Reaction-diffusion approach in soft diffraction

Rodion Kolevatov

in collaboration with Konstantin Boreskov (ITEP) and Larissa Bravina (Oslo)

Based on EPJC71-1757(1105.3673), 1212.0691 and A.B.Kaidalov Phys.Rep. 50N3 (1979) 157.

Outline

(1) What is the diffraction.

- Diffraction of light.
- Elastic diffraction of hadrons
- Inelastic diffraction
(2) Some words about Reggeons
- The Pomeron
- Ladder graphs
- Formulation of the RFT
(3) The reaction-diffusion (stochastic) approach
- The approach
- Numerical method
(4) Data description
- Parameters of the approach
- Calculation results

Diffraction of light

Amplitude of the diffracted wave:

$$
\begin{gathered}
A(\theta) \sim \int f(r, \theta) e^{i k r \cos \phi \sin \theta} r d r d \phi \\
A(\theta) \sim \int f(\vec{r}) e^{i \vec{k}_{\perp} r} d^{2} \vec{r}, \quad k_{\perp} \equiv k \sin \theta
\end{gathered}
$$

The intencity: $I(\theta) \sim A(\theta)^{2}$
Hankel transform:

$$
\begin{gathered}
g(q)=2 \pi \int_{0}^{\infty} f(r) J_{0}(2 \pi q r) r d r ; \quad f(r)=2 \pi \int_{0}^{\infty} q(q) J_{0}(2 \pi q r) q d q \\
f(r)=\theta(a-r) \Rightarrow g(q)=\frac{a J_{1}(2 \pi a q)}{q} \\
f(r)=e^{-\pi r^{2}} \Rightarrow \underset{\text { R. Kolevatov }}{g(q)=e^{-\pi q^{2}}} \\
\text { RD aproach in soft diffraction }
\end{gathered}
$$

Diffraction of light.

Elastic diffraction of hadrons
Inelastic diffraction

Diffraction of light

$$
f(\vec{r}) \sim \theta(R-r)(\text { a round hole }) \Rightarrow I \sim\left(R J_{1}\left(k_{\perp} R\right) / k_{\perp}\right)^{2}
$$

Diffraction of light

$$
f(\vec{r}) \sim \theta(R-r)(\text { a round hole }) \Rightarrow I \sim\left(R J_{1}\left(k_{\perp} R\right) / k_{\perp}\right)^{2}
$$

With growth of hole radius R the fall is steeper and the "dip" moves to lower k_{\perp}

Diffraction of light

$$
f(\vec{r}) \sim \theta(R-r)(\text { a round hole }) \Rightarrow I \sim\left(R J_{1}\left(k_{\perp} R\right) / k_{\perp}\right)^{2}
$$

With growth of hole radius R the fall is steeper and the "dip" moves to lower k_{\perp}

Elastic scattering - shrinkage of diffractive cone

A similar picture in $p p(\bar{p})$ elastic scattering (elastic diffraction):

... shrinkage of the diffractive cone and a displacement of the "dip".

Geometrical models

The $p p$ elastic amplitude: $M(q) \simeq i D(q)(\Im M(q) \gg \Re M(q))$ Fourier transform: $f(Y, \mathbf{b})=\frac{1}{(2 \pi)^{2}} \int d^{2} q e^{-i \mathbf{q} \mathbf{b}} D(Y, \mathbf{q})$. $f(Y, \mathbf{b})$ is similar to the opacity in optics:

$$
\sigma^{\mathrm{el}}=\int \frac{d^{2} q}{(2 \pi)^{2}}|M(Y, \mathbf{q})|^{2}=\int d^{2} b|f(Y, \mathbf{b})|^{2} .
$$

Optical theorem: $\sigma^{\text {tot }}(Y)=2 \Im M(Y, \mathbf{q}=0)=2 \int d^{2} b f(Y, \mathbf{b})$,
Definition $\sigma^{\text {inel }}(b) \equiv 2 f(\mathbf{b})-|f(\mathbf{b})|^{2}$
Unitarity constraint: $0<f(b)<2 \quad \Rightarrow \quad 0 \leq \sigma^{\text {inel }}(b) \leq 1$
Interpretation: $\sigma^{\text {inel }}(b) \equiv$ probability of inelastic interaction

Geometrical models

Unitarity limit: $f(b)=2 \theta(R-b) \Rightarrow \sigma^{\text {inel }}(b)=0$.
Black disk limit: $f(b)=\theta(R-b) \Rightarrow \sigma^{\text {inel }}(b)=\theta(R-b), \sigma^{\text {el }}=1 / 2 \sigma^{\text {tot }}$.
The data suggest:

- Approx. constant opacity at small b (presence of dip)
- Spreading in b of constant opacity region with the growth of energy (shrinkage of diffracitve cone).
- The inelastic profile in the center is close to the upper limit (e.g. $\sigma^{\text {inel }}(b)=0.94$ at $\sqrt{s}=53 \mathrm{GeV}$)

Diffraction of light.

Inelastic diffraction - a special case of inelastic event

Example Event Displays from CDF Run II

Illustration: talk by Chris Quigg at Spaatind'2012

Inelastic diffraction

- Single diffraction

- Double diffraction ch,
- Central diffraction

$\Delta y_{\text {gap }}=\ln s / M_{X}^{2}-$ rapidity gap

s-channel view on small- M_{X}^{2} diffraction

Amplitudes for scattering into elastic and diffractive channels can be organized into a matrix $\left\|M_{i k}\right\| \simeq i\left\|D_{i k}\right\|$;
D_{11} - elastic amplitude; $D_{1 k}$-dissociation to ch. k.
Orthogonal transformation: $D=Q F Q^{T} ; \quad F_{i j}=F_{i} \delta_{i j}, Q Q^{T}=I$.
Interpretation (Good and Walker '60):

- $|p\rangle=\sum Q_{1 k}|k\rangle$ - superposition of eigenstates with different scattering amplitudes;
- Eigenstates $|k\rangle$ undergo only elastic scattering.

Good-Walker formalism, example

Example: 2 channels.

$$
\begin{gathered}
|p\rangle=\alpha_{1}|1\rangle+\alpha_{2}|2\rangle ; \quad \alpha_{1}^{2}+\alpha_{2}^{2}=1 \\
D_{11}=\alpha_{1}^{2} F_{1}+\alpha_{2}^{2} F_{2} ; \quad D_{12}=\alpha_{1} \alpha_{2}\left(F_{2}-F_{1}\right) \\
\sigma^{\text {tot }}=2 \int d^{2} b\left[\alpha_{1}^{2} F_{1}(b)+\alpha_{2}^{2} F_{2}(b)\right] ; \quad \sigma^{\text {el }}=\int d^{2} b\left[\alpha_{1}^{2} F_{1}(b)+\alpha_{2}^{2} F_{2}(b)\right]^{2} \\
\sigma^{\mathrm{SD}}=\int d^{2} b\left[\alpha_{1} \alpha_{2}\left(F_{1}(b)-F_{2}(b)\right)\right]^{2}
\end{gathered}
$$

Lessons from the example

Diffraction:

1: Has a peripheral nature
2: Sensitive to the shape of the edge
3: In case elastic amplitude saturates at black disc limit (growing disc) - In s growth with c.m. energy (growing ring).

Lessons from the example

Diffraction:

1: Has a peripheral nature
2: Sensitive to the shape of the edge
3: In case elastic amplitude saturates at black disc limit (growing disc) - In s growth with c.m. energy (growing ring).

Now let us turn to high- M^{2} diffraction...

Power-like contributions to the amplitude

PDG fit:
$\sigma_{\text {tot }}^{p p(\bar{p})}=18.3 s^{0.095}+60.1 s^{-0.34} \pm 32.8 s^{-0.55}$

Optical theorem:
$\sigma_{\text {tot }}=\frac{1}{s} 2 \Im A_{e l}(q=0) \equiv 2 \Im M_{e l}(q=0)$
Indication: High energy elastic scattering goes via quasiparticle, "Reggeon", exchanges with powerlike asymptotic in c.m.energy. Leading contirbution - Pomeron, $M_{\mathbb{P}} \sim s^{\Delta}, \Delta>0$.
Caveat: Single Pomeron exchange violates Froissart bound $\left(\sigma_{t o t} \lesssim C \ln ^{2} s\right)$

s-channel $\left(s \rightarrow \infty, \quad t=Q^{2}\right.$ small) dominant contributions

Analiticity\&unitarity:

- Power-like terms come from poles in the complex L plane of the t-channel amplitude, Pomeron $=$ the rightmost singularity
Field theories ($\left.\varphi^{3}, \mathrm{QCD}\right)$:

For phenomenological applications: $\mathbb{R} / \mathbb{P}=$ exchange of a "ladder" structure in the t-channel with ordering of the ladder rungs in rapidity $y=1 / 2 \ln p_{+} / p_{-}$

The Pomeron

The 1-Pomeron exchange amplitude:

$$
M_{1 \mathbb{P}} \sim i \frac{\exp (\Delta y) \exp \left(-\frac{b^{2}}{4 \alpha^{\prime} y}\right)}{4 \pi \alpha^{\prime} y}
$$

- Growing energy behaviour
\Rightarrow Ensures growth of the cross sections
- Diffustion in the transverse plane
\Rightarrow Ensures growth of the interaction radius
- Iteration of the \mathbb{P} exchanges ensures the Froissart bound

Contributions to $\sigma_{\text {tot }}$

Contributions to imaginary part (Cutkosky rules):

- Cut the diagram for the elastic scattering amplitude
- Put cut lines on the mass shell, integrate over the phase space Single "ladder" exchange - uniform rapidity distribution

Double "ladder"

elastic+low- M^{2} DD

abs. corrections to $2 \Im T_{1}$ double $d N / d y$
$\xrightarrow[\ln \mathrm{s} / \mathrm{s}_{0}]{\stackrel{\text { ШШШШ ШلШ }}{\longleftrightarrow}} y$

Iterating ladders slows the growth:

$$
\text { from } \sigma_{\text {tot }} \sim s^{\Delta} \text { down to } \sigma_{\text {tot }} \sim \ln ^{2} s
$$

Contributions to $\sigma_{\text {tot }}$

Rapidity gaps - splitting of the "ladder":
Single diffraction dissociation

Double diffraction dissociation

$\mathrm{y}_{8 \mathrm{gp}}=\ln \frac{\mathrm{SS}_{0}}{\mathrm{M}_{1}^{2} \mathrm{M}_{2}^{2}}$
other cut of same graph
$\xrightarrow[\text { double } \frac{\mathrm{dN}}{\mathrm{dy}}]{\text { ШШШШ }}$

+ abs. corrections

+ abs. corrections
+ abs. corrections

RFT

Reggeon Field Theory $=$ the theory of the Pomeron (Reggeon) exchanges and interactions. The underlying principles of the RFT are analyticity and t-channel unitarity of the elastic amplitude.

- Attractive features from the phenomenological point of view:
- Gives reliable quantitative predictions of hadronic X-sections
- Different cuts of the RFT diagrams define X-sections of various inelastic processes via AGK rules
- Provides an intuitive understanding of HE interactions.
- $\ln ^{2} s$ growth of the total cross sections due to diffusion of \mathbb{P}_{s} in the transverse plane
- Events with rapidity gaps correspond to certain cuts of the graphs with \mathbb{R} / \mathbb{P} interactions (enhanced and loop graphs)
Enhanced and loop contributions become essential also for the elastic amplitude with growth of c.m. energies; untrivial task, under investigation by several groups (Ostapchenko, Khoze et al.,
Poghosyan; also Lund group non-RFT approach).

Contribution of diffractive cut

Lowest order contribution:

$$
\frac{d^{2} \sigma_{S D}}{d t d\left(M^{2} / s\right)} \sim\left(\frac{M^{2}}{s}\right)^{-1-\Delta} s^{\Delta} \Rightarrow \sigma_{S D}\left(M^{2} / s<\alpha\right) \sim s^{\Delta}
$$

Absorptive corrections:

Alternatives:

- Introduce reg. scale and compute order by order
- Use specific models with tuned $m \mathbb{P} \rightarrow n \mathbb{P}$ vertices \rightarrow transforms power-like behaviour of Pomeron propagator to $\sim \ln ^{2}$.
- Use effective approaches.

RFT

The elastic amplitude $T=A /(8 \pi s)$ is factorized:

$$
T=\sum_{n, m} V_{n} \otimes G_{n m} \otimes V_{m}
$$

$G_{m n}$ - process independent, obtained within 2D+1 field theory (only \mathbb{P}):

$$
\mathcal{L}=\frac{1}{2} \phi^{\dagger}\left(\overleftarrow{\partial_{y}}-\overrightarrow{\partial_{y}}\right) \phi-\alpha^{\prime}\left(\nabla_{\mathbf{b}} \phi^{\dagger}\right)\left(\nabla_{\mathbf{b}} \phi\right)+\Delta \phi^{\dagger} \phi+\mathcal{L}_{i n t}
$$

Minimal choice (classic): $\mathcal{L}_{\text {int }}=i r_{3 p} \phi^{\dagger} \phi\left(\phi^{\dagger}+\phi\right)$
Infinite \sharp of vertices [KMR, Ostapchenko, MP+ABK]: $r_{m n} \phi^{m} \phi^{\dagger n}$
Fine tuning of the vertices, some contributions neglected

RFT

The elastic amplitude $T=A /(8 \pi s)$ is factorized:

$$
T=\sum_{n, m} V_{n} \otimes G_{n m} \otimes V_{m}
$$

$G_{m n}$ - process independent, obtained within 2D+1 field theory (only \mathbb{P}):

$$
\mathcal{L}=\frac{1}{2} \phi^{\dagger}\left(\overleftarrow{\partial_{y}}-\overrightarrow{\partial_{y}}\right) \phi-\alpha^{\prime}\left(\nabla_{\mathbf{b}} \phi^{\dagger}\right)\left(\nabla_{\mathbf{b}} \phi\right)+\Delta \phi^{\dagger} \phi+\mathcal{L}_{i n t}
$$

Minimal choice (classic): $\mathcal{L}_{\text {int }}=i r_{3 P} \phi^{\dagger} \phi\left(\phi^{\dagger}+\phi\right)$
Infinite $\#$ of vertices [KMR, Ostapchenko, MP+ABK]: $r_{m n} \phi^{m} \phi^{\dagger n}$
"Almost minimal": $i r_{3 P} \phi^{\dagger} \phi\left(\phi^{\dagger}+\phi\right)+\chi \phi^{\dagger^{2}} \phi^{2}$ the reaction-diffusion approach is applicable for numerical computation of all-loop Green functions. [Grassberger'78; K.B. $\left.{ }^{\prime} 01\right]_{\overline{\underline{\underline{E}}}}$

The reaction-diffusion (stochastic) approach.

Consider a system of classic "par-
tons" in the transverse plane with:

- Diffusion (chaotical movement) D;
- Splitting (λ - prob. per unit time)
- Death (m_{1})
- Fusion $\left(\sigma_{\nu} \equiv \int d^{2} b p_{\nu}(b)\right)$
- Annihilation ($\left.\sigma_{m_{2}} \equiv \int d^{2} b p_{m_{2}}(b)\right)$

$\rightarrow \otimes$

30

Parton number and positions are described in terms of probability densities $\rho_{N}\left(y, \mathcal{B}_{N}\right)\left(N=0,1, \ldots ; \mathcal{B}_{N} \equiv\left\{b_{1}, \ldots, b_{N}\right\}\right)$
with normalization $p_{N}(y) \equiv \frac{1}{N!} \int \rho_{N}\left(y, \mathcal{B}_{N}\right) \prod d \mathcal{B}_{N} ; \quad \sum_{0}^{\infty} p_{N}=1$.

Inclusive distributions

S-parton inclusive distributions:

$$
f_{s}\left(y ; \mathcal{Z}_{s}\right)=\sum_{N} \frac{1}{(N-s)!} \int d \mathcal{B}_{N} \rho_{N}\left(y ; \mathcal{B}_{N}\right) \prod_{i=1}^{s} \delta\left(\mathbf{z}_{i}-\mathbf{b}_{i}\right)
$$

$\int d \mathcal{Z}_{s} f_{s}\left(y ; \mathcal{Z}_{s}\right)=\sum \frac{N!}{(N-s)!} p_{N}(y) \equiv \mu_{s}(y)$. - factorial moments.
Example: Start with a single parton with only diffusion and splitting allowed.

$$
f_{1}^{1 \text { parton }}(y, b)=\frac{\exp (\lambda y) \exp \left(-b^{2} / 4 D y\right)}{4 \pi D y}
$$

- the bare Pomeron propagator.

The set of evolution equations for $f_{s}\left(\mathcal{Z}_{s}\right),(s=1, \ldots)$ coincides with the set of equations for the Green functions of the RFT.

The amplitude.

Green functions:
$f_{s}\left(y ; \mathcal{Z}_{s}\right) \propto \sum_{m} \int d \mathcal{X}_{m} V_{m}\left(\mathcal{X}_{m}\right) G_{m n}\left(0 ; \mathcal{X}_{m} \mid y ; \mathcal{Z}_{n}\right) ;$
$f_{m}\left(y=0, \mathcal{X}_{m}\right) \propto V_{m}\left(\mathcal{X}_{m}\right)$ - particle-mPomeron ${ }^{0}$ vertices

The amplitude $\left(g(b) \text { assumed narrow; } \int g(b) d^{2} b \equiv \epsilon\right)^{\mathrm{y}}$: $T(Y)=\langle A| T|\tilde{A}\rangle=$
$=\sum_{s=1}^{\infty} \frac{(-1)^{s-1}}{s!} \int d \mathcal{Z}_{s} d \tilde{\mathcal{Z}}_{s} f_{s}\left(y ; \mathcal{Z}_{s}\right) \tilde{f}_{s}\left(Y-y ; \tilde{\mathcal{Z}}_{s}\right) \prod_{i=1}^{s} g\left(\mathbf{z}_{i}-\tilde{\mathbf{z}}_{i}-\mathbf{b}\right)$.
It does not depend on the linkage point \boldsymbol{y} ("boost invariance") if

$$
\lambda \int g(b) d^{2} b=\int p_{m_{2}}(b) d^{2} b+\frac{1}{2} \int p_{\nu}(b) d^{2} b
$$

Correspondence RFT-Stochastic model

We use the simplest form of $g(b), p_{m_{2}}(b)$ and $p_{\nu}(b)$:

$$
\begin{gathered}
p_{m_{2}}(\mathbf{b})=m_{2} \theta(a-|\mathbf{b}|) ; \quad p_{\nu}(\mathbf{b})=\nu \theta(\mathbf{a}-|\mathbf{b}|) ; \\
g(\mathbf{b})=\theta(a-|\mathbf{b}|) ;
\end{gathered}
$$

with a - some small scale; $\epsilon \equiv \pi a^{2}$.

RFT	stochastic model
Rapidity y	Evolution time y
Slope α^{\prime}	Diffusion coefficient D
$\Delta=\alpha(0)-1$	$\lambda-m_{1}$
Splitting vertex $r_{3 P}$	$\lambda \sqrt{\epsilon}$
Fusion vertex $r_{3 P}$	$\left(m_{2}+\frac{1}{2} \nu\right) \sqrt{\epsilon}$
Quartic coupling χ	$\frac{1}{2}\left(m_{2}+\nu\right) \epsilon$

Few things to note:
Boost invariance $\left(\lambda=m_{2}+\frac{\nu}{2}\right) \Leftrightarrow$ equality of fusion and splitting vertices The $2 \rightarrow 2$ vertex cannot be set to zero ($m_{2}, \nu>0$).

Summary of the stochastic approach I

Peculiarities of the approach:

- Presence of the triple and $2 \rightarrow 2$ couplings
- Regularization scale (equivalient to the cutoff or the Pomeron size) enters via parton interaction distance ($\left.g(b), p_{m_{2}}(b), p_{\nu}\right)$.
- \mathbb{P} exchanges only
- Neglect of the real part of the \mathbb{P} exchange amplitude.

Summary of the stochastic approach II

In theory: One could compute numerically the whole set of the RFT Green functions and use them for constructing amplitude and all possible cuts. However, this is practically impossible - too expencive numerically.
In practice: It is possible to compute numerically certain convolututions of RFT Green function which correspond to:

- the elastic scattering amplitude
- the single diffractive cut of the amplitude.

For calculation of the SD cut we rely on the AGK result for the lower block: its independence on the position of the cut.

Calculation method - the amplitude I

Key: compute the amplitudes of interest event-by-event (not f_{s}).

- N-channel eikonal vertices \Rightarrow
\Rightarrow Superposition of N Poissons in parton \sharp distribution
- MC evolution upto the given rapidity \Rightarrow
\Rightarrow A sample of partons at certain positions

$$
f_{s}^{\text {sample }}\left(\mathcal{Z}_{s}\right)=\sum_{\left\{\hat{\mathbf{x}}_{i_{1}}, \ldots, \hat{\mathbf{x}}_{i_{s}}\right\} \in \hat{\mathcal{X}}_{N}} \delta\left(\mathbf{z}_{1}-\hat{\mathbf{x}}_{i_{1}}\right) \ldots \delta\left(\mathbf{z}_{s}-\hat{\mathbf{x}}_{i_{s}}\right)
$$

Calculation method - the amplitude I

Key: compute the amplitudes of interest event-by-event (not f_{s}).

- N-channel eikonal vertices \Rightarrow
\Rightarrow Superposition of N Poissons in parton \sharp distribution
- MC evolution upto the given rapidity \Rightarrow
\Rightarrow A sample of partons at certain positions

$$
f_{s}^{\text {sample }}\left(\mathcal{Z}_{s}\right)=\sum_{\left\{\hat{\mathbf{x}}_{i_{1}}, \ldots, \hat{\mathbf{x}}_{i_{s}}\right\} \in \hat{\mathcal{X}}_{N}} \delta\left(\mathbf{z}_{1}-\hat{\mathbf{x}}_{i_{1}}\right) \ldots \delta\left(\mathbf{z}_{s}-\hat{\mathbf{x}}_{i_{s}}\right)
$$

Instead of doing this ...
$T^{e l}=\sum_{n, s, k} \frac{(-1)^{s-1}}{s!} \underbrace{P_{n}(\mathcal{X}) \otimes f_{n s}(\mathcal{X} \mid \mathcal{Z})}_{f_{s}(y, \mathcal{Z})} \otimes \prod g(\mathcal{Z}-\tilde{\mathcal{Z}}) \otimes \underbrace{\tilde{f}_{k s}(\tilde{\mathcal{X}} \mid \tilde{\mathcal{Z}}) \otimes \tilde{P}_{k}(\tilde{\mathcal{X}})}_{\tilde{f}_{s}(Y-y, \tilde{Z})}$

Calculation method - the amplitude I

Key: compute the amplitudes of interest event-by-event (not f_{s}).

- N-channel eikonal vertices \Rightarrow
\Rightarrow Superposition of N Poissons in parton \sharp distribution
- MC evolution upto the given rapidity \Rightarrow
\Rightarrow A sample of partons at certain positions

$$
f_{s}^{\text {sample }}\left(\mathcal{Z}_{s}\right)=\sum_{\left\{\hat{\mathbf{x}}_{i_{1}}, \ldots, \hat{\mathbf{x}}_{i_{s}}\right\} \in \hat{\mathcal{X}}_{N}} \delta\left(\mathbf{z}_{1}-\hat{\mathbf{x}}_{i_{1}}\right) \ldots \delta\left(\mathbf{z}_{s}-\hat{\mathbf{x}}_{i_{s}}\right)
$$

... we do this:

$$
\begin{gathered}
T^{e l}=\sum_{n, k} P_{n}(\mathcal{X}) \otimes \underbrace{\sum_{s} \frac{(-1)^{s-1}}{s!} f_{n s}(\mathcal{X} \mid \mathcal{Z}) \otimes \prod g(\mathcal{Z}-\tilde{\mathcal{Z}}) \otimes \tilde{f}_{k s}(\tilde{\mathcal{X}} \mid \tilde{\mathcal{Z}})}_{T_{\text {sample }}} \otimes \tilde{P}_{k}(\tilde{\mathcal{X}}) . \\
T_{\text {sample }}^{e l}=\sum_{s=1}^{N_{\text {min }}}(-1)^{s-1} \sum_{i_{1}<i_{2} \ldots<i_{s}} \sum_{j_{1}<\ldots<j_{s}} g_{i_{1} j_{1}} \ldots g_{i_{s} j_{s}} .
\end{gathered}
$$

Calculation method - the amplitude II

Setting the linkage point to full rapidity interval $y=Y$ simplifies the calculation: $\mathscr{f}_{s}\left(y=0, \mathcal{Z}_{s}\right)=N_{s}\left(\mathcal{Z}_{s}\right) / \epsilon^{s / 2}$ and the MC average involves evolution from only one side:

$$
\begin{gathered}
T^{e l}=\sum_{n} P_{n}(\mathcal{X}) \otimes \underbrace{\sum_{s} \frac{(-1)^{s-1}}{s!} f_{n s}(\mathcal{X} \mid \mathcal{Z}) \otimes \prod g(\mathcal{Z}-\tilde{\mathcal{X}}) \otimes \tilde{P}_{s}(\tilde{\mathcal{X}})}_{T_{\text {sample }}} . \\
T_{\text {sample }}^{e l}=\sum_{s=1}^{N}(-1)^{s-1} \tilde{\mu}_{s} \epsilon^{s} \sum_{i_{1}<i_{2} \ldots<i_{s}} \tilde{p}_{s}\left(\hat{\mathbb{x}}_{i_{1}}-\mathbf{b}, \ldots, \hat{\mathrm{x}}_{i_{s}}-\mathbf{b}\right) .
\end{gathered}
$$

Calculation method - the SD cut

For the SD cut substituting "event-by-event Green functions" gives

$$
T_{\text {sample }}^{S D}=2 T_{\text {sample }}^{e l}-T_{\text {sample }}^{\prime}
$$

$T_{\text {sample }}^{\prime}$ is computed the same way as $T_{\text {sample }}^{e l}$ with two distinctions:

- Not one, but two sets from the projectile side
- which are evolved independently until the $\Delta y_{g a p}$ and then combined into a single one
Resumé: The elastic scattering amplitude and its SD cut are computed within the same numerical framework.

Model parameters

- Two-channel eikonal $p-n \mathbb{P}$ vertices to incorporate low- M^{2} diffraction
- Account the secondary Reggeons contribution to the lowest order
- Neglect the real part of the Pomeron exchange amplitude (keeping it for the secondary Reggeons)
- Neglect central diffraction in calculation of SD cross sections (CD contribution is accounted twice in calculation of 2-side SD, the extra contribution should have been subtracted).

Model parameters

$r_{3 \mathbb{P}}$ - fixed [Kaidalov'79]
a - regularization scale
$1+\Delta$ - bare Pomeron intercept
α^{\prime} - Pomeron slope
$|p\rangle=\beta_{1}|1\rangle+\beta_{2}|2\rangle ; \quad\left|\beta_{1}\right|^{2} \equiv C_{1} ;\left|\beta_{2}\right|^{2} \equiv C_{2}=1-C_{1}$.
\mathbb{P} couplings to $|1\rangle$ and $|2\rangle: g_{1 / 2}=g_{0}(1 \pm \eta)$
R - size of the $p-\mathbb{P}$ vertex (Gaussian)
Strategy:
1 Eikonal fit to $\sigma_{t o t}, \sigma_{e l}, B$ and low energy low- $M^{2} \sigma_{S D}$
2 All-loop fit to $\sigma_{t o t}, \sigma_{e l}, B$ starting with parameter set from [1]
3 Calculation of diffractive cross sections with parameters obtained at [2]

What is the diffraction. Data description

Results on X-sections and slope $\left(B=\left.\frac{d}{d t} \ln \frac{d \sigma_{d}}{d t}\right|_{t=0}\right)$

Total cross sections, mbn

Elastic cross sections, mbn

Elastic slope, GeV^{-2}

$\chi_{3}>\chi_{1}=\chi_{4}>\chi_{2} ; a_{1}=a_{2}=0.018 \mathrm{fm} ; a_{3}=a_{4}=0.036 \mathrm{fm} . C_{1}=C_{2}=0.5, \eta=0.55$.
$\Delta=0.195 ; \alpha^{\prime}=0.154 \mathrm{GeV}^{-2} ; R^{2}=3.62 \mathrm{GeV}^{-2} ; g_{0}=4.7 \mathrm{GeV}^{-1} ; r_{3} P=0.087 \mathrm{GeV}^{-1}$ [Kaidalov'79].

Inelastic and diffractive profiles

Conclusions

- Total, elastic and single diffractive cross sections are computed in RFT within the same numerical framework to all orders in the number of loops;
- A satisfactory description on total and elastic cross sections is obtained within the all-loop framework;
- The single diffractive cross sections energy behaviour is compatible with logarithmic growth.

Backup - cross sections definitions

$$
\begin{gathered}
\sigma^{\mathrm{tot}}(Y)=2 \Im M(Y, \mathbf{q}=0), \quad \sigma^{\mathrm{el}}=\int \frac{d^{2} q}{(2 \pi)^{2}}|M(Y, \mathbf{q})|^{2}, \\
f(Y, \mathbf{b})=\frac{1}{(2 \pi)^{2}} \int d^{2} q e^{-i \mathbf{q b}} M(Y, \mathbf{q}) . \\
\sigma^{\mathrm{tot}}(Y)=2 \int d^{2} b \Im f(Y, \mathbf{b}), \quad \sigma^{\mathrm{el}}=\int d^{2} b|f(Y, \mathbf{b})|^{2} .
\end{gathered}
$$

$$
f(Y, \mathbf{b}) \simeq i T(Y, \mathbf{b}), \quad T \equiv \Im f
$$

$$
B=-\left.\frac{d}{d t} \ln \frac{d \sigma^{l}}{d t}\right|_{t=0}=\frac{\int b^{2} \Im A(b) d^{2} b \int \Im A(b) d^{2} b+\int b^{2} \Re A(b) d^{2} b \Re A(b) d^{2} b}{2\left(\left(\int \Im A(b) d^{2} b\right)^{2}+\left(\int \Re A(b) d^{2} b\right)^{2}\right)}
$$

Backup - secondary trajectories

$$
\begin{aligned}
& p p: \Im f_{p p}(b)=\Im A_{P}(b)+\left[\Im A_{+}(b)+\Im A_{-}(b)\right]\left[1-\Im A_{P}(b)\right] \\
& \Re f_{p p}(b)=\left[\Re A_{R_{+}}+\operatorname{Re} A_{R_{-}}\right]\left[1-\Im A_{P}(b)\right] \\
& p p: \quad \Im f_{p p}(b)=\Im A_{P}(b)+\left[\Im A_{+}(b)-\Im A_{-}(b)\right]\left[1-\Im A_{P}(b)\right] \\
& \Re f_{p p}(b)=\left[\Re A_{R_{+}}-\operatorname{Re} A_{R_{-}}\right]\left[1-\Im A_{P}(b)\right]
\end{aligned}
$$

pp SD:

$$
\begin{gathered}
f_{p p}^{\text {Diff }}(b)=\left.f_{p p}^{\text {Diff }}(b)\right|_{\mathbb{P o n l y}}\left[1+\left|A_{R_{+}}(b)+A_{R_{-}}(b)\right|^{2}-2 \Im\left(A_{R_{+}}(b)+A_{R_{-}}(b)\right)\right] \\
A_{ \pm}(y, b)=\eta_{ \pm} \beta_{ \pm}^{2} \frac{\exp \left(\Delta_{ \pm} y\right)}{2 \alpha_{ \pm}^{\prime} y+2 R_{ \pm}^{2}} \exp \left(-\frac{b^{2}}{4\left(\alpha_{ \pm}^{\prime} y+R_{ \pm}^{2}\right)}\right) \\
\eta_{ \pm}= \pm i-\frac{1 \pm \cos \pi \alpha_{ \pm}(0)}{\sin \pi \alpha_{ \pm}(0)}
\end{gathered}
$$

Backup - parameters of the fit

\[

\]

$\Delta_{\text {eikonal }}=0.14$.
In terms of the stochastic approach:

	a, fm	λ	m_{1}	m_{2}	ν	\bar{N}	$\mathrm{D}, \mathrm{fm}^{2}$	R_{P}, fm
1	0.018	0.54722	0.35222	0	1.09488	29	0.0065	0.375
2	0.018	0.54722	0.35222	0.54722	0	29	0.0065	0.375
3	0.036	0.27361	0.07861	0	0.54722	14.5	0.0065	0.375
4	0.036	0.27361	0.07861	0.27361	0	14.5	0.0065	0.375

