
Nonequilibrium effects at the QCD phase
transition

Marlene Nahrgang
SUBATECH, Nantes & FIAS, Frankfurt

with:
Marcus Bleicher, Christoph Herold, Stefan Leupold (Uppsala), Igor Mishustin

Mini-Workshop QCD, Nantes, January 2013



How to study the QCD phase diagram...

... be brave and solve

Z (T , µB) =
∫
D(A,q,q†)e−SE

QCD

ab initio and nonperturbatively,

... be strong and collide heavy
ions at ultrarelativistic energies,

... be creative and study effec-
tive models of QCD. Leff



Being brave
The critical point in lattice QCD

Crossover at µB = 0 and T = [145,165] MeV
(Wuppertal-Budapest JHEP 1009 (2010),HotQCD PoS LATTICE2010 (2010))

Fermionic sign problem at µB 6= 0→ usual MC sampling fails!
Methods to explore the T − µB–plane:

• Reweighting

(Z. Fodor, S.D. Katz, JHEP 0203 (2002)) (G. Endrodi, Z. Fodor, S. D. Katz, K. K. Szabo, JHEP 1104
(2011))

• Imaginary µB (de Forcrand, Philipsen): µc
B > 500 MeV
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Being strong
The critical point in heavy-ion collisions

Coupling of the order parameter to pions
gσππ and protons Gσp̄p⇒ fluctuations
in multiplicity distributions

〈(δN)2〉 ∝ 〈(∆σ)2〉 ∝ ξ2

ξ: correlation length of fluctuations of
the order parameter, diverges at the CP
(M. Stephanov, K. Rajagopal, E. Shuryak, PRL 81 (1998), PRD 60 (1999))

Higher cumulants are more sensitive to
the CP

〈(δN)3〉 ∝ ξ4.5

〈(δN)4〉 − 3〈(δN)2〉2 ∝ ξ7

(M. Stephanov, PLB 102 (2009), PRL 107 (2011))

(NA49 collaboration J. Phys. G 35 (2008))

(STAR collaboration, QM2012)



Being strong
The critical point in dynamic systems

long relaxation times near a critical point⇒ critical slowing down
⇒ the system is driven out of equilibrium
phenomenological equation:

d
dt

mσ(t) = −Γ[mσ(t)](mσ(t)−
1

ξeq(t)
)

with Γ(mσ) =
A
ξ0
(mσξ0)

z

z = 3
(dynamic) critical exponent

⇒ ξ ∼ 1.5− 2.5 fm

(B. Berdnikov and K. Rajagopal, PRD 61 (2000)); D.T.Son, M.Stephanov, PRD 70 (2004); M.Asakawa, C.Nonaka, Nucl. Phys. A774 (2006))



Being strong
Effects at the first order phase transition

• Instability of slow modes at the
spinodal lines
(spinodal decomposition)
(I. Mishustin, PRL 82 (1999); C. Sasaki, B. Friman,

K. Redlich, PRD 77 (2008))

• Significant amplification of
density irregularities
(J. Steinheimer, J. Randrup, PRL 109 (2012))
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Critical point

• m2
σ = ∂2V

∂σ2 → 0
• Correlation length diverges

ξ = 1
mσ
→ ∞

• Universality classes
for QCD: O(4) Ising model in
3d⇒ 〈σ2〉 ∝ ξ2

• Renormalization group
• Critical opalescence

⇒ Large event-by-event fluctuations in thermal systems!



First order phase transitions

• Two degenerate minima
separated by a barrier

• Latent heat
• Phase coexistence
• Supercooling effects in

nonequilibrium situations
• Nucleation
• Spinodal decomposition

(I.N.Mishustin, PRL 82 (1999); Ph.Chomaz, M.Colonna,

J.Randrup, Physics Reports 389 (2004))

⇒ (Large) fluctuations in single events in nonequilibrium situations!



Fluctuations are different, but all are interesting!

• Crossover: remnants of the O(4) criticality.
(V. Skokov, B. Stokic, B. Friman and K. Redlich, PRC 82 (2010), V. Skokov, B. Friman and K. Redlich, PRC 83 (2011), V. Skokov,

B. Friman and K. Redlich, PLB 708 (2012))

• Critical point: divergent event-by-event fluctuations in
thermodynamic equilibrium.

• First order phase transition: large nonstatistical fluctuations in
η/pT spectra in individual events.

Motivation: Heavy-ion collisions are dynamic, inhomogeneous and
finite in space and time.

? Can nonequilibrium effects become strong enough to develop
signals of the first order phase transition?

? Do enhanced equilibrium fluctuations at the critical point survive
the dynamics?



The linear sigma model with constituent quarks

L = q
[
iγµ∂µ − g (σ + iγ5τ~π)

]
q + 1/2

(
∂µσ

)2
+ 1/2

(
∂µ~π

)2−U (σ, ~π)

U (σ, ~π) =
λ2

4

(
σ2 + ~π2 − ν2

)2
− hqσ−U0

g = 3.3: crossover at µ = 0 g = 5.5: first order pt at µ = 0

g = 3.63: critical point at µ = 0

(O. Scavenius, A. Mocsy, I.N. Mishustin, D.H. Rischke, PRC 64 (2001); C.E. Aguiar, E.S. Fraga, T. Kodama, J.Phys.G 32 (2006))



Nonequilibrium chiral fluid dynamics - NχFD

• Langevin equation for the sigma field: damping and noise from
the interaction with the quarks

∂µ∂µσ +
δU
δσ

+ gρs + η∂t σ = ξ

• Fluid dynamic expansion of the quark fluid = heat bath, including
energy-momentum exchange

∂µT µν
q = Sν = −∂µT µν

σ

• Nonequilibrium equation of state

p = p(e, σ)

=⇒ Selfconsistent approach within the two-particle irreducible effec-
tive action!

(MN, S. Leupold, C. Herold, M. Bleicher, PRC 84 (2011))



The two-particle irreducible (2PI) effective action
Resummation of subdiagrams→ full propagators
For the σ mean field and the full quark propagators Sab

Γ[σ,S] = Scl[σ]− iTr ln S−1 − iTrS−1
0 S + Γ2[σ,S] ,

equation of motion for σ and Sab

δΓ[σ,S]

δσa = 0 and
δΓ[σ,S]

δSab = 0

give conserving transport equations if the self-energy is given by

−iΣab(x , y) = − δΓ2[σ,S]

δSab(x , y)
.

Dyson-Schwinger equation for Sab

(i /∂ −mf )S
ab(x , y)− i

∫
C

d4zΣac(x , z)Scb(z, y) = iδab
C (x − y)

(J. M. Luttinger, J. C. Ward, Phys. Rev. 118 (1960); G. Baym, L. P. Kadanoff, Phys. Rev. 124 (1961); G. Baym, Phys. Rev. 127 (1962))



The 2PI effective action

Γ2[σ,S] = g
∫
C

d4xtr(S++(x , x)σ+(x)+S−−(x , x)σ−(x))

equation of motion for the σ mean field

− δScl[σ]

δσa =
δΓ2[σ,S]

δσa = gtrSaa(x , x)

the effective action along the contour

Γ[σ,S] =gtrS++
th (x , x)∆σ(x)− T

V
ln Zth

+
∫

d4xD[σ̄](x)∆σ(x)

+
i
2

∫
d4x

∫
d4y∆σ(x)I [σ̄](x , y)∆σ(y)

with ∆σ = σ+ − σ− and σ̄ = 1/2(σ+ + σ−) on the contour.



The 2PI effective action - term by term

Γ[σ,S] =− T
V

ln Zth + gtrS++
th (x , x)∆σ(x)

+
∫

d4xD[σ̄](x)∆σ(x) +
i
2

∫
d4x

∫
d4y∆σ(x)I [σ̄](x , y)∆σ(y)

equilibrium properties, equation of state: − T
V ln Zth

lowest order in the eq. of motion for the σ field: gtrS++
th (x , x)∆σ(x)

dissipative processes:
∫

d4xD[σ̄](x)∆σ(x)

origin of fluctuations: i
2
∫

d4x
∫

d4y∆σ(x)I [σ̄](x , y)∆σ(y)



The 2PI effective action
Equilibrium properties

Ωeff = −
T
V

ln Zth = −dqT
∫ d3p

(2π)3 ln
(

1 + exp
(
−E

T

))
+ U (σ, ~π)

with dynamically generated quark masses E =
√

p2 + g2σ2



The 2PI effective action
Lowest order

trS++
th (x , x) = 2dqmq

∫ d3p
(2π)3

nF(p)
E

= ρs

equation of motion for the sigma field:

∂µ∂µσ +
δU
δσ

+ gρs = 0

equivalent to

∂µ∂µσ +
δU
δσ

+
δΩeff

δσ
= 0

(I. N. Mishustin and O. Scavenius, PRL 83 (1999); K. Paech, H. Stöcker and A. Dumitru, PRC 68 (2003))



The 2PI effective action
The damping coefficient

Solve
∫

d4xD[σ̄](x)∆σ(x) explicitly for the zero-mode:

η = g2 dq

π

(
1− 2nF

(mσ

2

)) (m2
σ

4 −m2
q)

3
2

m2
σ

below Tc :
σ→ ππ
⇒
η = 2.2/fm
(T. S. Biro and C. Greiner, PRL 79 (1997))



The 2PI effective action
The origin of fluctuations

imaginary part of Γ is interpreted as stochastic fluctuations

exp[−1
2

∫
d4x

∫
d4y∆σ(x)I(x , y)∆σ(y)]

=
∫
DξP[ξ] exp[i

∫
d4xξ(x)∆σ(x)]

P[ξ] Gaussian measure with

〈ξ〉 = 0

〈ξ(t)ξ(t ′)〉 = I−1(t ,x; t ′,y)

in white noise approximation:

〈ξ(t)ξ(t ′)〉 = 1
V

δ(t − t ′)mση coth
(mσ

2T

)



Evolution in a box

• Nonexpanding, finite heat bath
• Initialize the sigma field in equilibrium at T > Tc

• Initialize the energy density at a Tsys < Tc

• Update sigma field on the grid according to the Langevin
equation



Equilibration for a heat bath with reheating
Critical point

relaxation of the σ field

temperature

Tc = 139.8 MeV

• During relaxation of the σ-field
the temperature of the heat
bath increases.

• Coupled dynamics equilibrate
at a given Teq and σeq.

• Green curves correspond to
scenarios with Teq near Tc .
⇒ Critical slowing down!

(MN, S. Leupold, M. Bleicher, PLB 711 (2012) )



Equilibration for a heat bath with reheating
First order phase transition

relaxation of the σ field

temperature

Tc = 123.3 MeV

• Strong reheating during
relaxation of the σ-field.
• Long (initial) relaxation times

for Tsys close to the phase
transition.
• Except for the scenario with

Tsys = 20 MeV the heat bath
reheats to T > Tc .
• System gets trapped in

metastable states.

(MN, S. Leupold, M. Bleicher, PLB 711 (2012))



Fluid dynamic expansion of the heat
bath

• Very simple initial conditions: almond-shaped initial temperature
distribution, sigma field and energy density in equilibrium at T (x)

• 3+1d fluid dynamic expansion
• Update sigma field on the grid according to the Langevin

equation
• Very good energy conservation



Reheating and supercooling

relaxation of the σ field temperature

• Oscillations at the critical point
• Supercooling of the system at the first order phase transition
• Reheating effect visible at the first order phase transition

MN, M. Bleicher, S. Leupold, I. Mishustin, arXiv:1105.1962



Intensity of sigma fluctuations
in single events

dNσ

d3k
=

(ω2
k |σk |2 + |∂t σk |2)
(2π)32ωk

ωk =
√
|k |2 + m2

σ

mσ =
√

∂2Veff/∂σ2|σ=σeq

deviation from equilibrium

critical point

first order phase transition

MN, M. Bleicher, S. Leupold, I. Mishustin, arXiv:1105.1962



Pion fluctuations

So far: pion fluctuations were not considered and ~π = 〈~π〉 = 0.
Propagate pion fluctuations, too:

critical point first order phase transition

Larger pion fluctuations in a scenario with a first order phase
transition!



Realistic initial conditions

initial conditions from the hybrid UrQMD+hydro approach
(profiles from Pb+Pb at Elab = 40A GeV)
(H.Petersen et al. PRC 78 (2008))

energy density e sigma field σ



Dynamic domain formation
First order phase transition

Sigma field fluctuations: ∆σ =
√
(σ− σeq)2

• Highly supercooled state at t = 4.0 fm/c.
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Dynamic domain formation
First order phase transition

Sigma field fluctuations: ∆σ =
√
(σ− σeq)2

• Highly supercooled state at t = 4.0 fm/c.
• Dynamic formation of domains at t = 5.6 fm/c.
• Dynamic decay of domains at t = 7.2 fm/c.

This could lead to non-statistical fluctuations in hadron multiplicities.



Trajectories and isentropes at finite µB

event averaged

• Grey: equilibrium isentropes (s/n = const.),
color: 〈T 〉-〈µB〉 trajectories from simulations.

• Fluid trajectories differ from the (equilibrium) isentropes due to
interaction with the fields.



Evolution of quark number density
Crossover - critical point

initial density

(work in progress C. Herold, MN, I. Mishustin, M. Bleicher)
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Formation of high quark number density domains
First order phase transition

during the evolution initial density

after t = 12 fm

(work in progress C. Herold, MN, I. Mishustin, M. Bleicher)



Dynamic enhancement of event-by-event fluctuations
Event-by-event fluctuations temperature

correlation length from
G(r ) ∝ exp(−r/ξ)

• Dynamic correlation length
grows up to ' 2.5 fm.

• Enhanced event-by-event
fluctuations of the order
parameter, 〈σ2

V〉 ∝ ξ2.
• Initial fluctuations are washed

out during the first 1 fm.
• Delay between the averaged Tc

and the peak in ξ and 〈σ2
V〉.



Not included (yet)

not presented:

• Polyakov-loop extended NχFD
(C. Herold, MN, I. Mishustin, M. Bleicher, arXiv:1301.1214)

• Effects of the inhomogeneity of the system
(MN, C. Herold, M. Bleicher, arXiv:1301.2577)

not included:

• Quantum dynamics (e. g. J. Berges et al., PRL 107 (2011) 061301)

• Fluid dynamic fluctuations and viscosities
(J. Kapusta, B. Mueller, M. Stephanov, PRC 85 (2012); Acta Phys. Polon. B 43 (2012))

• Final state interaction
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• Dynamic domain formation (σ and n) at the first order phase
transition.

? Can nonequilibrium effects become strong enough to develop
signals of the first order phase transition?

• Dynamic correlation length ξ grows up to ' 2.5 fm.
• Dynamic enhancement of event-by-event-fluctuations of the
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Summary

• Dynamic domain formation (σ and n) at the first order phase
transition.

X Yes, nonequilibrium dynamics can lead to signals at the first
order phase transition!

• Dynamic correlation length ξ grows up to ' 2.5 fm.
• Dynamic enhancement of event-by-event-fluctuations of the

order parameter (σ) at the critical point.
X Yes, the critical fluctuations develop even in the situation of a

nonequilibrium, dynamic simulation of heavy-ion collisions!



Energy-momentum conservation

for the full propagator:

∂µ(T
µν
q + T µν

σ ) = 0

HERE, approximation of an ideal
fluid and the source term

∂µT µν
q =gtrS++

th (x , x)

= −∂µT µν
σ = Sν

first order phase transition

critical point

(MN, M. Bleicher, S. Leupold, I. Mishustin, arXiv:1105.1962)



Energy transfer between the field and the heat bath

∆Ediss ' −∂µT µ0
σ ∆t = (gρs + η∂t σ)∂t σ∆t

The total energy of the σ field

Eσ = 1/2∂t σ
2 + 1/2~∇σ2 + U(σ)

first order phase transition
quench from T = 160 MeV to

T = 100 MeV

critical point
quench from T = 160 MeV to

T = 130 MeV


