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Di�raction of light

Amplitude of the di�racted wave:

A(θ) ∼
∫

f (r , θ)e ikr cosφ sin θrdrdφ

A(θ) ∼
∫

f (~r)e i
~k⊥rd2~r , k⊥ ≡ k sin θ

The intencity: I (θ) ∼ A(θ)2

Hankel transform:

g(q) = 2π

∫ ∞
0

f (r)J0(2πqr)rdr ; f (r) = 2π

∫ ∞
0

q(q)J0(2πqr)qdq

f (r) = θ(a − r) ⇒ g(q) =
aJ1(2πaq)

q

f (r) = e−πr
2 ⇒ g(q) = e−πq

2
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Di�raction of light

f (~r) ∼ θ(R − r) (a round hole) ⇒ I ∼ (RJ1(k⊥R)/k⊥)2

With growth of hole radius R the fall is steeper and the �dip�
moves to lower k⊥
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Elastic scattering � shrinkage of di�ractive cone

A similar picture in pp(p̄) elastic scattering (elastic di�raction):

B =−d

dt
lndσel

dt

∣∣∣∣
t=0

... shrinkage of the di�ractive cone and a displacement of the �dip�.
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Geometrical models

The pp elastic amplitude: M(q) ' iD(q) (=M(q)� <M(q))
Fourier transform: f (Y ,b) = 1

(2π)2

∫
d2q e−iqbD(Y ,q) .

f (Y ,b) is similar to the opacity in optics:

σel =
∫

d2q
(2π)2

|M(Y ,q)|2 =
∫
d2b |f (Y ,b)|2.

Optical theorem: σtot(Y ) = 2=M(Y ,q = 0) = 2

∫
d2b f (Y ,b),

De�nition σinel(b) ≡ 2f (b)− |f (b)|2
Unitarity constraint: 0 < f (b) < 2 ⇒ 0 ≤ σinel(b) ≤ 1

Interpretation: σinel(b) ≡ probability of inelastic interaction
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Geometrical models

Unitarity limit: f (b) = 2θ(R − b) ⇒ σinel(b) = 0.
Black disk limit: f (b) = θ(R − b) ⇒ σinel(b) = θ(R − b), σel = 1/2σtot.
The data suggest:

Approx. constant opacity at small b (presence of dip)

Spreading in b of constant opacity region with the growth of
energy (shrinkage of di�racitve cone).

The inelastic pro�le in the center is close to the upper limit
(e.g. σinel(b) = 0.94 at

√
s = 53 GeV)

R. Kolevatov RD approach in soft di�raction



What is the di�raction.
Some words about Reggeons

The reaction-di�usion (stochastic) approach
Data description

Di�raction of light.
Elastic di�raction of hadrons
Inelastic di�raction

Inelastic di�raction � a special case of inelastic event

Illustration: talk by Chris Quigg at Spaatind'2012
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Inelastic di�raction

Single di�raction

Double di�raction

Central di�raction

∆ygap = ln s/M2
X � rapidity gap
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s-channel view on small-M2
X
di�raction

Amplitudes for scattering into elastic and di�ractive channels can
be organized into a matrix ||Mik || ' i ||Dik ||;
D11 � elastic amplitude; D1k � dissociation to ch. k .

Orthogonal transformation: D = QFQT ; Fij = Fiδij , QQ
T = I .

Interpretation (Good and Walker '60):

|p〉 =
∑

Q1k |k〉 � superposition of eigenstates with di�erent
scattering amplitudes;

Eigenstates |k〉 undergo only elastic scattering.
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Good�Walker formalism, example

Example: 2 channels.

|p〉 = α1|1〉+ α2|2〉; α2
1 + α2

2 = 1

D11 = α2
1F1 + α2

2F2; D12 = α1α2(F2 − F1)

σtot = 2

∫
d2b[α2

1F1(b)+α2
2F2(b)]; σel =

∫
d2b[α2

1F1(b)+α2
2F2(b)]2

σSD =

∫
d2b [α1α2(F1(b)− F2(b))]2
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Lessons from the example

Di�raction:

1: Has a peripheral nature

2: Sensitive to the shape of the edge

3: In case elastic amplitude saturates at black disc limit (growing
disc) � ln s growth with c.m. energy (growing ring).

Now let us turn to high-M2 di�raction...
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Power-like contributions to the amplitude

PDG �t:
σ
pp(p̄)
tot = 18.3s0.095 + 60.1s−0.34 ± 32.8s−0.55

Optical theorem:

σtot =
1

s
2=Ael (q = 0) ≡ 2=Mel (q = 0)

Indication: High energy elastic scattering goes via quasiparticle,
�Reggeon�, exchanges with powerlike asymptotic in c.m.energy.
Leading contirbution � Pomeron, MP ∼ s∆, ∆ > 0.
Caveat: Single Pomeron exchange violates Froissart bound
(σtot . C ln2 s)
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s-channel (s →∞, t = Q2 small) dominant contributions

Analiticity&unitarity:

Power-like terms come from poles in the complex L plane of
the t-channel amplitude, Pomeron = the rightmost singularity

Field theories (ϕ3, QCD):

p+
1 � p+

2 � . . .� p+
n

p−1 � p−2 � . . .� p−n
p± = p0 ± p3

For phenomenological applications: R/P = exchange of a �ladder�
structure in the t-channel with ordering of the ladder rungs in
rapidity y = 1/2 ln p+/p−
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The Pomeron

The 1-Pomeron exchange amplitude:

M1P ∼ i
exp(∆y) exp(− b2

4α′y )

4πα′y

Growing energy behaviour

⇒ Ensures growth of the cross sections

Di�ustion in the transverse plane

⇒ Ensures growth of the interaction radius

Iteration of the P exchanges ensures the Froissart bound
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Contributions to σtot

Contributions to imaginary part (Cutkosky rules):

Cut the diagram for the elastic scattering amplitude

Put cut lines on the mass shell, integrate over the phase space

Single �ladder� exchange � uniform rapidity distribution

2=T1 = 2=
( )

= =
∫ ∣∣∣ ∣∣∣ dτn −→

Double �ladder�

2=

( )
= ︸ ︷︷ ︸

elastic+low-M2 DD

+ +︸ ︷︷ ︸
abs. corrections to2=T1

+ ︸ ︷︷ ︸
double dN/dy

Iterating ladders slows the growth:
from σtot ∼ s∆ down to σtot ∼ ln2 s.
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Contributions to σtot

Rapidity gaps � splitting of the �ladder�:
Single di�raction dissociation

+ abs. corrections

Double di�raction dissociation
+ abs. corrections

other cut of same graph

+ abs. corrections
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RFT

Reggeon Field Theory = the theory of the Pomeron (Reggeon)
exchanges and interactions. The underlying principles of the RFT
are analyticity and t-channel unitarity of the elastic amplitude.

Attractive features from the phenomenological point of view:
Gives reliable quantitative predictions of hadronic X-sections
Di�erent cuts of the RFT diagrams de�ne X-sections of
various inelastic processes via AGK rules

Provides an intuitive understanding of HE interactions.
ln2 s growth of the total cross sections due to di�usion of Ps in
the transverse plane
Events with rapidity gaps correspond to certain cuts of the
graphs with R/P interactions (enhanced and loop graphs)

Enhanced and loop contributions become essential also for the
elastic amplitude with growth of c.m. energies; untrivial task, under
investigation by several groups (Ostapchenko, Khoze et al.,
Poghosyan; also Lund group non-RFT approach).
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Contribution of di�ractive cut

Lowest order contribution:

d2σSD

dtd(M2/s)
∼
(
M2

s

)−1−∆
s∆ ⇒ σSD(M2/s < α) ∼ s∆

Absorptive corrections:

Alternatives:

Introduce reg. scale and compute order by order

Use speci�c models with tuned mP→ nP vertices →
transforms power-like behaviour of Pomeron propagator to ∼ ln2.

Use e�ective approaches.
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RFT

The elastic amplitude T = A/(8πs) is factorized:

T =
∑
n,m

Vn ⊗ Gnm ⊗ Vm

Gmn � process independent, obtained within 2D+1 �eld theory (only P):

L =
1

2
φ†(
←−
∂y −

−→
∂y )φ− α′(∇bφ

†)(∇bφ) + ∆φ†φ+ Lint .

Minimal choice (classic): Lint = i r3Pφ
†φ(φ† + φ)

In�nite ] of vertices [KMR, Ostapchenko, MP+ABK]: rmnφ
mφ†

n

Fine tuning of the vertices, some contributions neglected

�Almost minimal�: i r3Pφ
†φ(φ† + φ) + χφ†

2
φ2

the reaction-di�usion approach is applicable for numerical com-
putation of all-loop Green functions. [Grassberger'78; K.B.'01]
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The reaction-di�usion (stochastic) approach.

Consider a system of classic �par-
tons� in the transverse plane with:

Di�usion (chaotical movement) D;

Splitting (λ � prob. per unit time)

Death (m1)

Fusion (σν ≡
∫
d2b pν(b))

Annihilation (σm2 ≡
∫
d2b pm2(b))

Parton number and positions are described in terms of

probability densities ρN(y ,BN) (N = 0, 1, ...;BN ≡ {b1, . . . , bN})

with normalization pN(y) ≡ 1
N!

∫
ρN(y ,BN)

∏
dBN ;

∞∑
0

pN = 1.
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Inclusive distributions

S-parton inclusive distributions:

fs(y ;Zs) =
∑
N

1

(N − s)!

∫
dBN ρN(y ;BN)

s∏
i=1

δ(zi − bi );

∫
dZs fs(y ;Zs) =

∑
N!

(N−s)! pN(y) ≡ µs(y). � factorial moments.

Example: Start with a single parton with only di�usion and splitting
allowed.

f
1 parton
1 (y , b) =

exp(λy) exp(−b2/4Dy)

4πDy
.

� the bare Pomeron propagator.

The set of evolution equations for fs(Zs), (s = 1, . . .) coincides

with the set of equations for the Green functions of the RFT.
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The amplitude.

Green functions:

fs(y ;Zs) ∝
∑
m

∫
dXm Vm(Xm)Gmn(0;Xm|y ;Zn);

fm(y = 0,Xm) ∝ Vm(Xm) � particle�mPomeron
vertices

The amplitude (g(b) assumed narrow;
∫
g(b)d2b ≡ ε):

T (Y ) = 〈A|T |Ã〉 =

=
∞∑
s=1

(−1)s−1

s!

∫
dZsdZ̃s fs(y ;Zs)f̃s(Y − y ; Z̃s)

s∏
i=1

g(zi − z̃i − b).

It does not depend on the linkage point y (�boost invariance�) if

λ

∫
g(b)d2b =

∫
pm2(b)d2b +

1

2

∫
pν(b)d2b ,
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Correspondence RFT�Stochastic model

We use the simplest form of g(b), pm2(b) and pν(b):
pm2(b) = m2 θ(a − |b|); pν(b) = ν θ(a − |b|);

g(b) = θ(a − |b|);.
with a � some small scale; ε ≡ πa2.

RFT stochastic model

Rapidity y Evolution time y
Slope α′ Di�usion coe�cient D

∆ = α(0)− 1 λ−m1

Splitting vertex r3P λ
√
ε

Fusion vertex r3P (m2 + 1
2
ν)
√
ε

Quartic coupling χ 1
2

(m2 + ν)ε

Few things to note:

Boost invariance (λ = m2 + ν
2
) ⇔ equality of fusion and splitting vertices.

The 2→ 2 vertex cannot be set to zero (m2, ν > 0).
R. Kolevatov RD approach in soft di�raction
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Summary of the stochastic approach I

Peculiarities of the approach:

Presence of the triple and 2→ 2 couplings

Regularization scale (equivalient to the cuto� or the Pomeron
size) enters via parton interaction distance (g(b), pm2(b),pν).

P exchanges only

Neglect of the real part of the P exchange amplitude.
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Summary of the stochastic approach II

In theory: One could compute numerically the whole set of the
RFT Green functions and use them for constructing amplitude and
all possible cuts. However, this is practically impossible � too
expencive numerically.
In practice: It is possible to compute numerically certain
convolututions of RFT Green function which correspond to:

the elastic scattering amplitude

the single di�ractive cut of the amplitude.

⇒ ;

For calculation of the SD cut we rely on the AGK result for the
lower block: its independence on the position of the cut.
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Calculation method � the amplitude I

Key: compute the amplitudes of interest event-by-event (not fs).

N-channel eikonal vertices ⇒
⇒ Superposition of N Poissons in parton ] distribution

MC evolution upto the given rapidity ⇒
⇒ A sample of partons at certain positions

f sample
s (Zs) =

∑
{x̂i1 ,..,x̂is }∈X̂N

δ(z1 − x̂i1) . . . δ(zs − x̂is )

... we do this:

T el =
∑
n,k

Pn(X )⊗
∑
s

(−1)s−1

s!
fns(X|Z)⊗

∏
g(Z − Z̃)⊗ f̃ks(X̃ |Z̃)︸ ︷︷ ︸

Tsample

⊗P̃k(X̃ ).

T el
sample =

Nmin∑
s=1

(−1)s−1
∑

i1<i2...<is

∑
j1<...<js

gi1j1 . . . gis js .
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Calculation method � the amplitude I

Key: compute the amplitudes of interest event-by-event (not fs).

N-channel eikonal vertices ⇒
⇒ Superposition of N Poissons in parton ] distribution

MC evolution upto the given rapidity ⇒
⇒ A sample of partons at certain positions

f sample
s (Zs) =

∑
{x̂i1 ,..,x̂is }∈X̂N

δ(z1 − x̂i1) . . . δ(zs − x̂is )

Instead of doing this ...

T el =
∑
n,s,k

(−1)s−1

s!
Pn(X )⊗ fns(X|Z)︸ ︷︷ ︸

fs(y ,Z)

⊗
∏

g(Z − Z̃)⊗ f̃ks(X̃ |Z̃)⊗ P̃k(X̃ )︸ ︷︷ ︸
f̃s(Y − y , Z̃ )

... we do this:

T el =
∑
n,k

Pn(X )⊗
∑
s

(−1)s−1

s!
fns(X|Z)⊗

∏
g(Z − Z̃)⊗ f̃ks(X̃ |Z̃)︸ ︷︷ ︸

Tsample

⊗P̃k(X̃ ).

T el
sample =

Nmin∑
s=1

(−1)s−1
∑

i1<i2...<is

∑
j1<...<js

gi1j1 . . . gis js .
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Calculation method � the amplitude II

Setting the linkage point to full rapidity interval y = Y simpli�es
the calculation: f̃s(y = 0,Zs) = Ns(Zs)/εs/2 and the MC average
involves evolution from only one side:

T el =
∑
n

Pn(X )⊗
∑
s

(−1)s−1

s!
fns(X|Z)⊗

∏
g(Z − X̃ )⊗ P̃s(X̃ ).︸ ︷︷ ︸

Tsample

T el
sample =

N∑
s=1

(−1)s−1µ̃sε
s
∑

i1<i2...<is

p̃s(x̂i1 − b, . . . , x̂is − b).

R. Kolevatov RD approach in soft di�raction



What is the di�raction.
Some words about Reggeons

The reaction-di�usion (stochastic) approach
Data description

The approach
Numerical method

Calculation method � the SD cut

For the SD cut substituting �event-by-event Green functions� gives

T SD
sample = 2T el

sample − T ′sample

T ′sample is computed the same way as T el
sample with two distinctions:

Not one, but two sets from the projectile side

which are evolved independently until the ∆ygap and then
combined into a single one

Resumé: The elastic scattering amplitude and its SD cut are
computed within the same numerical framework.
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Model parameters

Two-channel eikonal p�nP vertices to incorporate low-M2

di�raction

Account the secondary Reggeons contribution to the lowest
order

Neglect the real part of the Pomeron exchange amplitude
(keeping it for the secondary Reggeons)

Neglect central di�raction in calculation of SD cross sections
(CD contribution is accounted twice in calculation of 2-side
SD, the extra contribution should have been subtracted).
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Model parameters

r3P � �xed [Kaidalov'79]
a � regularization scale
1 + ∆ � bare Pomeron intercept
α′ � Pomeron slope
|p〉 = β1|1〉+ β2|2〉; |β1|2 ≡ C1; |β2|2 ≡ C2 = 1− C1.
P couplings to |1〉 and |2〉: g1/2 = g0(1± η)
R � size of the p�P vertex (Gaussian)
Strategy:

1 Eikonal �t to σtot , σel , B and low energy low-M2 σSD

2 All-loop �t to σtot , σel , B starting with parameter set from [1]

3 Calculation of di�ractive cross sections with parameters
obtained at [2]
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Results on X-sections and slope (B = d

dt
ln dσel

dt

∣∣
t=0

)

χ3 > χ1 = χ4 > χ2; a1 = a2 = 0.018 fm; a3 = a4 = 0.036 fm. C1 = C2 = 0.5, η = 0.55.

∆ = 0.195; α′ = 0.154 GeV−2; R2 = 3.62 GeV−2; g0 = 4.7 GeV−1; r3P = 0.087 GeV−1 [Kaidalov'79].
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Inelastic and di�ractive pro�les
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Conclusions

Total, elastic and single di�ractive cross sections are computed
in RFT within the same numerical framework to all orders in
the number of loops;

A satisfactory description on total and elastic cross sections is
obtained within the all-loop framework;

The single di�ractive cross sections energy behaviour is
compatible with logarithmic growth.
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Backup � cross sections de�nitions

σtot(Y ) = 2=M(Y ,q = 0), σel =

∫
d2q

(2π)2
|M(Y ,q)|2 ,

f (Y ,b) =
1

(2π)2

∫
d2q e−iqbM(Y ,q) .

σtot(Y ) = 2

∫
d2b=f (Y ,b) , σel =

∫
d2b |f (Y ,b)|2.

f (Y ,b) ' iT (Y ,b), T ≡ =f

B = − d
dt
ln dσel

dt

∣∣∣
t=0

=
∫
b2=A(b)d2b

∫
=A(b)d2b+

∫
b2<A(b)d2b

∫
<A(b)d2b

2((
∫
=A(b)d2b)2+(

∫
<A(b)d2b)2)
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Backup � secondary trajectories

pp: =fpp(b) = =AP(b) + [=A+(b) + =A−(b)] [1−=AP(b)]
<fpp(b) =

[
<AR+ + ReAR−

]
[1−=AP(b)]

pp: =fpp(b) = =AP(b) + [=A+(b)−=A−(b)] [1−=AP(b)]
<fpp(b) =

[
<AR+ − ReAR−

]
[1−=AP(b)]

pp SD:
f Di�pp (b) = f Di�pp (b)

∣∣
Ponly

[
1 + |AR+ (b) + AR−(b)|2 − 2=(AR+ (b) + AR−(b))

]
A±(y , b) = η±β

2
±

exp(∆±y)

2α′±y + 2R2
±
exp

(
− b2

4(α′±y + R2
±)

)
η± = ±i − 1± cosπα±(0)

sinπα±(0)
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Backup � parameters of the �t

C1 = C2 = 0.5; η = 0.55; r3P = 0.087 GeV−1;
χ1 = χ4 = 0.0005569 fm2 = 0.01435 GeV−2,
χ2 = 0.0002785 fm2 = 0.00717 GeV−2,
χ3 = 0.0011134 fm2 = 0.0287 GeV−2.

Trajectory P R+ R−
α(0)− 1 0.195 -0.34 -0.55
α′, GeV−2 0.154 0.70 1.0
R2, GeV−2 3.62 3.0 5.2
β0/+/−, GeV

−1 4.7 4.05 2.59

∆eikonal = 0.14.

In terms of the stochastic approach:
a, fm λ m1 m2 ν N̄ D, fm2 RP , fm

1 0.018 0.54722 0.35222 0 1.09488 29 0.0065 0.375
2 0.018 0.54722 0.35222 0.54722 0 29 0.0065 0.375
3 0.036 0.27361 0.07861 0 0.54722 14.5 0.0065 0.375
4 0.036 0.27361 0.07861 0.27361 0 14.5 0.0065 0.375
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