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What is the diffraction. Diffraction of light.

Elastic diffraction of hadrons
Inelastic diffraction

Diffraction of light

Amplitude of the diffracted wave:

\i

6) ~ / f(r, 0)elr 050500 gyl
| r'cos ¢ sin O

__________ /f Velkir 27, k| = ksing

G
(@}
O
7]
©

The intencity: 1(0) ~ A()?
Hankel transform:
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What is the diffraction. Diffraction of light.

Elastic diffraction of hadrons
Inelastic diffraction

Diffraction of light

f(7) ~ 0(R —r) (a round hole) = I ~ (RJi (ki R)/ki)?
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With growth of hole radius R the fall is steeper and the “dip”
moves to lower k|
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What is the diffraction. Diffraction of light.

Elastic diffraction of hadrons
Inelastic diffraction

Diffraction of light
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What is the diffraction. Diffraction of light.

Elastic diffraction of hadrons
Inelastic diffraction

Elastic scattering — shrinkage of diffractive cone

A similar picture in pp(p) elastic scattering (elastic diffraction):
Elastic slope, GeViz
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. shrinkage of the diffractive cone and a displacement of the “dip”.
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What is the diffraction. Diffraction of light.

Elastic diffraction of hadrons
Inelastic diffraction

Geometrical models

The pp elastic amplitude: M(q) ~ iD(q) (SM(q) > RM(q))
Fourier transform: f(Y,b) = ﬁ [d?qe=®D(Y,q) .
f(Y,b) is similar to the opacity in optics:

o = [ £%M(Y.q)2 = [ dbIF(Y.b)P.

Optical theorem: o™*(Y) =23M(Y,q =0) = 2/ d*bf(Y,b),

Definition o'*°!(b) = 2f(b) — |f(b)?
Unitarity constraint: 0 < f(b) <2 = 0<o"(p)<1

Interpretation: ¢'"°(b) = probability of inelastic interaction
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What is the diffraction. Bffffeeion of i,
Elastic diffraction of hadrons
Inelastic diffraction

Geometrical models

5 :'_mfl'-"o) 2 dm s b)
1 1

R b R b

Unitarity limit: £(b) = 20(R — b) = o™™¢!(b) = 0.
Black disk limit: f(b) = (R — b) = o'™¢}(b) = (R — b), 0! = 1/20%°t.
The data suggest:

@ Approx. constant opacity at small b (presence of dip)

@ Spreading in b of constant opacity region with the growth of
energy (shrinkage of diffracitve cone).

@ The inelastic profile in the center is close to the upper limit
(e.g. o'"(b) = 0.94 at \/s = 53 GeV)
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What is the diffraction.

Inelastic diffraction

Inelastic diffraction — a special case of inelastic event

Example Event Displays from CDF Run [l
L -y CDF Run Il Preliminary
L . o

S, - e =
Hot spot? w4 — ~
~ 7 —

lllustration: talk by Chris Quigg at Spaatind'2012
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What is the diffraction.

of light.
ction of hadrons

Inelastic diffraction
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What is the diffraction. Diffraction of light.

Elastic diffraction of hadrons
Inelastic diffraction

s-channel view on smaII—M)2< diffraction

Amplitudes for scattering into elastic and diffractive channels can
be organized into a matrix ||Mj|| ~ i||Di||;
D11 — elastic amplitude; D — dissociation to ch. k.

Orthogonal transformation: D = QFQT; F; = Fid;;, QRT = 1I.

Interpretation (Good and Walker '60):

o |p) = > Qik|lk) — superposition of eigenstates with different
scattering amplitudes;

o Eigenstates |k) undergo only elastic scattering.
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What is the diffraction. Diffraction of light.

Elastic diffraction of hadrons
Inelastic diffraction

Good-Walker formalism, example

Example: 2 channels.
P) = all) +a22); a2 +a3=1

Dy = afFl + a%Fz; Do = araa(F2 — F1)
o't =2 / d’blojFi(b)+a5Fa(b)]; o = / d?bla] Fi(b)+a3Fa (b))

oS0 = /dzb[alaz(ﬁ(b) — (b))

Oinel

F
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What is the diffraction. Diffraction of light.

Elastic diffraction of hadrons
Inelastic diffraction

Lessons from the example

Diffraction:
1: Has a peripheral nature
2: Sensitive to the shape of the edge

3: In case elastic amplitude saturates at black disc limit (growing
disc) — In's growth with c.m. energy (growing ring).

R. Kolevatov RD approach in soft diffraction



What is the diffraction. Diffraction of light.

liffraction of hadrons
Inelastic diffraction

Lessons from the example

Diffraction:
1: Has a peripheral nature
2: Sensitive to the shape of the edge

3: In case elastic amplitude saturates at black disc limit (growing
disc) — In's growth with c.m. energy (growing ring).

Now let us turn to high-M? diffraction...
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The Pomeron
Ladder graphs
Formulation of the RFT

Some words about Reggeons

Power-like contributions to the amplitude

PDG fit:
oPhP) = 18.350095 1 60.157034 4 32,8505

o, mbn

Optical theorem:

1
Oror = ;2%Ae/(q =0) =2%M (g =0)

100 10000
12
s, GeV

Indication: High energy elastic scattering goes via quasiparticle,
“Reggeon”, exchanges with powerlike asymptotic in c.m.energy.
Leading contirbution — Pomeron, Mp ~ sB A > 0.

Caveat: Single Pomeron exchange violates Froissart bound
(Utot S_; C |n2 S)
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The Pomeron
Ladder graphs
Formulation of the RFT

Some words about Reggeons

s-channel (s — co, t = @2 small) dominant contributions

Analiticity&unitarity:

o Power-like terms come from poles in the complex L plane of
the t-channel amplitude, Pomeron = the rightmost singularity
Field theories (¢3, QCD):

Pa P
P2

pi > py > ..>pf
pr Kpp ... py
pr=p°£p?

Py N aft)
Z e S
n Dn-1
P n
For phenomenological applications: R/P = exchange of a “ladder”
structure in the t-channel with ordering of the ladder rungs in

rapidity y =1/2Inpy /p_
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The Pomeron
Ladder graphs
Formulation of the RFT

Some words about Reggeons

The Pomeron

The 1-Pomeron exchange amplitude:

b2
exp Ay exp\—z--
MlP ~ ( ) ( 4ay)

4y

e Growing energy behaviour
= Ensures growth of the cross sections

@ Diffustion in the transverse plane
= Ensures growth of the interaction radius

@ lteration of the P exchanges ensures the Froissart bound
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The Pomeron

Some words about Reggeons Ladder graphs
Formulation of the RFT

Contributions to oo

Contributions to imaginary part (Cutkosky rules):
@ Cut the diagram for the elastic scattering amplitude
@ Put cut lines on the mass shell, integrate over the phase space

Single “ladder” exchange — uniform rapidity distribution

2%T1:2%<g>:%1:f‘gdfn—> ||||n||S: TH|

S0

double dN/dy

elastic+low-M2 DD  abs. corrections to23 Ty
[ TRTRTHTTITETTNT ..
Y

Double “ladder”

iisisiin
T

23

| 1
n s/, Y n sk,
Iterating ladders slows the growth:
from oo ~ s2 down to ooy ~ In?s.

R. Kolevatov RD approach in soft diffraction




The Pomeron
Ladder graphs
Formulation of the RFT

Some words about Reggeons

Contributions to oo

Rapidity gaps — splitting of the * Iadder
Single diffraction dissociation
| 11 i1l

sap— =ln—=—
y n Ml
Dolulblf dlffractiloln Idissociation

. corrections

SSo
ygnp 1 M M
other cut of same graph

_LLU.HLUJJJJJJ_,y N + abs. corrections
double ad_[y]
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The Pomeron
Ladder graphs
Formulation of the RFT

Some words about Reggeons

Reggeon Field Theory = the theory of the Pomeron (Reggeon)
exchanges and interactions. The underlying principles of the RFT
are analyticity and t-channel unitarity of the elastic amplitude.
@ Attractive features from the phenomenological point of view:
o Gives reliable quantitative predictions of hadronic X-sections
o Different cuts of the RFT diagrams define X-sections of
various inelastic processes via AGK rules
@ Provides an intuitive understanding of HE interactions.
o In” s growth of the total cross sections due to diffusion of Ps in
the transverse plane
o Events with rapidity gaps correspond to certain cuts of the
graphs with R /P interactions (enhanced and loop graphs)

Enhanced and loop contributions become essential also for the
elastic amplitude with growth of c.m. energies; untrivial task, under
investigation by several groups (Ostapchenko, Khoze et al.,
Poghosyan: also Lund group non-RFT approach).
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The Pomeron
Ladder graphs
Formulation of the RFT

Some words about Reggeons

Contribution of diffractive cut

Lowest order contribution:

d? osp 2 -1-A
/\/l 2 A
A= (M?/s<a)~s
dtd(M2/s) ~ \'s so(M*/

Absorptive corrections:
Alternatives:
@ Introduce reg. scale and compute order by order

@ Use specific models with tuned mP — nlP vertices —
transforms power-like behaviour of Pomeron propagator to ~ In?.

@ Use effective approaches.
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The Pomeron
Ladder graphs
Formulation of the RFT

Some words about Reggeons

The elastic amplitude T = A/(87s) is factorized:

T:ZVn®Gnm®Vm

n,m

Gmn — process independent, obtained within 2D+1 field theory (only P):
1 =
£ =560, — 0)6 — a'(Vu6')(Vo0) + A6 + Line.

Minimal choice (classic): Line = i rpd! (0T + ¢) \T/ /J\

Infinite # of vertices [KMR, Ostapchenko, MP+ABK]: Fmn¢™¢!" H
Fine tuning of the vertices, some contributions neglected
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The Pomeron
Ladder graphs

Some words about Reggeons

Formulation of the RFT

The elastic amplitude T = A/(87s) is factorized:

T:ZVn®Gnm®Vm

n,m

Gmn — process independent, obtained within 2D+1 field theory (only P):

£= 2618y~ )6 — o/ (V66) (Vo) + AT + Lin

Minimal choice (classic): Line = i rpd! (0T + ¢) \T/ /J\
Infinite # of vertices [KMR, Ostapchenko, MP+ABK]: Fmn¢™¢!" H
“Almost minimal™: i r;pdtp(p! + @) + X(bT > Y/K >

the reaction-diffusion approach is applicable for numerical com-
putation of all-loop Green functions. [Grassberger'78; K.B.'01]
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The approach
The reaction-diffusion (stochastic) approach Numerical method

The reaction-diffusion (stochastic) approach.

Consider  a system of classic  “par-

tons” in  the  transverse  plane  with:

......... e Diffusion (chaotical movement) D; ZaN
g @ Splitting (A — prob. per unit time) -4
@ Death (m;) =0

........... e Fusion (0, = [ d?bp,(b)) oo
o Annihilation (om, = [ d?b pm,(b)) i’

Parton number and positions are described in terms of
probability densities py(y, By) (N =0,1,..; By = {b1,..., bn})]|

with normalization py(y) = & [ pn(y. Bu) [1dBn; > pn = 1.
0
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The approach
The reaction-diffusion (stochastic) approach Numerical method

Inclusive distributions

S- parton inclusive distributions:

Z(N_ [ dBw oty BN)Hé( —by);

de fs(y; Zs) = (N o1 Pu(y) = ps(y). — factorial moments.

Example: Start with a single parton with only diffusion and splitting

allowed.
exp(\y) exp(—b?/4Dy)

41Dy

f11 parton(y’ b) _

— the bare Pomeron propagator.

The set of evolution equations for 7;(Z;), (s = 1,...) coincides
with the set of equations for the Green functions of the RFT.
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The approach
The reaction-diffusion (stochastic) approach Numerical method

The amplitude.

Green functions:
7cs(y;Zs) X Zdem Vm X )Gmn(O' Xm |y'Z )

m
fm(y — O,Xm) o V ( ) _ partlc|e—mPomeron ................................
vertices
fi(y: Zs)

The amplitude (g(b) assumed narrow; [ g(b)d’b = e RO -y Zo)
T(Y)=(A|T|A) = \
Y N

oy Z) (Y —y; Zs Hg i—%i—b).
= i=1
It does not depend on the linkage point y (“boost invariance”) if

/\/g(b)dzb: /pmz(b)d2b+;/py(b)d2b,
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The approach
The reaction-diffusion (stochastic) approach Numerical method

Correspondence RFT—Stochastic model

We use the simplest form of g(b), pm,(b) and p,(b):
pmy(b) = ma 6(a — |b[);  py(b) = v 6(a - |b]);

g(b) = 6(a — |bl);.
with a — some small scale; € = wa2.
RFT stochastic model
Rapidity y Evolution time y
Slope o Diffusion coefficient D
A =a(0)—1 A—my
Splitting vertex rsp e
Fusion vertex rsp (m2 + 3v)\/e
Quartic coupling x 2(my +v)e

Few things to note:
Boost invariance (A = my + §) < equality of fusion and splitting vertices
The 2 — 2 vertex cannot be set to zero (mp, > 0).
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The approach
The reaction-diffusion (stochastic) approach Numerical method

Summary of the stochastic approach |

Peculiarities of the approach:

@ Presence of the triple and 2 — 2 couplings
@ Regularization scale (equivalient to the cutoff or the Pomeron
size) enters via parton interaction distance (g(b), pm,(b).pv)-

@ P exchanges only
@ Neglect of the real part of the P exchange amplitude.
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The approach
The reaction-diffusion (stochastic) approach Numerical method

Summary of the stochastic approach Il

In theory: One could compute numerically the whole set of the
RFT Green functions and use them for constructing amplitude and
all possible cuts. However, this is practically impossible — too
expencive numerically.
In practice: It is possible to compute numerically certain
convolututions of RFT Green function which correspond to:

@ the elastic scattering amplitude

e the single diffractive cut of the amplitude.

= 111 ; - — TIT T 1

For calculation of the SD cut we rely on the AGK result for the
lower block: its independence on the position of the cut.
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The approach
The reaction-diffusion (stochastic) approach Numerical method

Calculation method — the amplitude |

Key: compute the amplitudes of interest event-by-event (not fs).

@ N-channel eikonal vertices =

= Superposition of N Poissons in parton f distribution
@ MC evolution upto the given rapidity =

= A sample of partons at certain positions

fssample(zs) — Z 5(21 — )’E,‘l) R 5(25 — )/iis)

{ﬁil 7-'7)’21'5 }G‘)?N
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The approach
The reaction-diffusion (stochastic) approach Numerical method

Calculation method — the amplitude |

Key: compute the amplitudes of interest event-by-event (not fs).

@ N-channel eikonal vertices =

= Superposition of N Poissons in parton f distribution
@ MC evolution upto the given rapidity =

= A sample of partons at certain positions

frmle(zy = > 0z —Ky) .. 6(zs — Ki,)
{&iy %, FEXN
Instead of doing this ...

DY (‘15)'_1 Po(X) @ fus(X|2) @ [[ £(2 — £) @ Fis(X]Z) @ Pr(®)
fs(y)Z) ?S(Y_Y72)

n,s,k
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The approach
The reaction-diffusion (stochastic) approach Numerical method

Calculation method — the amplitude |

Key: compute the amplitudes of interest event-by-event (not fs).

@ N-channel eikonal vertices =

= Superposition of N Poissons in parton f distribution
@ MC evolution upto the given rapidity =

= A sample of partons at certain positions

ez = > Oz — %i) .- 6(zs — Ki,)
{ﬁila-'vﬁl’s}e‘)?N
... we do this:
=Y Pa(X) Z fos(X12) @ [ [ 8(Z = 2) @ his(¥|2) @Py (X)),
n,k
N Tsample
Tsealmple = Z(*l)s_l Z Z &ijr - - - Bisjs+
s=1 1 <ip..<ls j1<...<Js
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The approach
The reaction-diffusion (stochastic) approach Numerical method

Calculation method — the amplitude Il

Setting the linkage point to full rapldlty interval y = Y simplifies
the calculation: f(y =0, Z5) = Ny(Z5)/e%/? and the MC average
involves evolution from only one side:

ZP(X ®Z —fs(X12) 0 [[ 6(2 - B) @ Po(D).

7_sample
N

Ts%{mple = Z(_l)s_lﬂses Z Ps(Xiy —b,...,%j, —b).

s=1 i1<lp...<ls
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The approach
The reaction-diffusion (stochastic) approach Numerical method

Calculation method — the SD cut

For the SD cut substituting “event-by-event Green functions” gives

SD _ el /
Tsample - 2Tsample — !sample
cample 15 computed the same way as TS . with two distinctions:

o Not one, but two sets from the projectile side

@ which are evolved independently until the Ayg,, and then
combined into a single one

Resumé: The elastic scattering amplitude and its SD cut are
computed within the same numerical framework.
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Parameters of the approach
Calculation results
Data description

Model parameters

e Two-channel eikonal p—nP vertices to incorporate low-M?
diffraction

@ Account the secondary Reggeons contribution to the lowest
order

@ Neglect the real part of the Pomeron exchange amplitude
(keeping it for the secondary Reggeons)

o Neglect central diffraction in calculation of SD cross sections
(CD contribution is accounted twice in calculation of 2-side
SD, the extra contribution should have been subtracted).

e

R. Kolevatov RD approach in soft diffraction
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Parameters of the approach
Calculation results
Data description

Model parameters

rsp — fixed [Kaidalov'79]

a — regularization scale

1+ A — bare Pomeron intercept

o/ — Pomeron slope

Ip) = Bi|l) + B[2); /1P =Ci; |BlP=G=1-G.
PP couplings to [1) and [2): g1,» = go(1 £ 7)

R — size of the p—IP vertex (Gaussian)

Strategy:

1 Eikonal fit to 040, 0, B and low energy low-M? osp
2 All-loop fit to oo, 0ef, B starting with parameter set from [1]

3 Calculation of diffractive cross sections with parameters
obtained at [2]
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Parameters of the approach
Calculation results
Data description
doe
dt

Results on X-sections and slope (B = < In

o)

Total cross sections, mbn

Elastic cross sections, mbn

Elastic slope. Gev'’

T ||H|H| T
120 - eikonal 1T d
""" | = ppdata
100 __ +  ppbar data
80
60
40
200 ]
i vl vl vl \_ Ll ol ol ] Ll ool ol ]
10 100 1000 10000 10 100 1000 10000 10 100

1000 s”z, GeV

X3 > X1 = Xa > X2i a1 = a2 = 0.018 fm; a3 = ag = 0.036 fm. C; = C2 = 0.5, = 0.55.

A =0.195; o’ = 0.154 GeV~2; R?2 = 3.62 GeV~2; go = 4.7 GeV1;

R. Kolevatov RD approach in soft diffraction
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Parameters of the approach
Calculation results
Data description

Inelastic and diffractive profiles

Single diffractive cross sections, mbn Profiles, Suz=150 GeV Profiles, s”2=2’2 TeV
2 [ L IHIHl T IIIIHIl T IIHIH‘ L l T ‘ T | T l T | T | T
: : = —_— G“m[b) B ~ —
15} iU,Sj . GSDUJJ 7_0,8_7 i
- _/;’.ioﬁ B . GLMSDUJ) Josl ]
tof A4 Tt :
- —0.4 —0.4 —
L ﬂ_ d 1 L 4 i
S - —oz2}|- .
P‘I \IHIHl | IIIIHI| 1 Ilh\‘z\ll\‘ I_ 0 ..-."'-- L 0_'-'-I ----- | ..... .\ ""-“tﬁ
10 100 1000 &7, Gev 0 1 2 30 1 2 b, fm
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Parameters of the approach
Calculation results
Data description

Conclusions

o Total, elastic and single diffractive cross sections are computed
in RFT within the same numerical framework to all orders in
the number of loops;

@ A satisfactory description on total and elastic cross sections is
obtained within the all-loop framework;

@ The single diffractive cross sections energy behaviour is
compatible with logarithmic growth.
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Parameters of the approach
Calculation results
Data description

Backup — cross sections definitions

d2
(V) = 2SM(Y,q = 0), aelz/(QW;UM(v,q)F

f(Y,b) = e ge ®M(Y . q) .

oty /d%d(v b) /dzb\f (Y,b)|

f(Y,b)~iT(Y,b), T=Sf

fb2 A(b)d?b [ SA(b)d?b+ [ B>RA(b)d?b [ RA(b)d?b

B— 4 doe!
t=0 2((f SA(b)d2b)2+(f RA( b)d2b)2)

dt dt
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Parameters of the approach
Calculation results
Data description

Backup — secondary trajectories

pp: Shop(b) = SAp(b) + [SA(b) + SA_(b )1 [1 - SA()]
%fpp(b) [?RAR+ + ReAgr_ ] [1 — gAP

pp: Shop(b) = SAp(b) + [SA(b) — SA_(b )1 [1 - SA(b)]
%fpp(b) = [%AR+ — ReAR ] [1 — %AP ]

pp SD: _
o (b) = fp?a'“(b)hmon.y [1+|Ar. (b) + Ar_ (D) — 23(Ar, (b) + Ar_(b))]
eXP(Ai}’) ( b? )
7b = P e 7/7
1+ coswai(O)

= 4i—
1 I sin ra+(0)
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Parameters of the approach
Calculation results
Data description

Backup — parameters of the fit

G =G =05;7=0.55 rp =0.087 GeV1;
X1 = X4 = 0.0005569 fm? = 0.01435 GeV~2,
Y2 = 0.0002785 fm? = 0.00717 GeV 2,

x3 = 0.0011134 fm2 = 0.0287 GeV 2.

Trajectory | P R, R_
a(0) — 1 0195 -0.34 -0.55
o, GeV~2 0.154 0.70 1.0
R?, GeV—2 3.62 3.0 5.2

Boj+/—, GeV™L | 47 405 259
Acikonat = 0.14.

In terms of the stochastic approach:

a, fm A m my v N D, fm2 | Rp, fm
0.018 | 0.54722 | 0.35222 0 1.09488 | 29 | 0.0065 | 0.375
0.018 | 0.54722 | 0.35222 | 0.54722 0 29 | 0.0065 | 0.375

0.036 | 0.27361 | 0.07861 0 0.54722 | 14.5 | 0.0065 | 0.375
0.036 | 0.27361 | 0.07861 | 0.27361 0 14.5 | 0.0065 | 0.375

R. Kolevatov RD approach in soft diffraction
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