Figure 2.0:PSF ellipticity all psfEllip-all.png: timestamp=2011-07\_31 16:09:11

dataset: rplante\_PT1\_2\_u\_pt12prod\_im3000 rerun=None

visit-filter: 885335881-r

Active: all



Figure 1.0: Median PSF Ellipticity medPsfEllip.png: timestamp=2011-07\_31 16:08:56

Show all





### **Getting the Source Code**



- git repository:
  - git://dev.lsstcorp.org/LSST/DMS (anonymous access)
- code browser:
  - http://dev.lsstcorp.org/cgit/
  - Note: Browse subsets of repositories by appending a prefix, e.g.:
     http://dev.lsstcorp.org/cgit/LSST/DMS/meas will show all repositories matching DMS/meas\*.

- git repository documentation
  - http://dev.lsstcorp.org/trac/wiki/GitDemoAndTutorial



#### **Documentation**



- Most (though not all) DM code is *not* well documented at the highest level.
   Documentation exists at the low level (doxygen generated). There's some documentation on the wiki, but it's poorly organized.
- Doxygen:
  - http://lsst-web.ncsa.illinois.edu/doxygen/testDoc/html/
- DM wiki:
  - http://dev.lsstcorp.org
- Some packages have README files
- WARNING: Some documentation may be out of date!
- We will pay much more attention to documentation in the future.
- Consequences for this Workshop:
  - Listen carefully! Take notes!
  - Stop us if something is unclear, or if you want to know more!



#### **Collaboration**



- An "open source" development process
  - DM Stack stake-holders collaboratively propose, design, and implement new features
    - Can earn "commit rights"!
  - Overall vision and direction set by the BDFLs BDFTDOEs: DM Project Scientist and Manager
  - Stake-holder specific features exist in their forks of the Stack
- Proposed model (already in place with HSC-Survey DM):
  - Fork a stable release of the stack (e.g., v6\_1)
  - If a feature is missing, implement it yourself (if DM hasn't done it already!)
  - Submit patches with new features upstream (to DM)
  - Submit bug reports (and fixes) upstream
  - Periodically sync-up with the most recent DM release
- The tools we use designed to facilitate this (git, EUPS)



#### **Communication**



### Main DM mailing list:

# Questions are welcomed and encouraged!

- lsst-data@lsstcorp.org
- http://listserv.lsstcorp.org/mailman/listinfo/lsst-data
- Very high traffic (chat room). Not recommended.
- Non-DM stack users list:
  - lsst-dm-stack-users@lsstcorp.org
  - http://listserv.lsstcorp.org/mailman/listinfo/lsst-dm-stack-users
  - All key DM developers subscribe to it. Recommended as primary destination for questions.
- People (in person/phone):
  - SLAC: K-T, Gregory
  - Princeton/East Coast: Robert
  - General: Mario



# **Bug Trackers**



- Tickets
- Trac on http://dev.lsstcorp.org
- Have to open a Trac account first just ask us.