$B^0 o K^{*0} e^+ e^-$ and B_c physics at LHCb

Jibo HE

CERN

18/03/2013, Seminar @ CPPM, Marseille

- Introduction
- 2 $B^0 \to K^{*0} e^+ e^-$, new
- \bigcirc B_c physics
 - Measurement of B⁺_c production
 - Measurement of B_c⁺ mass
 - First observation of $B_c^+ \to J/\psi \pi^+ \pi^- \pi^+$
 - First observation of $B_c^+ o \psi(2S)\pi^+$
 - Prospects

Physics topics at LHCb indirect search for new physics

- Measure FCNC transitions, where New Physics is more likely to emerge, and compare to predictions
 - ▶ E.g., OPE expansion for $b \rightarrow s$ transitions

$$\mathcal{H}_{\text{eff}} = -rac{4\,G_F}{\sqrt{2}}\,V_{tb}V_{ts}^*rac{e^2}{16\pi^2}\sum_{i=1...10.S.P}(C_iO_i+C_i'O_i') + ext{h.c.}$$

- New Physics may
 - ★ modify short-distance Wilson coefficients C^(')
 - * add new operators $\sum_{i} C_{i}^{\text{NP}} O_{i}^{\text{NP}}$

and change the decay rates, angular distributions, etc

- Precision measurements of elements of the CKM matrix
 - Determine all CKM angles and sides in many different ways, any inconsistency will be a sign of New Physics

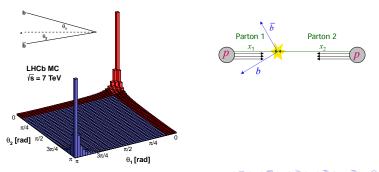
Physics topics at LHCb as general purpose forward detector

Production

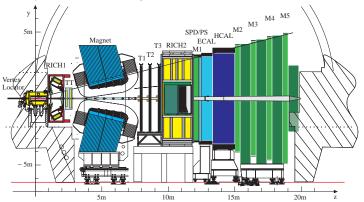
- Quarkonium, beauty and charm hadrons production, to understand their production mechanism
- Production cross-section at new energies also required to guide relevant studies

Spectroscopy

- Many particles predicted by the SM still remain to be discovered
- Exotic states, e.g., X(3872), Z(4430), where to fit?


Decay

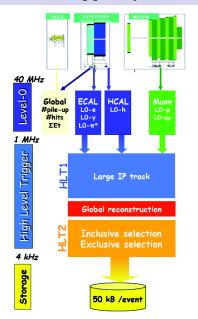
- Precision measurements of decay rates, angular distributions, etc
- New decay modes of beauty and charm hadrons
- ...
- These measurements are important as well
 - Deepen our understanding of the SM
 - Something new may appear unexpectedly


b and c production at LHC

- Large production cross-sections @ $\sqrt{s}=7$ TeV $\sigma_{pp}^{\rm inel}$ ~ 60 mb [JINST 7 (2012) P01010] $\sigma(pp \to c\bar{c}X) \sim 6$ mb [LHCb-CONF-2010-013] $\sigma(pp \to b\bar{b}X) \sim 0.3$ mb [PLB 694 (2010) 209], c.f. $\sigma(e^+e^- \to b\bar{b}) \sim 1$ nb @ $\Upsilon(4S)$
- In high energy collisions, $b\bar{b}/c\bar{c}$ pairs are produced predominantly in forward or backward directions

LHCb detector

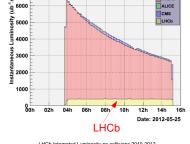
Forward spectrometer, 2<η<5


Vertex Locator Tracking (TT, T1-T3) **RICHs**

ECAL HCAL

 $\sigma_{PV,x/v} \sim$ 10 µm, $\sigma_{PV,z} \sim$ 60 µm $\Delta p/p$: 0.4% at 5 GeV/c, to 0.6% at 100 GeV/c $\varepsilon(K \to K) \sim$ 95%, mis-ID rate $(\pi \to K) \sim$ 5% **Muon system** (M1-M5) $\varepsilon(\mu \to \mu) \sim 97\%$, mis-ID rate $(\pi \to \mu) = 1 - 3\%$

 $\sigma_E/E \sim 10\%/\sqrt{E} \oplus 1\%$ (E in GeV) $\sigma_E/E \sim 70\%/\sqrt{E} \oplus 10\%$ (E in GeV)_


LHCb trigger system

- Level-0, Hardware
 - Fully synchronous at 40 MHz
 - Selection of high p_T particles
 - * $p_{\rm T}(\mu) > \sim 1.5 \,{\rm GeV}/c,$ $p_{\rm T}(\mu_1) \times p_{\rm T}(\mu_2) > \sim (1.5 \,{\rm GeV}/c)^2$
 - ★ $E_{\rm T}(h, e, \gamma) > 2.5 4 \; {\rm GeV}$
- High Level Trigger (HLT), software
 - ► Runs ~30 k processes
 - Stage 1, add tracking info, impact parameter cuts
 - Stage 2, full reconstruction + selections
- Global event cuts (GEC) applied on the hit multiplicity of sub-detectors to remove events with high occupancy.

LHCb data taking

- Luminosity levelling
 - $\mathcal{L} = 4 \times 10^{32} \text{ cm}^{-2} \text{s}^{-1} \text{ (2} \times \text{design)}$
 - Continuously adjust beam overlaps in collision region, luminosity kept flat at optimal level

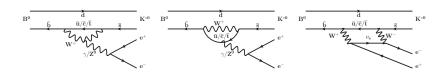
Fill 2663: Instantaneous Luminosity

ATLAS

Integrated luminosity (recorded)

▶ 2012: 2 fb⁻¹ @ \sqrt{s} = 8 TeV

▶ 2011: 1 fb⁻¹ @ \sqrt{s} = 7 TeV

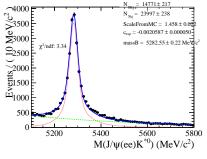

▶ 2010: 37 pb⁻¹ @ \sqrt{s} = 7 TeV

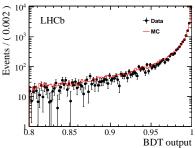
Measurement of $\mathcal{B}(B^0 \to K^{*0}\,e^+\,e^-)$ at low q^2 [LHCb-Paper-2013-005]

$B^0 o K^{*0} e^+ e^-$, motivation

FCNC process, sensitive to new physics beyond the SM

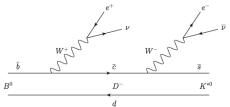
- At low $q^2 = M^2(e^+e^-)$, dilepton more likely to come from virtual photon
- In the SM, photon predominantly left-handed, right-handed component is at the 5% level [Y. Grossman, D. Pirjol, JHEP 06 (2000) 029].
- $B^0 o K^{*0} e^+ e^-$, compared to $B^0 o K^{*0} \mu^+ \mu^-$
 - electron mass negligible, formalism simpler, and also have access to lower $q^2 \Rightarrow$ more sensitivity
 - ► muon, experimentally cleaner, more easy to trigger and select ⇒ more statistics

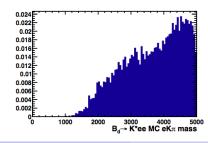

Measurement of $\mathcal{B}(B^0 \to K^{*0}e^+e^-)$ at low q^2

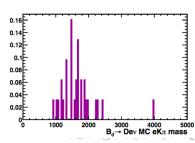

- First step towards measuring photon polarization
- Choice of the q^2 region, $M(e^+e^-)$ range 30 1000 MeV/ c^2
 - ▶ 30 MeV/ c^2 , the ϕ resolution degrades due to multiple scattering effects, and the contamination from $B^0 \to K^{*0} \gamma$, with γ converted to e^+e^- increase significantly as $q^2 \to 0$.
 - ▶ 1 GeV/ c^2 , loss sensitivity to photon polarization, also want to stay far away from the J/ψ radiative tail
- Take $B^0 o K^{*0} J/\psi(e^+e^-)$ as normalization channel, most of potentially large systematic uncertainties cancel
- Expected B
 - ► Following [Y. Grossman, D. Pirjol, JHEP 06 (2000) 029], roughly, $\mathcal{B}(B^0 \to K^{*0} e^+ e^-)^{30-1000 \text{ MeV}/c^2}$ $\sim \mathcal{B}(B^0 \to K^{*0} \gamma) \times \left(\frac{\alpha}{3\pi} log \frac{1000^2}{30^2}\right) = 2.4 \times 10^{-7}$
 - ▶ A recent calculation [S. Jager, J. Martin Camalich, arXiv:1212.2263] gives, $\mathcal{B}(B^0 \to K^{*0} e^+ e^-)^{30-1000 \text{ MeV}/c^2} = 2.43^{+0.66}_{-0.47} \times 10^{-7}$

Event selection

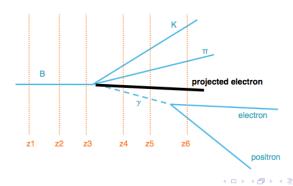
- Loose pre-selection + BDT based selection
- BDT trained with simulated $B^0 \to K^{*0} e^+ e^-$ sample for signal, and upper mass sideband in data for background
- BDT responses in data and simulation for background subtracted $B^0 \to K^{*0} J/\psi(e^+e^-)$ candidates (using J/ψ mass constraint) agrees well




12 / 55


Specific backgrounds

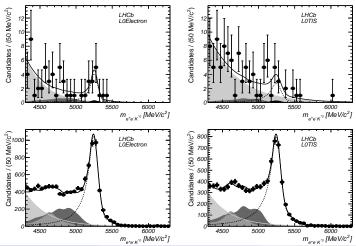
 $\bullet~B^0\to D^-e^+\nu~(\mathcal{B}$: 2.2%), with $D^-\to K^{*0}e^-\bar{\nu}~(\mathcal{B}$: 5.5%)


• Largely reduced by requiring $M(K^{*0}e^{-}) > 1.9 \text{ GeV}/c^{2}$

Specific backgrounds (cont.)

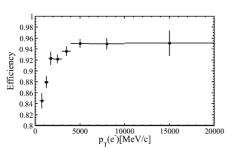
- $B^0 o K^{0*} \gamma$ (\mathcal{B} : 4.3 × 10⁻⁵), peaks under the signal peak and populates the low $M(e^+e^-)$ region
- $M(e^+e^-) > 30 \text{ MeV/}c^2$ (and previous selections) kill a large fraction but more veto cuts still needed
 - ▶ Good vertex, $\sigma_{vtx}(e^+e^-)$ < 30 mm
 - $|z_{\text{FirstExpected}} z_{\text{FirstMeasurement}}| < 30 \text{ mm}$

Fitting procedure


- Signal, sum of two Crystal Ball functions
 - Tail and resolution parameters from MC. The MC events reweighted to match relevant distributions in data
 - B mass and a scale factor accounting for different resolution in MC and data, float for $B^0 \to K^{*0} J/\psi(e^+e^-)$, then fixed for $B^0 \to K^{*0} e^+ e^-$
- Partially reconstructed backgrounds, shape from MC
 - ► Hadronic background, i.e., from higher K* resonances, ratio to the number of signal float for $B^0 \to K^{*\bar{0}} J/\psi(e^+e^-)$, then fixed for $R^0 \to K^{*0} e^+ e^-$
 - \blacktriangleright J/ ψ background, i.e., from higher charmonium states, only for $B^0 \to K^{*0}J/\psi(e^+e^-)$, ratio float
- Combinatorial background, exponential function
- The way how events are triggered at L0 affects signal resolution, background rates. Events split into two categories:
 - ► LOTIS, events Triggered Independently of the Signal (TIS)
 - ▶ L0Electron, one of the electrons fired the L0 electron line (and not L0TIS)

15/55

Signal yields


• $B^0 \to K^{*0} e^+ e^- (4.8\sigma)$ L0Electron: $15.0^{+5.1}_{-4.5}$ (4.1 σ), L0TIS: $14.1^{+7.0}_{-6.3}$ (2.4 σ)

• $B^0 \rightarrow K^{*0} J/\psi$, L0Electron: 5082 \pm 104, L0TIS: 4305 \pm 101

Efficiencies

• PID efficiencies from calibration samples, e.g., $J/\psi \rightarrow e^+e^-$ using tag-and-probe method

- ullet L0 efficiency from $B^0 o K^{*0} J/\psi(e^+e^-)$
- The rest from simulated events

Systematic uncertainty

• Systematic uncertainties on $\mathcal{B}(B^0 \to K^{*0} e^+ e^-)$ (in 10^{-7})

Source	L0Electron category	L0TIS category
Simulation sample statistics	0.06	0.05
Trigger efficiency	0.07	-
PID efficiency	0.08	0.10
Fit procedure	+0.09 -0.22	+0.07 -0.23
$B^0 \stackrel{\cdot}{ o} K^{*0} \gamma$ contamination	0.08	0.08
Total LHCb	+0.17 -0.26	+0.16 -0.27
$\mathcal{B}(B^0 \to J/\psi K^{*0})$ and $\mathcal{B}(J/\psi \to e^+e^-)$	0.21	0.17

Results and prospects

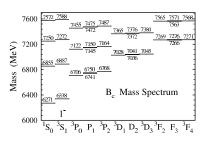
Results of each trigger category:

$$\mathcal{B}(B^0 \to K^{*0} e^+ e^-)_{\text{L0Electron}}^{30-1000~\text{MeV/c}^2} = (3.3^{+1.1}_{-1.0} \, ^{+0.2}_{-0.3} \pm 0.2 (\mathcal{B})) \times 10^{-7}$$

$$\mathcal{B}(B^0 \to K^{*0} e^+ e^-)_{\text{L0TIS}}^{30-1000~\text{MeV/c}^2} = (2.8^{+1.4}_{-1.2} \, ^{+0.2}_{-0.3} \pm 0.2 (\mathcal{B})) \times 10^{-7}$$

Combined one

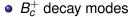
$$\mathcal{B}(B^0 \to K^{*0}e^+e^-)^{30-1000~\text{MeV/c}^2} = (3.1^{+0.9}_{-0.8} {}^{+0.2}_{-0.3} \pm 0.2(\mathcal{B})) \times 10^{-7}$$
 consistent with theoretical prediction $(2.43^{+0.66}_{-0.47}) \times 10^{-7}$ [S. Jager, J. Martin Camalich, arXiv:1212.2263]


- Sensitivity to photon polarization
 - ▶ With 2011+2012 data, about 100 signal events expected, statistical uncertainty on $\frac{A_R}{A_L}$ would be \sim 0.15, according to [J. Lefrancois, M-H. Schune, LHCb-PUB-2009-008]

B_c physics

B_c spectrum

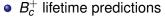
- B_c : Mesons formed by two different heavy flavour quarks, the \bar{b} quark and the c quark *
 - Unique in the Standard Model because the top quark is too heavy and decays before forming any bound states
- B_c spectrum
 - Estimated using potential models
- \bullet B_c^+ mass
 - Potential models: 6.2-6.4 GeV/c²
 [CERN-2005-005], and refs. therein
 - pQCD: 6326⁺²⁹₋₉ MeV/c²
 N. Brambilla & A. Vairo, [PRD 62 (2000) 094019]
 - Lattice QCD: 6278(6)(4) MeV/c²
 TWQCD, [arXiv:0704.3495]
 - PDG'12: 6277 ± 6 MeV/c²

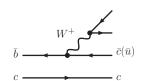


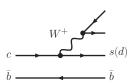
S.Godfrey, [PRD 70 (2004) 054017]

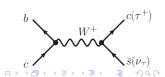
^{*}Charge conjugates implied in this talk

B_c decays

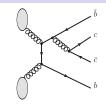

- B_c mesons' decays
 - Excited states (below BD threshold), decay through Strong or EM interactions into B_c^+
 - Ground state B_c⁺: decay only weakly


$$ar{b}
ightarrowar{c}W^+$$
 (~20%), e.g., $J/\psi(3)\pi$, $J/\psi D_s^+$ $J/\psi\ell^+\nu_\ell$


•
$$c \rightarrow sW^+$$
 (~70%), e.g., $B_s^0\pi^+$, $B_s^0\ell^+\nu_\ell$


$$ullet$$
 $car{b}
ightarrow W^+$ (~10%), e.g., $ar{K}^{*0}K^+$, ϕK^+ , $au^+ v_ au$

- Inclusive rates or Σ(exclusive rates)
- $\tau(B_c^+)_{SR} = 0.48 \pm 0.05 \text{ ps}$ V. V. Kiselev, et al., [NPB 585 (2000) 353]
- PDG'12: 0.453 ± 0.041 ps



B_c production

- B_c production
 - Difficult to generate at e⁺e⁻ colliders
 - At hadron colliders, B_c generated mainly through $gg \rightarrow B_c + b + \bar{c}$

- B_c⁺ production rate
 - ► Theoretical prediction (in nb) c.-H.Chang, et al., [PRD 71 (2005) 074012]

LHC [†] 71.1 177. (0.357, 3.21) (1.58, 14.2) 9.12 3.29 7.38 TEVATRON 5.50 13.4 (0.0284, 0.256) (0.129, 1.16) 0.655 0.256 0.560	$ (^{3}P_{2})_{1}\rangle$	$ (^{3}P_{1})_{1}\rangle$	$ (^{3}P_{0})_{1}\rangle$	$ (^{1}P_{1})_{1}\rangle$	$ (^3S_1)_8g\rangle$	$ (^1S_0)_8g\rangle$	$ (^3S_1)_{1}\rangle$	$ (^{1}S_{0})_{1}\rangle$	-
TEVATRON 5.50 13.4 (0.0284.0.256) (0.129.1.16) 0.655 0.256 0.560	20.4	7.38	3.29	9.12	(1.58, 14.2)	(0.357, 3.21)	177.	71.1	LHC [†]
12.4 (0.0204, 0.200) (0.123, 1.10) 0.000 0.200 0.000	1.35	0.560	0.256	0.655	(0.129, 1.16)	(0.0284, 0.256)	13.4	5.50	TEVATRON

- * $\sigma(^3S_1)/\sigma(^1S_0) \sim 2.5$
- ★ Colour octets and 1st P-wave contributions are small
- * $\sigma(B_c^+)_{\mathrm{LHC}}/\sigma(B_c^+)_{\mathrm{Tevatron}} \sim \mathsf{O}(10)$
- $\sigma(2S)/\sigma(1S)$ would be $|R_{2S}(0)/R_{1S}(0)|^2 \approx 0.6$
- Including contributions of these states, $\sigma(B_c^+) \sim 0.9 \ \mu b$ for $\sqrt{s} = 14 \ TeV$; or $\sim 0.4 \ \mu b$ for $\sqrt{s} = 7 \ TeV$
 - ★ ~ 10% from 1st *P*-wave states
 - \star \sim 1/3 from 2*S* states

Experimental status, mass and lifetime

Mass and lifetime

Collab.	\mathcal{L} [fb $^{-1}$]	Mode	Signal yields	Mass [MeV/c ²]	Lifetime [ps]
CDF	0.11	$J/\psi \ell^+ v$	$20.4^{+6.2}_{-5.5}$	$6400\; {\pm}390 {\pm} 130$	$\begin{array}{c} 0.46^{+0.18}_{-0.16} \pm 0.03 \\ 0.45^{+0.12}_{-0.10} \pm 0.12 \end{array}$
D0	0.21	$J/\psi \mu^+ X$	$95 \pm 12 \pm 11$	$5950^{+140}_{-130} \pm 340$	$0.45^{+0.12}_{-0.10}\pm0.12$
CDF	0.36	$J/\psi\pi^+$	14.6 ± 4.6	$6285.7 \pm 5.3 \pm 1.2$	
CDF	0.36	$J/\psi e^+ v_e$	238	_	$0.463^{+0.073}_{-0.065} \pm 0.036$
CDF	2.4	$J/\psi\pi^+$	108 ± 15	$6275.6 \pm 2.9 \pm 2.5$	· <u>—</u>
D0	1.3	$J/\psi\pi^+$	54 ± 12	$6300 \pm 14 \pm 5$	_
D0	1.3	$J/\psi\mu^+X$	881 ± 80	_	$\begin{array}{c} 0.448^{+0.038}_{-0.036} \pm 0.032 \\ 0.475^{+0.053}_{-0.049} \pm 0.018 \end{array}$
CDF	1.0	$J/\psi \ell^+ \nu$	_	_	$0.475^{+0.053}_{-0.049} \pm 0.018$
CDF	6.7	$J/\psi\pi^+$	308 ± 39	$(6274.6 \pm 2.9)^{\ddagger}$	$0.452 \pm 0.048 \pm 0.027$
LHCb	0.37	$J/\psi\pi^+$	179 ± 17	$6273.7 \pm 1.3 \pm 1.6$	_

‡fit value

Experimental status, production

Production

Collab.	\mathcal{L} [fb ⁻¹]	Signal yields	Result
CDF	0.11	$20.4_{-5.5}^{+6.2}$	$\begin{array}{l} \sigma(B_c^+) \times B(B_c^+ \to J/\psi \ell^+ \nu) \\ \overline{\sigma(B^+)} \times B(B^+ \to J/\psi K^+) \\ = 0.132^{+0.041}_{-0.037} (\text{stat.}) \pm 0.031 (\text{syst.})^{+0.032}_{-0.020} (\text{lifetime}) \end{array}$
CDF†	1.0	_	for $\rho_{\rm T}(B) > 6$ GeV/ c and $ y < 1$ $\frac{\sigma(B_c^+) \times \mathcal{B}(B_c^+ \to J/\psi \mu^+ \nu)}{\sigma(B^+) \times \mathcal{B}(B^+ \to J/\psi K^+)} = 0.227 \pm 0.033 ({\rm stat.})^{+0.024}_{-0.017} ({\rm syst.}) \pm 0.014 (\rho_{\rm T} {\rm spect.})$ for $\rho_{\rm T}(B) > 6$ GeV/ c and $ y < 1$
LHCb	0.37	162 ± 18	$\begin{array}{l} \frac{\sigma(B_c^+)\times \mathcal{B}(B_c^+\to J/\psi\pi^+)}{\sigma(B^+)\times \mathcal{B}(B^+\to J/\psi K^+)} \\ = (0.68\pm 0.10(\text{stat.})\pm 0.03(\text{syst.})\pm 0.05 (\text{lifetime}))\% \\ \text{for } \rho_T(B) > 4\text{GeV/}c\text{and}2.5 < \eta(B) < 4.5 \end{array}$

^{†:} preliminary

Experimental status, decay

Decay

	Collab.	\mathcal{L} [fb $^{-1}$]	Mode	Signal yields	Result
	LHCb	0.8	$J/\psi\pi^+\pi^-\pi^+$	135 ± 14	$\frac{\mathcal{B}(B_c^+ \to J/\psi \pi^+ \pi^- \pi^+)}{\mathcal{B}(B_c^+ \to J/\psi \pi^+)}$ = 2.41 \pm 0.30 (stat.) \pm 0.33 (syst.)
-	LHCb	1.0	$\psi(2S)\pi^+$	$20\!\pm\!5$	$\begin{array}{l} \frac{\mathcal{B}(B_c^+ \to \psi(2S)\pi^+)}{\mathcal{B}(B_c^+ \to J/\psi\pi^+)} \\ = 0.250 \pm 0.068 (\text{stat}) \pm 0.014 (\text{syst}) \pm 0.006 (\mathcal{B}) \end{array}$
-	LHCb	1.0	$D_{s}^{+}\phi$ $D^{+}K^{*0}$ $D^{+}\overline{K}^{*0}$ $D_{s}^{+}K^{*0}$	0 1 0 0	$f_c/f_u \cdot \mathcal{B}(B_c \to X)$ @ 90% CL < 0.8×10^{-6} < 0.5×10^{-6} < 0.4×10^{-6} < 0.7×10^{-6}
			$D_s^+ \overline{K}^{*0}$	1	$< 1.1 \times 10^{-6}$

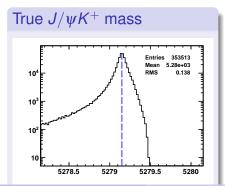
26 / 55

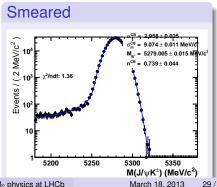
Measurement of B_c^+ production [PRL 109 (2012) 232001]

Measurement of B_c^+ production

Based on 0.37 fb⁻¹ of data taken in 2011, we measured

$$\begin{split} R_{c/u} &= \frac{\sigma(B_c^+) \times \mathcal{B}(B_c^+ \to J/\psi \pi^+)}{\sigma(B^+) \times \mathcal{B}(B^+ \to J/\psi K^+)} \\ &= \frac{N\left(B_c^+ \to J/\psi \pi^+\right)}{\varepsilon_{\text{tot}}^c} \times \frac{\varepsilon_{\text{tot}}^u}{N(B^+ \to J/\psi K^+)} \\ &= \frac{N\left(B_c^+ \to J/\psi \pi^+\right)}{N(B^+ \to J/\psi K^+)} \times \varepsilon_{\text{tot}}^{\text{rel}}, \end{split}$$

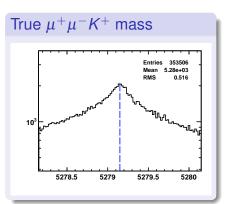

for $p_{\rm T}(B) > 4 \ {\rm GeV}/c$ and $2.5 < \eta(B) < 4.5$

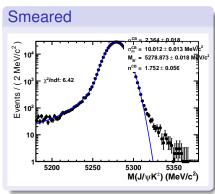

• Cut based selection, as similar as possible for B_c^+ and B^+

Signal line shape

- Studied using $B^+ \to J/\psi K^+$ generator level events
- While ignoring the J/ψ FSR, i.e., take true J/ψ momentum, signal well described by Crystal ball function:

$$CB(m|M,\sigma,\alpha,n) = \begin{cases} e^{-\frac{(m-M)^2}{2\sigma^2}}, & \text{if } \alpha \frac{m-M}{\sigma} \ge -\alpha^2 \\ \frac{\binom{n}{|\alpha|}^n e^{-\alpha^2/2}}{(\frac{n}{|\alpha|} - |\alpha| - \frac{\alpha}{|\alpha|} \cdot \frac{m-M}{\sigma})^n} & \text{for the other cases} \end{cases}$$

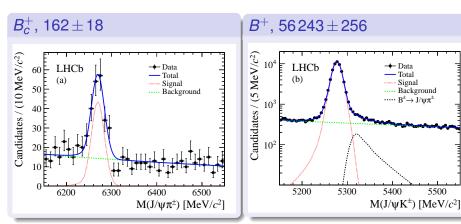

Jibo HE (CERN)


 $B^0
ightarrow K^{*0} \, e^+ \, e^-$ and B_c physics at LHCb

29 / 55

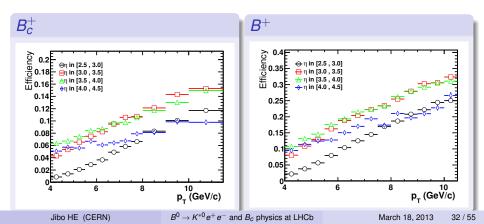
Signal line shape (cont.)

• J/ψ FSR and mass constraint vertex fit cause tail on the right side



 A double-sided Crystal ball function used as signal line shape, tail parameters parametrized as function of fitted mass resolutions.

Signal yields


- B_c^+ , a double-sided CB, $B_c^+ o J/\psi K^+$ ignored
- B^+ , two double-sided CB, $B^+ \to J/\psi \pi^+$ considered, and ratio to the number of signal fixed to 0.38%, as measured by LHCb [PRD 85 (2012) 091105]

5500

Efficiencies in bins of (p_T, η)

- $R_{c/u}$ would be biased if the predicted (p_T, η) distributions different from those in data while using the overall (relative) efficiency
- To reduce the dependence on theoretical predictions, efficiencies binned in (ρ_{Γ}, η) , signal yields in each bin obtained using sPlot
- Model independent $R_{c/u} = (0.68 \pm 0.10)\%$

Systematic uncertainties

Quantity	Systematic uncertainty (%)
Fit model	1.0
Cabbibo suppressed background	negligible
Selection	negligible
B_c^+ lifetime	7.3
GEC	negligible
Trigger	4.4
Tracking	negligible
Nuclear interaction	2.0
Weight procedure	negligible
Total	8.8

33 / 55

Results

First measurement at 7 TeV, to guide B_c studies at LHC

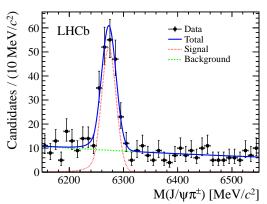
$$R_{c/u} = (0.68 \pm 0.10 \text{ (stat.)} \pm 0.03 \text{ (syst.)} \pm 0.05 \text{ (lifetime)})$$

for $p_T(B) > 4 \text{ GeV/}c$ and $2.5 < \eta(B) < 4.5$

- Comparison with theoretical prediction, taking
 - $\sigma(B_c^+) = 0.4 \, \mu b$
 - $\blacktriangleright~\mathcal{B}(B_c^+ o J/\psi\pi^+)=0.29\%$, C.-F. Qiao *et al.*, [arXiv:1209.5859]
 - $\sigma(B^+, \rho_T(B) < 40 \text{ GeV}/c, 2.0 < y < 4.5) = 41.4 \pm 1.5 \pm 3.1 \text{ μb},$ measured by LHCb [JHEP 04 (2012) 093]
 - \triangleright $\mathcal{B}(B^+ \to J/\psi K^+) = (0.1016 \pm 0.0033)\%$, PDG'12

and the efficiencies of acceptance from Monte Carlo, we obtain $R_{c/u}^{\rm Theo.} = 0.56$

before considering theoretical uncertainties.


Measurement of B_c^+ mass

[PRL 109 (2012) 232001]

35 / 55


Measurement of B_c^{\pm} mass

- Based on 0.37 fb⁻¹ 2011 data
- Selection almost the same as that used for production measurement, except
 - Trigger and η requirements removed
 - ▶ PID cut added to reduce contamination of $B_c^+ \to J/\psi K^+$
 - $\sigma_m(B_c) < 20 \text{ MeV}/c^2$

Calibration of momentum scale

• Momentum scale calibrated with J/ψ run by run, split into 5 run periods, e.g.,

• Momentum scale verified with K_S^0 , Υ , difference between J/ψ and Υ , 0.06% taken as systematic uncertainty

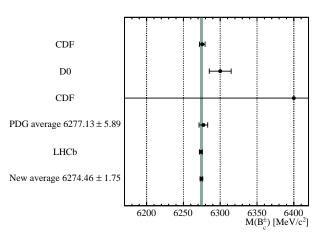
Systematic uncertainties

- Also measured the mass difference with respect to B^+ , $\Delta M = M(B_c^+) M(B^+)$, systematic uncertainties evaluated in the same way
- Summary of systematic uncertainties (in MeV/ c^2)

Source of uncertainty	$M(B_c^+)$	ΔM
Mass fitting:		
Signal model	0.1	0.1
 Background model 	0.3	0.2
Momentum scale:		
 Average momentum scale 	1.4	0.5
$-\eta$ dependence	0.3	0.1
Detector description:		
 Energy loss correction 	0.1	-
Detector alignment:		
Vertex detector (track slopes)	0.1	-
 Tracking stations 	0.6	0.3
Quadratic sum	1.6	0.6

Results, world best to date

- Mass $M(B_c^+) = 6273.7 \pm 1.3 \text{ (stat.)} \pm 1.6 \text{ (syst.)} \text{MeV}/c^2$
- Mass difference


$$\Delta M = M(B_c^+) - M(B^+) = 994.6 \pm 1.3 \text{ (stat.)} \pm 0.6 \text{ (syst.)} \text{ MeV}/c^2$$

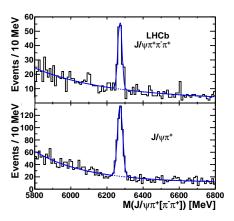
Taking the world average B^+ mass $(5279.25 \pm 0.17) \,\mathrm{MeV}/c^2$, we obtain.

$$M(B_c^+) = 6273.9 \pm 1.3 \text{ (stat.)} \pm 0.6 \text{ (syst.)} \text{MeV}/c^2$$

New world average

 LHCb result in good agreement with previous measurements and theoretical prediction, 6278(6)(4) MeV/c² TWQCD, [arXiv:0704.3495]

First observation of $B_c^+ o J/\psi \pi^+ \pi^- \pi^+$ [PRL 108 (2012) 251802]


First observation of $B_c^+ o J/\psi \pi^+ \pi^- \pi^+$

- Based on $\sim 0.8 \; \text{fb}^{-1}$ data collected in 2011
- Cut based pre-selection + S/B likelihood-ratio discrimination
- Use $B^+ o J/\psi \pi^+ \pi^- K^+$ as control channel
- Measured

$$\frac{\mathcal{B}(\mathcal{B}_{c}^{+}\to J/\psi\pi^{+}\pi^{-}\pi^{+})}{\mathcal{B}(\mathcal{B}_{c}^{+}\to J/\psi\pi^{+})} = \frac{N(\mathcal{B}_{c}^{+}\to J/\psi\pi^{+}\pi^{-}\pi^{+})}{N(\mathcal{B}_{c}^{+}\to J/\psi\pi^{+})} \times \varepsilon_{\text{tot}}^{\text{rel}}$$

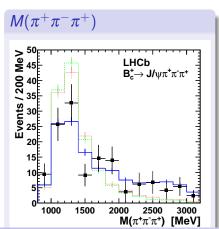
Signal yields

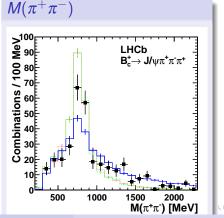
- $B_c^+ o J/\psi \pi^+ \pi^- \pi^+$, 135 ± 14, first observation
- $B_c^+ \to J/\psi \pi^+$, 414 ± 25

Ratio of branching fractions

- Total efficiencies computed from MC.
- Systematic uncertainties
 - Signal yields
 - Signal and background line shapes, 3%
 - Efficiencies
 - ★ Decay model, 9%
 - ★ Tracking efficiency, 5%
 - ★ B_c⁺ lifetime, 4%
 - ★ Trigger efficiency, 4%
- Results

$$\frac{\mathcal{B}(B_c^+ \to J/\psi \pi^+ \pi^- \pi^+)}{\mathcal{B}(B_c^+ \to J/\psi \pi^+)} = 2.41 \pm 0.30(\text{stat.}) \pm 0.33(\text{syst.})$$


Theoretical predictions:


- ho \sim 1.5 by A. Rakitin & S. Koshkarev, [PRD 81 (2010) 014005]
- $\,\blacktriangleright\,\sim 2.3$ by A. K. Likhoded & A. V. Luchinsky, [PRD 81 (2010) 014015]

$M(\pi^+\pi^-\pi^+)$ & $M(\pi^+\pi^-)$ distributions of B_c^+ signal

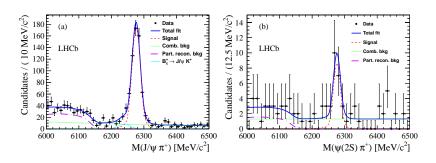
• Background subtracted invariant mass distributions (points with error bars) of $M(\pi^+\pi^-\pi^+)$ & $M(\pi^+\pi^-)$ consistent with $B_c^+ \to J/\psi a_1^+ (1260)$, with virtual $a_1^+ (1260) \to \rho^0 \pi^+$ decay model [PRD 81 (2010) 014015] [arXiv:1104.0808] used in MC (blue line)

Jibo HE (CERN)

 $B^0
ightarrow K^{*0} e^+ e^-$ and B_c physics at LHCb

March 18, 2013 45

First observation of $B_c^+ o \psi(2S)\pi^+$

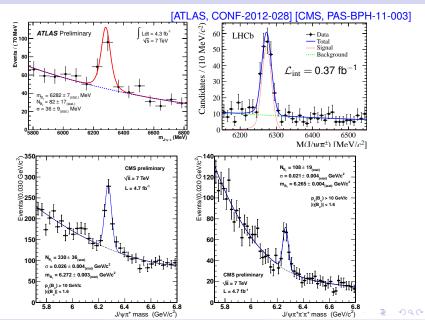

First observation of $B_c^+ o \psi(2S)\pi^+$

- Based on $\sim 1.0 \text{ fb}^{-1}$ data collected in 2011
- Cut based pre-selection + BDT
- Use $B_c^+ o J/\psi \pi^+$ as control channel
- Measured

$$\frac{\mathcal{B}(\mathcal{B}_c^+ \to \psi(2S)\pi^+)}{\mathcal{B}(\mathcal{B}_c^+ \to J/\psi\pi^+)} = \frac{\textit{N}(\mathcal{B}_c^+ \to \psi(2S)\pi^+)}{\textit{N}(\mathcal{B}_c^+ \to J/\psi\pi^+)} \times \epsilon_{tot}^{rel}$$

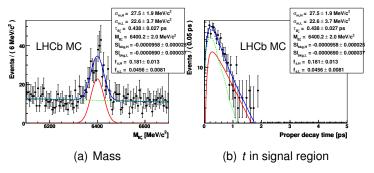
Results

• Signal yield, $B^+ o \psi(2S)\pi^+$, 20 \pm 5 (5.2 σ), first observation


Results

$$\frac{\mathcal{B}(B_c^+ \to \psi(2S)\pi^+)}{\mathcal{B}(B_c^+ \to J/\psi\pi^+)} = 0.250 \pm 0.068 \text{ (stat)} \pm 0.014 \text{ (syst)} \pm 0.006 (\mathcal{B})$$

consistent with theoretical prediction, in a range of 0.13-0.42.


B_c^+ signals from other experiments at LHC

Prospects

Prospects: Lifetime measurement with $B_c^+ \to J/\psi \pi^+$

- Based on MC studies [CERN-LHCb-2008-077]
- Acceptance determined from MC, two $p_T(B_c^+)$ bins (5-12, > 12 GeV/c) to reduce dependence on $p_T(B_c^+)$ distribution.
- Statistical uncertainty below 30 fs achievable with 1 fb⁻¹ of data
- Plots in high p_T bin:

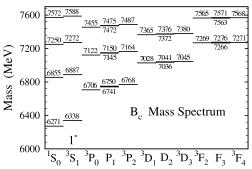
 Will also try data-driven method to determine acceptance [CERN-LHCb-2007-053]

Prospects Lifetime measurement with $B_c^+ o J/\psi \mu^+ X$

- \bullet $\,B_c^+ \to J/\psi(\mu^+\mu^-)\mu^+\nu_\mu,$ compared to $B_c^+ \to J/\psi\pi^+$
 - ► Pro
 - ★ Larger branching ratio, ~1.9%
 - \star 3 μ in the final states, easier (relatively) to reduce background Lifetime unbiased selection would be possible
 - Contra
 - Missing energy caused by neutrino, partially reconstructed. Not easy to use MC-free method to estimate background.
 - ★ Need MC to correct the missing energy while calculating the lifetime
- Tight J/ψ selection, and a tight ρ_T cut on the bachelor μ .
- Expect \sim 5 k reconstructed $B_c^+ \to J/\psi(\mu^+\mu^-)\mu^+\nu_\mu$ from 1 fb⁻¹ of data @ $\sqrt{s}=$ 7 TeV, analysis ongoing to measure B_c^+ lifetime

Prospects More topics

- B_c⁺ production
 - Measuring differential cross-section down to zero $p_{\rm T}(B)$, with 2012 data ($\sqrt{s}=8$ TeV)
- B⁺_c mass,
 - Updating with all 2011+2012 data
 - Statistical uncertainty below 0.3 MeV/c², better understanding of momentum scale to control systematic uncertainty
- ullet In the pipeline, $B_c^+ o J/\psi K^+,\, B_c^+ o J/\psi D_s^+$
- $\bullet \ B_c^+ \to B_s^0 \pi^+$
 - Self-tagged channel
 - With $B_s^0 o J/\psi \phi$ or $B_s^0 o D_s \pi$
 - Analysis with 2011+2012 data ongoing
- Annihilation


Jibo HE (CERN)

▶ Possible channel, e.g, $B_c^+ \to \bar{K}^{*0}K^+$, $\mathcal{B} \sim O(10^{-6})$, c.f., S. Descotes-Genon, et al., [PRD 80, 114031 (2009)]

Prospects, search for excited states

- $B_c^{*+} o B_c^+ \gamma$, very soft photon, difficult for LHCb
- 1st P-wave states, small cross-section, mass difference among four states are small, need more data
- 2S states, analysis with 2011+2012 data ongoing
 - ▶ $B_c(2^1S_0) \to B_c^+\pi^+\pi^-$
 - ▶ $B_c(2^3S_1) \rightarrow B_c^{*+}(B_c^+\gamma)\pi^+\pi^-$, when photon is missing, invariant mass peak shifted down by $M(B_c^{*+}) M(B_c^+)$ but not washed out

Summary

- $B^0 o K^{*0} e^+ e^-$
 - LHCb performed the 1st measurement of $\mathcal{B}(B^0 \to K^{*0} e^+ e^-)$ at low $M(e^+ e^-)$
 - Angular analysis with all 2011+2012 to measure photon polarization is ongoing
- B_c physics
 - ▶ LHCb performed the world-best measurements of B_c^+ production and mass, and observed $B_c^+ \to J/\psi \pi^+ \pi^- \pi^+, \psi(2S)\pi^+$ for the first time
 - ► Lifetime measurements, observation of several new *B*⁺_c decay modes are in the pipeline
 - Production and mass measurements are being updated, search for new decay modes and excited states are ongoing

