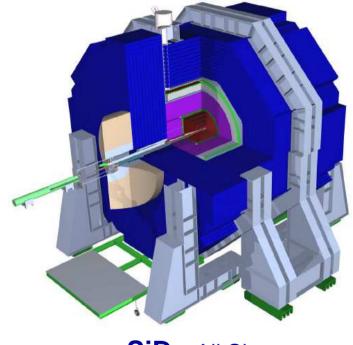
Electron-Positron Colliders Activity

M.Winter / 15 March 2013

on behalf of the Irfu and IN2P3 LC communities

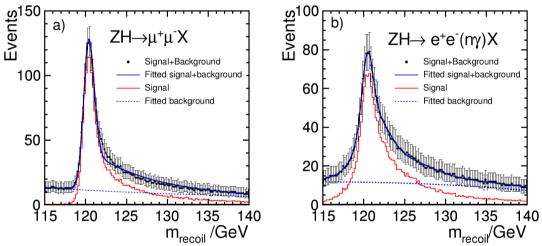

RESTRICTED ECFA VISIT OF FRANCE

Outline

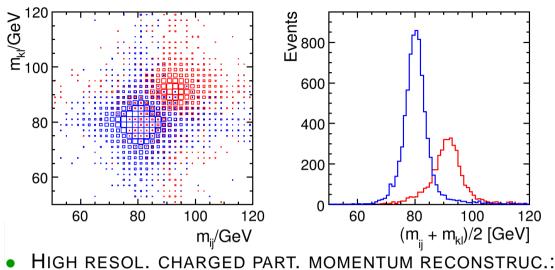
- Introduction : framework of activities reported, experimental challenges
- Physics performance assessments : *examples*
- **R&D** : experiment and beam instrumentation
- Summary Outlook
 - **Overview of the French LC community :** *compositions and main activities*
 - ∘ **Related talks** ▷ Detector R&D: M.Titov, Accelerator R&D: M.Baylac, Theory: J.Orloff

Framework of Activities Reported

- PHYS. GOALS : precision measurements & NP search in New Boson sector, top quark sector, energy frontier, ...
- MACHINE : focus on ILC (200 GeV → 1 TeV) + several direct & indirect contributions to CLIC (→ 3 TeV)
- 2 DIFFERENT DETECTOR CONCEPTS : SiD and ILD adaptable from ILC to CLIC

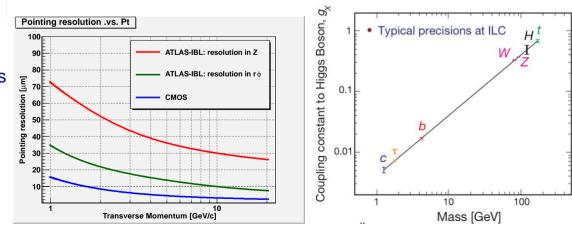

SiD : All Si

ILD : TPC \equiv main tracker


- NUMEROUS CONTRIBUTIONS TO :
 - Physics performance studies
 - Detector & machine R&D
 - Detector Integration & Costing
- * ILC physics & detectors : LoI (2009), DBD (2012)
- * CLIC physics & detectors : CDR (2012)
- * ILC machine : EDR (2008), TDR (2012)

Experimental Challenges Addressed

- PARTICLE FLOW : reconstruct ALL particles individually
 - * topological reconstruction of multi-jet events
 - R&D on highly segmented calorimeters : ECAL (24 layers) & HCAL (48 layers)
 - $\triangleright~$ Ex: W/Z separation in $u \nu WW/ZZ$ final states
 - $\Rightarrow \Delta E/E \simeq$ 3-4% at 100 GeV



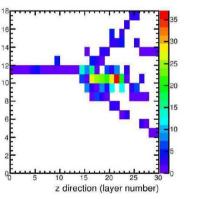
- HIGHLY GRANULAR AND LIGHT VERTEX DETECTOR:
 - * R&D on new pixel techno. & ultra-light mechanical supports
 - \triangleright Ex: Hxx couplings from $e^+e^- \rightarrow ZH$
 - $\Rightarrow \sigma_{IP} \lesssim 5 \oplus 10/p \cdot sin^{3/2} \theta \ \mu m$
- $\triangleright \triangleright \triangleright$ Power cycling (\equiv saving)
exploiting machine duty cycle (< 1%)</th>

 R&D on very light high resolution tracking system : mainly TPC (ILD) (also Si-strips)

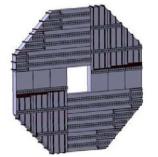
> Ex:
$$e^+e^- \rightarrow ZH \Rightarrow M_H^2 = S + M_Z^2 - 2 \cdot E_Z \cdot \sqrt{S}$$

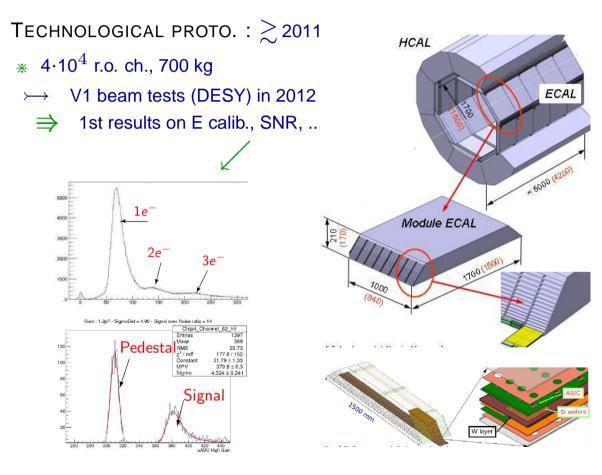
 $\Rightarrow \sigma_{1/P_t} \simeq 2 \cdot 10^{-5} GeV^{-1}$

Physics Peformance Studies

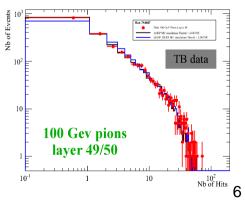

- PHYS. PERFORMANCE ASSESSMENTS : exploiting tunable (E_{cm} & Pol.(e^{\pm})), low background, precise E_{cm} machine optimise detector design \rightarrow high precision * inputs to Detector Baseline Document, etc. assess experimental perfo. with detailed & realistic simulations SM-LIKE LIGHT HIGGS CHARACTERISATION AT ILC Sig+Bkg * Higgs-strahlung tagged via $Z \rightarrow \mu\mu, e^+e^-$ reconstruction Fit to Sia+Bka \hookrightarrow study phase space opposite to Z $ZH \rightarrow \mu^+\mu^- X$ g_{HZZ} 7* \Rightarrow derive "X/Higgs" characteristics Ex: precision expected on $g_{HZZ} \simeq 1-2\%$ * H C (preliminary TOP QUARK PRODUCTION AT ILC : HC (hep-ph/0601112) low background top-pair production (tunable e^{\pm} polarisations) * $\propto F_{i,V}^X$ Ex: search for anomalous top couplings to γ and Z (form factors) * Z,Y comparison to LHC sensitivity (300 fb $^{-1}$) \hookrightarrow \Rightarrow 2 10 X more precise than at HL-LHC LHC - 300 fb⁻
- NEW PHYSICS AT ILC AND CLIC : extra-dimensions, slepton and Z' productions, ...

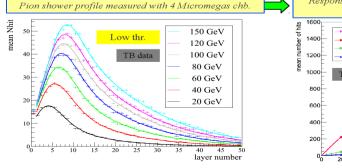
EM Calorimetry

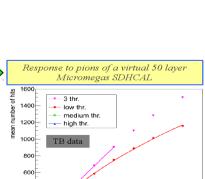

 \Rightarrow


- SIW OPTIMISED FOR PFA: separation of neighbouring showers (γ , nascent hadronic showers) \hookrightarrow highly granular: $\sim 10^8$ ch. (ATLAS: 10^5 ch.), up to 2500 m² Si (PIN Diodes)
- FRENCH LABS : LLR, LAL (& Omega), LPSC, LPNHE, LPCCF \Rightarrow CALICE coll. (>300 members, 57 labs, 17 countries)
- PHYSICS PROTOTYPE : 2003–2011
 - * 10^4 r.o. ch., 200 kg \rightarrow beam tests (vs GEANT-4)
 - \Rightarrow established proof of principle : $\sigma_E/E = (16.5/\sqrt{E} + 1.1)\%, \text{SNR} \simeq 8$

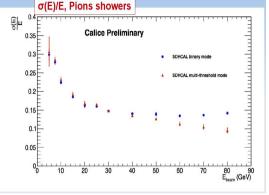
- **DETECTOR INTEGRATION STUDIES :** Ex: ECAL end-cap structures
 - design & assembly
 - cooling system

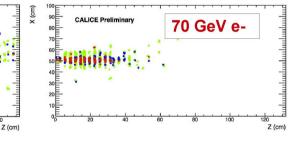

Hadron Calorimetry


CALICE Preli


80 GeV π

- SEMI-DIGITAL READ-OUT HCAL OPTIMISED FOR PFA : measure E(neutral hadrons) in showers
 - ←→ highly segmented active components : GRPC, MPGD (MicroMegas)
- FRENCH LABS : IPNL, LAPP, LLR, LAL (& Omega)
- GRPC DHCAL PROTOTYPING: beam tests (CERN) in '12
 - $\ast~$ 1 m 3 prototype with 48 RPC planes (450,000 ch.) power pulsed w.r.t. beam spill and triggerless
 - * concern: space charge effects
 - \longrightarrow R&D: thinner, less resistive electrodes & lower gain
 - \Rightarrow multi-ch. threshold mode (3 discriminators) carries significant improvement \gtrsim 50 GeV
- μ MEGAS DHCAL PROTOTYPING: same beam test
 - * rate capability \gg GRPCs but spurious sparks \Rightarrow FEE !
 - $_{*}\,$ 4 chambers (1 m 2) inserted in 1 m 3 proto : successfull data taking \searrow

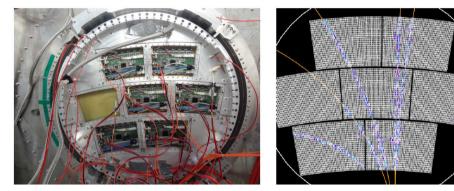




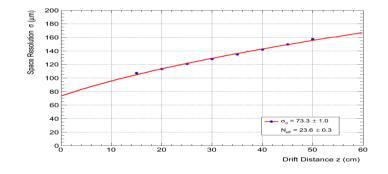
pion energy (GeV

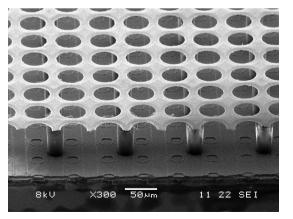
Read-Out Chip Developments

- STRONG INVOLVEMENT IN ECAL & HCAL R.O. ASICS : Omega + contributions from Michrau & LPSC (ADC)
 - Auto-trigger, analog storage, digitization and token-ring readout
 - Power pulsing : <1 % duty cycle
 - Optimize commonalities within EUDET (readout, DAQ...)
 - Dedicated run produced in March 2010 (CALICE, EUDET, Jem Euso, External users)
 - 25 wafers received in June
 - 20 000 chips packaged in the US
 - Status in 2012:
 - CALICE DHCAL: 8000 HR2b (400000 ch.) equip the 40 layers of the cubic meter. TB using the power pulsing mode
 - CALICE DHCAL (μmegas): 1100 MICROROC1, TB in 2012
 - CALICE ECAL: SKIROC2, TB in 2012
 - CALICE AHCAL: 200 SPIROC2b, TE next fall


Analog HCAL (AHCAL) (SiPM) 36 ch. 32mm² June 07, June 08, March 10 AIDA HARDROC2 and MICROROC Digital HCAL (DHCAL) (RPC, µmegas or GEMs) 64 ch. 16mm² Sept 06, June 08, March 10 SKIROC2 ECAL (Si PIN diode) 64 ch. 70mm² March 10

SPIROC2


Coming years will see production of 3rd generation ASICs


Tracking with MPGD

- MAIN TRACKING R&D : Large TPC read-out with high precision μ Megas chambers (ILD concept)
 - \Rightarrow > 200 pts/traversing track $\triangleright \lesssim$ 100 μm /pt, material \sim 5%X $_0$ (resp. 25%X $_0$) in barrel (resp. end-caps)
- FRENCH LABS : Irfu with contributions from LAL
- MICROMEGAS WITH RESISTIVE FOIL ON INSULATOR : 2 approaches
 - * Coarse pad dimensions : few mm
 - \circ 7 module proto. tested at DESY: 12,000 ch., 3×7 mm² pads
 - performance studied with "large" proto. TPC in 1 T field \Rightarrow Ex of result: resolution coming close to target value (\leq 100 μm)

- * Sub-millimetric pad dimensions : O(100) μm
 - assets : no charge sharing needed,
 - integrated FEE, time stamping
 - performance studied with INGRID device,
 - based on TimePix r.o. chip & extensions
 - design optimisation against discharges, power consumption, ...

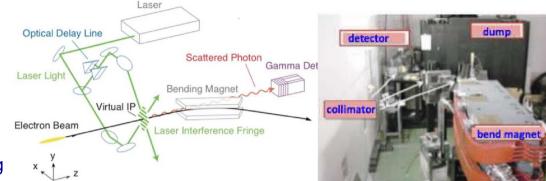
Tracking & Vertexing with Si Devices

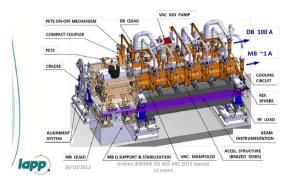
- TRACKING DEVTS : Si-strip (incl. 3D, edgeless) sensors & FEE
 - \Rightarrow very low material devices for ::
 - * SiD main tracker and FW trackers
 - * ILD auxillary and FW trackers
 - * French Lab : LPNHE

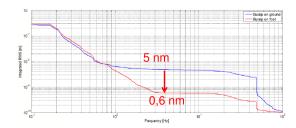
(until 2010)

Beam test set-up within EUDET

- MAIN VERTEXING R&D : Vertex det. based on CMOS pixel sensors & ultra-light 2-sided ladders
 - * French labs : IPHC with contributions from Irfu
 - * CPS technology validated for position detectors
 - * architecture with integrated sparsification validated
 - \Rightarrow used in EUDET BT, STAR-PXL, upgrade of ALICE-ITS, ...
 - * ex. of achieved performances :
 - $\circ\;$ full size, 50 μm thin sensors with integrated SDS
 - $\hookrightarrow \ \sigma_{SP} \simeq$ 3 μm (about target value)
 - \circ 0.6%X₀ 2-sided ladder (8 Mpix) tested on beam
 - \rightarrowtail 0.35%X $_0$ ladder in construction (target value \lesssim 0.3%X $_0$)


PLUME ladder


Beam Diagnostics & Instrumentation


- ATF2 AT KEK : prototype of ILC, CLIC, ... final focus
 - * contributions to project from LAL, LAPP, LLR
 - * 70 nm vertical size achieved
 - \rightarrow ILC-like target value: σ_Y = 37 nm
 - * contributions to O(10) nm beam alignment device :
 - \hookrightarrow vacuum chamber for high precision BPM positionning
 - measurement of beam halo & recoil Compton electrons : development of detectors using diamond sensors

 \hookrightarrow tests at PHIL/LAL

- LINEAR COLLIDER MODULE CONTROL AND STABILIZATION :
 - * contributions from LAPP
 - * module control : development of dedicated multi-purpose FEE board
 - module stabilisation against mouvements generated
 by ground motion, human activity, ... (< 100 Hz)
 - \Rightarrow development of system incl. sensor \oplus analysing board \oplus actuator

SUMMARY – OUTLOOK

- LC HAS BEEN A DRIVING TOPIC for French community since late 90's (\gtrsim 100 phys. Engine & tech. involved)
- FRENCH LC COMMUNITY \equiv major task force for **ILC** project \rightarrow CLIC
 - * ILC physics performance & detector R&D \Rightarrow LoI (2009), DBD (2012) \mapsto proof of feasibility
 - * extension towards CLIC : CDR (2012)
 - ∗ accelerator R&D : ILC-EDR (2008) & -TDR (2012) → see talk by M.Baylac
 - * initiated several international coll. : CALICE, RD-51, LC-TPC, ILD, SiD, EUDET, AIDA, PLUME, ...
- DETECTOR R&D DEFINING STATE-OF-THE-ART ON BROAD RANGE OF HIGH-PRECISION DETECTORS \rightarrow talk by M.Titov
 - * highly segmented calorimetry : SiW ECAL, (semi-)digital HCAL
 - * high resolution & "light" TPC : MicroMegas, Ingrid
 - * high precision ultra-light vertex detector : CMOS pixel sensors, 2-sided ladders
 - \Rightarrow numerous spin-offs : \circ technological frontier expertise
 - o detectors for subatomic physics AND social applications
 - numerous theses (some translating into perm. CNRS positions)
- MULTIPLE EXPERTISE FOR AN 200-1000 TEV ILC, AS WELL AS FOR (FARER AWAY) CLIC

 → community ready to play a central role in ILC in case of positive decision
- NOT ADDRESSED IN THIS TALK : physics prospect and PID R&D activities for the SuperB project, nascent interest for other e⁺e⁻ machines (e.g. TLEP at Irfu), etc.

LC Activity Overview

• INSTRUMENTATION ACTIVITIES PER LABORATORY :

Labs	IPHC	IPNL	lrfu	LAL	LAPP	LLR	LPCCF	LPNHE	LPSC
ECAL				Х		Х	Х	Х	Х
DHCAL		Х		Х	Х	Х			
ТРС			Х						
VXD	Х		Х						
Det. Integ.				Х		Х			Х
Beam Instru.			Х	Х		Х			

- Human resources involved : \gtrsim 100 people \rightarrowtail 40-50 FTE
 - * Permanent : 20 Physicists & 60-70 Engineers + Technicians
 - * Non-permanent : 10 Post-docs & 10 PhDs
- PHDs:
 - * Defended since 2006 : \gtrsim 20 PhDs
 - * On-going : \gtrsim 10 PhDs
- > 100 publications and talks at international conferences