

Measurement of the spin and parity of the new boson discovered in ATLAS experiment at the LHC

Kirill Prokofiev

NYU

Outline

- ATLAS detector at the LHC
- Discovery of the new boson
- Spin models and options
- Current spin measurements
- Beyond the Standard Model
- Summary and Outlook

ATLAS detector overview

The Inner Detector provides around 3 pixel, 8 SCT and 30 TRT measurements per charged track at $\eta = 0$. Coverage: $|\eta|$ < 2.5 (2.0 for TRT) Resolution goal: $\sigma_{pT} / p_T =$ 0.05% $p_T \oplus 1\%$

Muon spectrometer: high precision tracking and trigger chambers. |η| coverage up to 2.7. Magnetic field produced by 3x8 air-core toroids. EM Calorimeter: ($|\eta| < 4.9$) Pb-LAr accordion structure provides e/ γ trigger, identification, measurement σ/E ~10%VE

Hadronic (Tile): provides trigger, jet measurement, E_T^{miss} $\sigma/E \sim 50\% VE \oplus 0.03$. ($|\eta| < 1.7$)

Data taking in 2011 and 2012

ATLAS luminosity detectors calibrated with van der Meer beam separation scans.

• 5 different luminosity detectors.

• In 2011: d*L/L* ~3.9%. In 2012: d*L/L* ~3.6%.

Only data sets approved for the CERN Council Week 2012 (up to approximately 13 fb⁻¹ collected at Vs=8 TeV) are shown in this presentation.

- Higgs mechanism: most probable mechanism for the electroweak symmetry breaking. Used both in the Standard Model and theories beyond.
- In the Standard Model, the vector bosons and the fermions acquire mass via coupling to the Higgs field.
- Physical manifestation of the Higgs field in the Standard Model: scalar Higgs boson.
- Theories beyond the Standard Model often require presence of several Higgs bosons.
- Presently, the Higgs boson is the missing part of the Standard Model. Higgs-like resonance observed. No evidence for multiple Higgses is found so far.

LEP: m_H>114.4 GeV.

Tevatron: exclusion of 147< m_H<179 GeV region.

Indirect limits come from the precision measurements of electroweak observables.

Discovery of the new resonance in ATLAS

ATLAS-CONF-2012-170

Considered search channels

page 8	Ŷ
	V

Higgs Boson	Subsequent	Sub-Channels		Ref
Decay	Decay	Sub-Channels		
		2011 $\sqrt{s} = 7 \text{ TeV}$		
$H \rightarrow ZZ^{(*)}$	4 <i>l</i>	$\{4e, 2e2\mu, 2\mu 2e, 4\mu\}$	4.6	[1]
$H \rightarrow \gamma \gamma$	_	10 categories	48	[5]
11 - 77		${p_{\text{Tt}} \otimes \eta_{\gamma} \otimes \text{conversion}} \oplus {2\text{-jet VBF}} \oplus {\ell\text{-tag, 2-jet VH}}$	4.0	[-]
	$ au_{ m lep} au_{ m lep}$	$\{e\mu\} \otimes \{0\text{-jet}\} \oplus \{\ell\ell\} \otimes \{1\text{-jet}, 2\text{-jet}, p_{\mathrm{T},\tau\tau} > 100 \text{ GeV}, VH\}$	4.6	
$H \rightarrow \tau \tau$	$ au_{ m lep} au_{ m had}$	$\{e, \mu\} \otimes \{0\text{-jet}, 1\text{-jet}, p_{T,\tau\tau} > 100 \text{ GeV}, 2\text{-jet}\}$	4.6	[7]
$\Pi \rightarrow \iota \iota$	$ au_{ m had} au_{ m had}$	{1-jet, 2-jet}	4.6	
	$Z \rightarrow \nu \nu$	$E_{\rm T}^{\rm miss} \in \{120 - 160, 160 - 200, \ge 200 \text{ GeV}\} \otimes \{2\text{-jet}, 3\text{-jet}\}$	4.6	
$VH \rightarrow Vbb$	$W \to \ell \nu$	$p_{\rm T}^W \in \{< 50, 50 - 100, 100 - 150, 150 - 200, \ge 200 \text{ GeV}\}$	4.7	[8]
	$Z \to \ell \ell$	$p_{\rm T}^Z \in \{< 50, 50 - 100, 100 - 150, 150 - 200, \ge 200 \text{ GeV}\}$	4.7	
$2012 \sqrt{s} = 8 \text{ TeV}$				
$H \rightarrow ZZ^{(*)}$	4 <i>l</i>	$\{4e, 2e2\mu, 2\mu 2e, 4\mu\}$	13	[6]
II		12 categories	12	[5]
$H \rightarrow \gamma \gamma$	_	${p_{\text{Tt}} \otimes \eta_{\gamma} \otimes \text{conversion}} \oplus {\text{2-jet VBF}} \oplus {\ell\text{-tag, 2-jet VH}}$	15	[5]
$H \rightarrow WW^{(*)}$	ενμν	$\{e\mu, \mu e\} \otimes \{0\text{-jet}, 1\text{-jet}\}$	13	[9]
	$ au_{ m lep} au_{ m lep}$	$\{\ell\ell\} \otimes \{1\text{-jet}, 2\text{-jet}, p_{T,\tau\tau} > 100 \text{ GeV}, VH\}$	13	
$H \rightarrow \tau \tau$	$ au_{ m lep} au_{ m had}$	$\{e, \mu\} \otimes \{0\text{-jet}, 1\text{-jet}, p_{T,\tau\tau} > 100 \text{ GeV}, 2\text{-jet}\}$	13	[7]
$\Pi \rightarrow \Omega$	$ au_{ m had} au_{ m had}$	{1-jet, 2-jet}	13	
	$Z \rightarrow \nu \nu$	$E_{\rm T}^{\rm miss} \in \{120 - 160, 160 - 200, \ge 200 \text{ GeV}\} \otimes \{2\text{-jet}, 3\text{-jet}\}$	13	
$VH \rightarrow Vbb$	$W \to \ell \nu$	$p_{\rm T}^W \in \{< 50, 50 - 100, 100 - 150, 150 - 200, \ge 200 \text{ GeV}\}$	13	[8]
	$Z \to \ell \ell$	$p_{\rm T}^Z \in \{< 50, 50 - 100, 100 - 150, 150 - 200, \ge 200 \text{ GeV}\}$	13	

- Individual channels where the searches were performed for the latest ATLAS combined result . The final result is the combination of all considered modes.
- Search performed in the range $m_{H} = 110 600$ GeV.

Discovery of the new resonance

- The initial observation of the new resonance by ATLAS was done in the combination of channels with 4.8 fb⁻¹ collected at Vs = 7 TeV and 5.8 fb⁻¹ at Vs = 8 TeV.
- $H \rightarrow ZZ^{(*)} \rightarrow 4I, H \rightarrow \gamma\gamma, H \rightarrow WW^{(*)} \rightarrow ev\mu\nu, H \rightarrow bb^{-} \text{ and } H \rightarrow \tau + \tau .$
- Excess with local (global) significance of 5.9 σ (5.1 σ) driven by the ZZ^(*), $\gamma\gamma$ and $WW^{(*)}$ decays. M_H = 126.0 ± 0.4 (stat) ± 0.4 (sys) GeV.

ATLAS-CONF-2012-168

Current status of the new resonance

- In November- December 2012, the discovery results were updated with higher luminosity.
- Up to 13 fb⁻¹ in ZZ, $\gamma\gamma$, and WW decay channels.
- The resonance remains.
- Individual local significance of excess reached 4.1, 6.1 and 2.8 standard deviations respectively.

page 11

- Main contributors: WW, ZZ, γγ
- Combined signal strength μ =1.35±0.24. Consistent with the Standard Model expectation.

Spin and parity models of the new resonance

- The production of a new resonance with the mass around 126 GeV is observed in proton-proton collisions .
- Can we attribute this resonance to the Standard Model Higgs boson? The Standard Model Higgs:
 - Neutral scalar.
 - CP-even: $J^{CP}=0^{++}$.
 - Predicted couplings to the fermions and gauge bosons.
 - Self-couplings.
- The new resonance is a neutral boson: it decays to pairs of gauge bosons (and fermions) with total charge 0.
 - Integer spin.
 - Parity is to be defined.

- What do we know about the spin and parity (J^P) of the new resonance so far:
 - Integer spin. Currently considering 0, 1 or 2.
- Spin-1 is disfavored due to the observation of the $\gamma\gamma$ decay (Landau-Yang theorem). However there are loopholes.
- To associate this particle to a particular model, one needs to measure the spin and parity in the experiment without theoretical prejudice.
- Need to study J=0,1,2 cases to exclude all hypotheses alternative to the J^P=0⁺.

- Summary of spin possibilities given the observed decays.
- In principle, the observation of $\gamma\gamma$ disfavors the spin-1 hypothesis.
- The observation of the two-fermion decays will disfavor the spin-2 hypothesis.
- In both cases the loopholes exist.

	Spin-0	Spin-1	Spin-2	Observed
ŶŶ	YES	NO	YES	YES
WW/ZZ	YES	YES	YES	YES
Fermions (bb,ττ)	YES	YES	NO	YES?

Present spin measurements in ATLAS (Council week 2012)

- A new Higgs-like resonance produced in pp collisions by both ATLAS and CMS.
- Possible production mechanisms which can be responsible for the observation in WW, ZZ and yy:
 - gluon-gluon fusion (spin-0,2)
 - and/or qqbar production (spin-1,2).
- Measurement of properties: deduce spin and parity from ۲ measured distributions of kinematic observables.
- **Observables (ZZ):**
 - Angular distributions of decay products in the resonance rest frame.
 - Invariant masses of the gauge bosons.

- Which Spin-2 models makes sense?
 - The interaction of a spin-two particle with electroweak gauge bosons is described by at least 10 independent tensor couplings.
 - Production mechanism can also vary: gg, qq.
- General idea:
 - Given the number of possibilities, we cannot exclude 'generic' spin-2.
 - We should start with the model with minimal couplings and exclude it in favor of the SM hypothesis, which is relatively well defined.
 - If during this study we observe something 'funny' have a deeper look in spin-2 models.
 - It is possible that both ggF and qq production mechanisms contribute to the spin-2 state. The possible mixtures should thus be studied.

Present spin studies in ATLAS

- In 2012 ATLAS has presented two major studies of the spin and parity of the Higgs-like resonance around 126 GeV.
- Decays: H->ZZ->4I and H->γγ.
- Spin and parity hypotheses considered: 0⁺, 0⁻, graviton-like tensor with minimal couplings 2_m⁺, pseudo-tensor 2⁻.
 - 2_m^+ and 2^- production. gg->X: g_1 =1; qq->X: ρ_{12} =1.
 - $2_m^+ \text{decay } g_1 = g_5 = 1.$
 - $2^{-} \text{ decay: } g_8 = g_9 = 1.$
- The choice of coupling constants follows the formalism described in the JHU papers:
 - Y. Gao, et al., "Spin determination of single-produced resonances at hadron colliders", Phys. Rev. D81 (2010) 075022, arXiv:1001.3396 [hep-ph]
 - S. Bolognesi, et al., "On the spin and parity of a single-produced resonance at the LHC", Phys. Rev. D86 (2012) 21.
 - For the 2012 studies, ATLAS used the JHU generator.

Two photon decay channel

- Study based on the single discriminating variable: production angle: $|\cos \theta^*|$.
- Considered models: 0⁺ and 2⁺_m
- Both qqbar and ggF production mechanisms are considered for the 2⁺_m state.
- Various mixtures of two production mechanisms
- No categorization: 123.8 GeV<m_{γγ}<128.6 GeV

- Fitted distribution of $|\cos \theta^*|$ for the SM Higgs boson signal plus background hypothesis, for the data, the background and the signal.
- Right: background-subtracted data distributions, profiled with a fit where the $0^+/2^+_m$ ratio is free.

ATL-CONF-2012-168

Two photon decay channel

- Expected p_0 -value for 2^+_m (100% ggF) : 3.4% (1.8 σ)
- Observed p₀-value for 0⁺ hypothesis: 29% (0.55 σ)
- Observed p_0 -value for 2^+_m (100% ggF) hypothesis: 8.4% (1.4 σ)
- qqbar scan: no discrimination power for 75% qq and higher fractions in two-photon channel.

The H->ZZ->4l decay is sensitive to Spin and CP nature of the underlying resonance. In the case of low mass (<190 GeV) the observables are 5 production and decay angles and reconstructed masses of the intermediate Z's: m_{12} and m_{34} .

Test: 0+, 0-, 2_m+ (graviton –like tensor with min. couplings), 2-.

4.6 fb⁻¹ at 7 TeV and 13 fb⁻¹ at 8 TeV

Sensitivity to all Spin-parity combinations.

Production and decay angles fully characterizing orientation of the decay chain:

 Θ^* of the first Z-boson.

 Φ and Φ_1 between the decay planes defined in the Higgs rest frame.

 Θ_1 and Θ_2 of the negative leptons defined in the corresponding Z rest frame.

page 24

Φ.

cosθ,

cos0*

Examples of signal and background distributions at the generator level.

- Standard 4I cut-based selection (same as used for the discovery analysis).
 - Spin/Parity dependent quantities are reconstructed.
 - Signal region: 115 GeV 130 GeV.
- Spin and parity sensitive variables after all selection cuts compared to the signal and background Monte Carlo models.

Four lepton decay channel

Two complimentary methods allow for mutual cross-checks and extend each

others results.

 BDT analysis: discriminants trained to separate pairs of different Spin/CP states. Training on signal MC only.

ATL-CONF-2012-169

- Full Simulation MC events after full reconstruction and selection are used for training.
- Background: from full sim (ZZ) and from control regions (others).

 Pseudo-MELA: Discriminant based on the full Matrix Element theory calculation for each Spin/CP hypothesis.

page 27

- Signal description: analytical calculation.
- Background: from full sim (ZZ) and from control regions (others).

ATL-CONF-2012-169

Four lepton decay channel

page 28

• Test statistic: ratio of profiled likelihoods.

ATL-CONF-2012-169 Four lepton decay channel

Expected p_0 (N σ) (BDT)					
		0+	0-	2_{m}^{+}	2-
0+			0.044	0.20	0.051
Ů			(1.7)	(0.83)	(1.6)
0-		0.041		0.048	0.089
		(1.7)		(1.7)	(1.3)
2+	Π	0.20	0.055		0.032
² m		(0.84)	(1.6)		(1.9)
2-		0.046	0.095	0.028	
		(1.7)	(1.3)	(1.9)	

Expected and observed p_0 values to exclude various spin and parity hypotheses. The shaded column shows the p_0 to exclude spin and parity hypotheses in favor of the 0⁺ state.

Both methods show comparable results. 0+ is the favorite hypothesis preferred by data. 0- is disfavored by all other hypotheses. Data slightly prefer 2⁺ over 2⁻. 100% ggF production assumed for the spin-2.

	Observed p ₀ (Nσ) (BDT)			
	0+	0-	2 _m ⁺	2-
0+		0.69	0.57	0.56
Ľ		(-0.50)	(-0.18)	(-0.15)
0-	0.011		0.0015	0.028
Ľ	(2.3)		(3.0)	(1.9)
2+	0.16	0.83		0.41
² m	(0.99)	(-0.95)		(0.22)
2-	0.029	0.69	0.055	
_	(1.9)	(-0.50)	(1.6)	

Observed p_0 (N σ) (pseudo-MELA)				
	0+	0-	2_{m}^{+}	2-
0+		0.76	0.53	0.56
0.		(-0.72)	(-0.082)	(-0.15)
0-	0.003		0.01	0.025
0	(2.7)		(2.3)	(2.0)
2+	0.17	0.69		0.33
² m	(1.0)	(-0.51)		(0.44)
2-	0.025	0.73	0.089	
2	(2.0)	(-0.62)	(1.3)	

- The data so far seem to prefer the 0⁺ hypothesis.
- The LHC has delivered 23.3 fb⁻¹ at $\sqrt{s}=8$ TeV before the technical stop.
 - During at least next 2 years this will be the only data we will have.
- Program for further studies (current dataset and beyond)
 - Exclude 0⁻, 2⁺_m, 1⁺.
 - Exclude 1⁻, 2⁻.
 - Exclude large qq contributions in spin-2 production.
 - Start studying other production mechanisms: VBF, VH, ttH.
- The most popular alternative hypotheses are likely to be excluded in favor of the 0⁺ in the following months/years.
 - Next step: study of the tensor structure of HVV interaction.

Beyond the Standard Model

CP-violation in ZZ coupling

- The separation between pre-defined spin and parity hypotheses is possible with the present dataset.
 - Given current indications, one can expect the dominant $J^P=0^+$.
 - Several Beyond the Standard Model theories with extended Higgs sector predict possible anomalous contribution and/or CP-violation in HZZ coupling.
- The magnitude of the CP-mixing in the Higgs sector may vary significantly from model to model.
 - Usually, the expected contributions from Beyond the Standard Model couplings is small.
- Measurement of possible CP-violation in the Higgs sector or anomalous contribution to the HZZ coupling will require large datasets.
 - Question: observing the dominant 0⁺ state, can we tell if it has a CPodd admixture?

CP-violation in ZZ coupling

- The ways to estimate possible mixing contribution vary from paper to paper.
 - Observables for the Higgs mass lower than two Z masses: decay angles and masses of the Z's.
- Methods for CP-violation measurements (consider 0⁺ 0⁻ mixing).
 - Likelihood fit to matrix element where the unknown parameters (non-SM couplings) left free.
 - Study of asymmetries directly sensitive to different amplitude parts.
 - Modeling scenarios with different admixtures and excluding them.
- In general, this investigation makes sense: at very least, it gives insights on HZZ vertex.
 - May provide hints of non-Standard Model contributions to the HVV vertex.

Most general vertex for Spin-0 boson coupling to 2 vector bosons:

$$A(X \to VV) \sim (a_1 M_X^2 g_{\mu\nu} + a_2 (q_1 + q_2)_{\mu} (q_1 + q_2)_{\nu} + a_3 \varepsilon_{\mu\nu\alpha\beta} q_1^{\alpha} q_2^{\beta}) \varepsilon_1^{*\mu} \varepsilon_2^{*\nu}$$

 a_1 and a_2 are associated with coupling of CP-even Higgs to a pair of vector bosons; a_3 is associated with that of a CP-odd Higgs boson.

CP-conserving tree-level SM: $a_1 = 1$, $a_2 = a_3 = 0$. CP-violation: $a_3 \neq 0$, given $a_1 \neq 0$ and/or $a_2 \neq 0$.

In general a_i can be momentum-dependent form factors that may be generated in loops with new heavy particles.

It is always possible to select a_1 to be real. a_2 and a_3 are in general complex.

This vertex is in principle valid at all orders of perturbation theory. Contributions from loop corrections will only alter the a_i.

ATLAS-PHYS-PUB-2012-004

CP-violation in ZZ coupling

The first limit is currently available from CMS. Scan of 2 times the log-likelihood ratio between the two signal models as a function the signal strength and f_{a3} , the fraction of observed 0⁻ events in the dataset.

$$A = v^{-1} \epsilon_1^{*\mu} \epsilon_2^{*\nu} \left(a_1 g_{\mu\nu} m_H^2 + a_2 q_\mu q_\nu + a_3 \epsilon_{\mu\nu\alpha\beta} q_1^{\alpha} q_2^{\beta} \right) = A_1 + A_2 + A_3,$$

CP-violation in ZZ coupling

European Strategy for Particle Physics. Study of the ATLAS sensitivity to the CPviolating effects in HZZ vertex.

Choose the form factor $a_1 = 1$ (Standard Model) and vary a_3 (The CP-odd coupling constant).

The form factor a_2 is set to 0 to simplify the analysis.

- Generator level Monte Carlo study.
- Monte Carlo: JHU at 14 TeV for the signal and MadGraph for the ZZ background. Pythia showering (AU2 CTEQ6L1).
- Smearing functions to simulate detector resolution effects.
- Trigger and lepton reconstruction efficiencies are accounted for by assigning event weights.

ATLAS-PHYS-PUB-2012-004

CP-violation in Higgs sector

- Event selection in general matches the discovery analysis (H->ZZ->41 section). Phys. Lett. B716 (2012) 1-29
- Analysis: Applying two independent BDT discriminants to separate spin and parity states and to reject the ZZ background.
 - First BDT is trained to separate spin-CP states using angular and mass variables: $\cos \theta_1$, $\cos \theta_2$, ϕ , $\cos \theta^*$, ϕ_1 , m_{z_1} , m_{z_2} .
 - Second BDT is trained to separate Higgs signal from the ZZ background using kinematic variables.
 - Stat test: profiled likelihood on the combination of four final states.
- Calculating the expected exclusion of the CP-mixed hypothesis in favor of the Standard Model 0⁺.

CP-violation in Higgs sector

- Considering a CP-even 0+ sample with a strong CP-odd admixture: a₁ = 1, a₂ = 0, a₃ = 6+6i.
 - a₃=6+6i maximizes the interference between CP-even and CP-odd components.
- The mixture of CP-even and CP-odd states is subject to an interference.
 - The interference is responsible for the asymmetries of observed distributions.

CP-violation in Higgs sector

Expected separation in number of Gaussian σ between the pure 0⁺ hypothesis and the mixed hypothesis as a function of a_3 .

Signal region: 100 GeV to 150 GeV.

The ZZ background is scaled to the total background expectation.

	Exclusion a ₃ = 6+6i wrt 0+	Exclusion a ₃ = 6i wrt 0+	Exclusion a ₃ = 4+4i wrt 0+	The LHC is approved until 300 fb ⁻¹ .
100 fb ⁻¹	3.0	2.4	2.2	Form factors much smaller than presented
200 fb ⁻¹	4.2	3.3	3.1	can be excluded with luminosities higher
300 fb ⁻¹	5.2	4.1	3.8	than planned for the LHC.

Very large CP-violating amplitudes can be excluded with more than 3σ at 100 fb⁻¹. This study is done for the same S/B ratio as we expect now. If the observed signal yield is higher, we can put the limit further.

Summary

- First spin and parity results start appearing in LHC experiments.
 - No decisive conclusion yet, but data start looking more like 0⁺.
 - I have only presented ATLAS results, but the CMS results look very much alike.
- Further studies of the 23.3 fb⁻¹ at 8 TeV + 5.6 fb⁻¹ at 7 TeV dataset should help us to:
 - Exclude all popular alternative hypotheses both in combinations of channels and in each channel alone.
 - The ATLAS-CMS combination will be possible.
 - Understand the gg/qq production mechanism for spin-2.
 - Start working with VBF, VH.
- By the end of 2013 we will most probably find ourselves in the situation when the J^P=0⁺ is the dominant spin and parity hypothesis.
 - Is this a Standard Model Higgs then?

Summary

- CP-violation and tensor structure of the HVV vertex: present status.
 - First limits on the observed CP-even-CP-odd mixing published by CMS.
 - With 23.3 fb⁻¹ + 5.6 fb⁻¹ it will be possible to set upper limit on the CP-violation in the Higgs sector.
 - ATLAS study shows that the exclusion of large CP-violating form factors will require a lot of data (hundreds of fb⁻¹).
- Further studies (after the re-start of the LHC)
 - Establish the dominant spin and parity in the individual channels (ZZ).
 - Searches for the CP-violation and study of the tensor structure of the HZZ vertex.
 - Likelihood fit to matrix element.
 - Study of asymmetries directly sensitive to different amplitude parts.
 - Modeling scenarios with different admixtures and excluding them (BDT).

- Important studies which were not discussed in this talk.
- Study of the spin and parity in channels with VBF, VH, ttH production mechanisms.
- Searches for the CP-violation in ttH H->µµ decay.
- Measurements of the Higgs self-couplings.
- Direct searches for additional (heavy) Higgs bosons.

ATLAS Inner Detector

The ID provides around 3 pixel, 8 SCT and 30 TRT measurements per charged track at $\eta = 0$. Coverage: $|\eta| < 2.5$ (2.0 for TRT) Allows for accurate track and vertex reconstruction. Resolution goal: $\sigma_{pT}/p_T = 0.05\% p_T \oplus 1\%$ Tracking detector with 2 Tesla solenoid field. 3 sub-detectors: (resolution) Pixel: 10/115 μ m in R ϕ /z Silicon strip (SCT): 17/580 μ m Transition radiation tracker (TRT): 130 μ m in R ϕ

- CP-odd amplitudes are naturally expected to be suppressed in the HVV coupling.
 - The channels containing the HVV coupling in the final state are hence not ideal for the CP-studies.
- Naturally remain the channels where there is no HVV couplings in the final state.
- Studies were done for ttH, H->μμ and ttA, A->μμ.
 - Too little statistics.
 - About 1σ separation between pure CP-even and CP-odd states at 3000 fb⁻¹.

Analysis structure

- All samples split in four the different final states (4μ, 4e, 2e2μ, 2μ2e);
 - Different S/B
- Cuts in m₄₁ define regions with different S/B:
 - Signal enhanced with higher S/B and bkg enhanced with lower S/B

Discriminant response

- In total, the analysis has 8 channels: (4μ; 4e; 2e2μ; 2μ2e) × (high S/B bin; low S/B bin)
- Reducible BKG
 - Same control region as in the main analysis -> normalization + discriminant responses shape.
 - From here we calculate normalizations for high and low S/B bins.