Reaction-diffusion approach in soft diffraction

Rodion Kolevatov

in collaboration with *Konstantin Boreskov* (ITEP) and *Larissa Bravina* (Oslo)

Based on EPJC71-1757(1105.3673), 1212.0691 and A.B.Kaidalov Phys.Rep. 50N3 (1979) 157.

Outline

- What is the diffraction.
 - Diffraction of light.
 - Elastic diffraction of hadrons
 - Inelastic diffraction
- 2 Some words about Reggeons
 - The Pomeron
 - Ladder graphs
 - Formulation of the RFT
- The reaction-diffusion (stochastic) approach
 - The approach
 - Numerical method
- Data description
 - Parameters of the approach
 - Calculation results

Amplitude of the diffracted wave:

$$A(heta) \sim \int f(r, heta) e^{ikr\cos\phi\sin\theta} r dr d\phi$$
 $A(heta) \sim \int f(\vec{r}) e^{i\vec{k}_{\perp}r} d^2\vec{r}, \quad k_{\perp} \equiv k \sin\theta$

The intencity: $I(\theta) \sim A(\theta)^2$

Hankel transform:

$$g(q) = 2\pi \int_0^\infty f(r)J_0(2\pi q r)rdr; \quad f(r) = 2\pi \int_0^\infty q(q)J_0(2\pi q r)qdq$$

$$f(r) = \theta(a-r) \quad \Rightarrow \quad g(q) = \frac{aJ_1(2\pi a q)}{q}$$

$$f(r) = e^{-\pi r^2} \quad \Rightarrow \quad g(q) = e^{-\pi q^2}$$

$$f(\vec{r}) \sim heta(R-r)$$
 (a round hole) $\Rightarrow I \sim (RJ_1(k_{\perp}R)/k_{\perp})^2$

$$f(\vec{r}) \sim \theta(R-r)$$
 (a round hole) $\Rightarrow I \sim (RJ_1(k_{\perp}R)/k_{\perp})^2$

With growth of hole radius R the fall is steeper and the "dip" moves to lower k_{\perp}

$$f(\vec{r}) \sim \theta(R-r)$$
 (a round hole) $\Rightarrow I \sim (RJ_1(k_{\perp}R)/k_{\perp})^2$

With growth of hole radius R the fall is steeper and the "dip" moves to lower k_{\perp}

Elastic scattering – shrinkage of diffractive cone

A similar picture in $pp(\bar{p})$ elastic scattering (elastic diffraction):

... shrinkage of the diffractive cone and a displacement of the "dip".

Geometrical models

The pp elastic amplitude: $M(q) \simeq iD(q) \ (\Im M(q) \gg \Re M(q))$ Fourier transform: $f(Y, \mathbf{b}) = \frac{1}{(2\pi)^2} \int d^2q \ e^{-i\mathbf{q}\mathbf{b}} D(Y, \mathbf{q})$. $f(Y, \mathbf{b})$ is similar to the opacity in optics:

$$\sigma^{
m el} = \int rac{d^2q}{(2\pi)^2} \, |M(Y,{f q})|^2 = \int d^2b \, |f(Y,{f b})|^2.$$

Optical theorem:
$$\sigma^{\mathrm{tot}}(Y) = 2 \Im M(Y, \mathbf{q} = 0) = 2 \int d^2 b \, f(Y, \mathbf{b}),$$

Interpretation: $\sigma^{\text{inel}}(b) \equiv \text{probability of inelastic interaction}$

Geometrical models

Unitarity limit: $f(b) = 2\theta(R - b) \Rightarrow \sigma^{\rm inel}(b) = 0$. Black disk limit: $f(b) = \theta(R - b) \Rightarrow \sigma^{\rm inel}(b) = \theta(R - b)$, $\sigma^{\rm el} = 1/2\sigma^{\rm tot}$. The data suggest:

- Approx. constant opacity at small b (presence of dip)
- Spreading in b of constant opacity region with the growth of energy (shrinkage of diffractive cone).
- The inelastic profile in the center is close to the upper limit (e.g. $\sigma^{\rm inel}(b)=0.94$ at $\sqrt{s}=53$ GeV)

Inelastic diffraction – a special case of inelastic event

Example Event Displays from CDF Run II

Illustration: talk by Chris Quigg at Spaatind 2012

Inelastic diffraction

Single diffraction

Double_diffraction

Central diffraction

$$\Delta y_{
m gap} = \ln s/M_X^2$$
 – rapidity gap

s-channel view on small- M_X^2 diffraction

Amplitudes for scattering into elastic and diffractive channels can be organized into a matrix $||M_{ik}|| \simeq i||D_{ik}||$; $D_{1,1}$ – elastic amplitude; $D_{1,k}$ – dissociation to ch. k.

Orthogonal transformation: $D = QFQ^T$; $F_{ij} = F_i\delta_{ij}$, $QQ^T = I$.

Interpretation (Good and Walker '60):

- $|p\rangle = \sum Q_{1k} |k\rangle$ superposition of eigenstates with different scattering amplitudes;
- Eigenstates $|k\rangle$ undergo only elastic scattering.

Good-Walker formalism, example

Example: 2 channels.

$$|p\rangle = \alpha_1 |1\rangle + \alpha_2 |2\rangle; \quad \alpha_1^2 + \alpha_2^2 = 1$$
 $D_{11} = \alpha_1^2 F_1 + \alpha_2^2 F_2; \quad D_{12} = \alpha_1 \alpha_2 (F_2 - F_1)$

$$\begin{split} \sigma^{\text{tot}} &= 2 \int d^2 b [\alpha_1^2 F_1(b) + \alpha_2^2 F_2(b)]; \quad \sigma^{\text{el}} = \int d^2 b [\alpha_1^2 F_1(b) + \alpha_2^2 F_2(b)]^2 \\ \sigma^{\text{SD}} &= \int d^2 b \left[\alpha_1 \alpha_2 (F_1(b) - F_2(b)) \right]^2 \end{split}$$

Lessons from the example

Diffraction:

- 1: Has a peripheral nature
- 2: Sensitive to the shape of the edge
- 3: In case elastic amplitude saturates at black disc limit (growing disc) In s growth with c.m. energy (growing ring).

Lessons from the example

Diffraction:

- 1: Has a peripheral nature
- 2: Sensitive to the shape of the edge
- 3: In case elastic amplitude saturates at black disc limit (growing disc) In s growth with c.m. energy (growing ring).

Now let us turn to high- M^2 diffraction...

Power-like contributions to the amplitude

PDG fit:
$$\sigma_{tot}^{pp(\bar{p})} = 18.3s^{0.095} + 60.1s^{-0.34} \pm 32.8s^{-0.55}$$

Optical theorem:

$$\sigma_{tot} = \frac{1}{s} 2 \Im A_{el}(q=0) \equiv 2 \Im M_{el}(q=0)$$

Indication: High energy elastic scattering goes via quasiparticle, "Reggeon", exchanges with powerlike asymptotic in c.m.energy. Leading contirbution – Pomeron, $M_{\mathbb{P}} \sim s^{\Delta}$, $\Delta > 0$. Caveat: Single Pomeron exchange violates Froissart bound $(\sigma_{tot} \lesssim C \ln^2 s)$

s-channel $(s o \infty, \quad t = Q^2 \text{ small})$ dominant contributions

Analiticity&unitarity:

 Power-like terms come from poles in the complex L plane of the t-channel amplitude, Pomeron = the rightmost singularity

Field theories (φ^3 , QCD):

$$p_1^+ \gg p_2^+ \gg \ldots \gg p_n^+ p_1^- \ll p_2^- \ll \ldots \ll p_n^- p^{\pm} = p^0 \pm p^3$$

For phenomenological applications: $\mathbb{R}/\mathbb{P}=$ exchange of a "ladder" structure in the *t*-channel with ordering of the ladder rungs in rapidity $y=1/2\ln p_+/p_-$

The Pomeron

The 1-Pomeron exchange amplitude:

$$M_{1\mathbb{P}} \sim i \frac{\exp(\Delta y) \exp(-\frac{b^2}{4\alpha' y})}{4\pi\alpha' y}$$

- Growing energy behaviour
 - ⇒ Ensures growth of the cross sections
- Diffustion in the transverse plane
 - ⇒ Ensures growth of the interaction radius
- ullet Iteration of the ${\mathbb P}$ exchanges ensures the Froissart bound

Contributions to σ_{tot}

Contributions to imaginary part (Cutkosky rules):

- Cut the diagram for the elastic scattering amplitude
- Put cut lines on the mass shell, integrate over the phase space

Single "ladder" exchange – uniform rapidity distribution

Iterating ladders slows the growth:

from
$$\sigma_{\rm tot} \sim s^{\Delta}$$
 down to $\sigma_{\rm tot} \sim \ln^2 s$.

Contributions to σ_{tot}

double

Rapidity gaps – splitting of the "ladder":

RFT

Reggeon Field Theory = the theory of the Pomeron (Reggeon) exchanges and interactions. The underlying principles of the RFT are analyticity and t-channel unitarity of the elastic amplitude.

- Attractive features from the phenomenological point of view:
 - Gives reliable quantitative predictions of hadronic X-sections
 - Different cuts of the RFT diagrams define X-sections of various inelastic processes via AGK rules
- Provides an intuitive understanding of HE interactions.
 - $\ln^2 s$ growth of the total cross sections due to diffusion of \mathbb{P} s in the transverse plane
 - Events with rapidity gaps correspond to certain cuts of the graphs with \mathbb{R}/\mathbb{P} interactions (enhanced and loop graphs)

Enhanced and loop contributions become essential also for the elastic amplitude with growth of c.m. energies; untrivial task, under investigation by several groups (Ostapchenko, Khoze et al., Poghosyan; also Lund group non-RFT approach).

Contribution of diffractive cut

Lowest order contribution:

Alternatives:

- Introduce reg. scale and compute order by order
- Use specific models with tuned $m\mathbb{P} \to n\mathbb{P}$ vertices \to transforms power-like behaviour of Pomeron propagator to $\sim \ln^2$.
- Use effective approaches.

RFT

The elastic amplitude $T = A/(8\pi s)$ is factorized:

$$T = \sum_{n,m} V_n \otimes G_{nm} \otimes V_m$$

 G_{mn} – process independent, obtained within 2D+1 field theory (only \mathbb{P}):

$$\mathcal{L} = \frac{1}{2} \phi^{\dagger} (\overleftarrow{\partial_{\mathsf{y}}} - \overrightarrow{\partial_{\mathsf{y}}}) \phi - \alpha' (\nabla_{\mathbf{b}} \phi^{\dagger}) (\nabla_{\mathbf{b}} \phi) + \Delta \phi^{\dagger} \phi + \mathcal{L}_{int}.$$

Minimal choice (classic): $\mathcal{L}_{int} = i \, r_{3P} \phi^{\dagger} \phi (\phi^{\dagger} + \phi)$

Infinite \sharp of vertices [KMR, Ostapchenko, MP+ABK]: $r_{mn}\phi^{m}\phi^{\dagger^{n}}$

Fine tuning of the vertices, some contributions neglected

RFT

The elastic amplitude $T = A/(8\pi s)$ is factorized:

$$T = \sum_{n,m} V_n \otimes G_{nm} \otimes V_m$$

 G_{mn} – process independent, obtained within 2D+1 field theory (only \mathbb{P}):

$$\mathcal{L} = \frac{1}{2} \phi^{\dagger} (\overleftarrow{\partial_{\mathsf{y}}} - \overrightarrow{\partial_{\mathsf{y}}}) \phi - \alpha' (\nabla_{\mathbf{b}} \phi^{\dagger}) (\nabla_{\mathbf{b}} \phi) + \Delta \phi^{\dagger} \phi + \mathcal{L}_{int}.$$

Minimal choice (classic):
$$\mathcal{L}_{int} = i \, r_{\mathsf{3P}} \phi^\dagger \phi (\phi^\dagger + \phi)$$

Infinite \sharp of vertices [KMR, Ostapchenko, MP+ABK]: $r_{mn}\phi^{m}\phi^{\dagger^{n}}$

"Almost minimal": $i r_{3P} \phi^{\dagger} \phi (\phi^{\dagger} + \phi) + \chi \phi^{\dagger^2} \phi^2$

the reaction-diffusion approach is applicable for numerical computation of all-loop Green functions. [Grassberger'78; K.B.'01]

The reaction-diffusion (stochastic) approach.

Consider a system of classic "partons" in the transverse plane with:

- Diffusion (chaotical movement) D;
- Splitting $(\lambda \text{prob. per unit time})$
- Death (m_1)
- Fusion $(\sigma_{
 u} \equiv \int d^2 b \, p_{
 u}(b))$
- Annihilation $(\sigma_{m_2} \equiv \int d^2 b \, p_{m_2}(b))$

Parton number and positions are described in terms of

probability densities
$$ho_N(y,\mathcal{B}_N)$$
 $(N=0,1,...;\mathcal{B}_N\equiv\{b_1,\ldots,b_N\})$

with normalization
$$p_N(y) \equiv \frac{1}{N!} \int \rho_N(y, \mathcal{B}_N) \prod d\mathcal{B}_N; \quad \sum_{0}^{\infty} p_N = 1.$$

•

Inclusive distributions

S-parton inclusive distributions:

$$f_s(y; \mathcal{Z}_s) = \sum_{N} \frac{1}{(N-s)!} \int d\mathcal{B}_N \, \rho_N(y; \mathcal{B}_N) \prod_{i=1}^s \delta(\mathbf{z}_i - \mathbf{b}_i);$$

$$\int d\mathcal{Z}_s f_s(y;\mathcal{Z}_s) = \sum rac{N!}{(N-s)!} \, p_N(y) \equiv \mu_s(y).$$
 – factorial moments.

Example: Start with a single parton with only diffusion and splitting allowed.

$$f_1^{1 \text{ parton}}(y,b) = \frac{\exp(\lambda y) \exp(-b^2/4Dy)}{4\pi Dy}.$$

- the bare Pomeron propagator.

The set of evolution equations for $f_s(\mathcal{Z}_s)$, (s = 1,...) coincides with the set of equations for the Green functions of the RFT.

The amplitude.

Green functions:

$$f_s(y; \mathcal{Z}_s) \propto \sum_m \int d\mathcal{X}_m \ V_m(\mathcal{X}_m) G_{mn}(0; \mathcal{X}_m|y; \mathcal{Z}_n);$$

$$f_s(y; \mathcal{Z}_s) \propto \sum_m \int d\mathcal{X}_m \ V_m(\mathcal{X}_m) G_{mn}(0; \mathcal{X}_m|y; \mathcal{Z}_n);$$
 $f_m(y = 0, \mathcal{X}_m) \propto V_m(\mathcal{X}_m)$ - particle-mPomeron $\int_{y}^{y} \frac{f_s(y; \mathcal{Z}_s)}{f_s(y; \mathcal{Z}_s)}$

The amplitude $(g(b) \text{ assumed narrow}; \int g(b) d^2b \equiv \epsilon): \int_{\tilde{f}_s(y; \mathcal{Z}_s)}^{\tilde{f}_s(y; \mathcal{Z}_s)} \frac{\tilde{f}_s(y; \mathcal{Z}_s)}{\tilde{f}_s(y; \mathcal{Z}_s)}$

The amplitude (g)

$$T(Y) = \langle A|T|\tilde{A}\rangle =$$

$$=\sum_{s=1}^{\infty}\frac{(-1)^{s-1}}{s!}\int d\mathcal{Z}_s d\tilde{\mathcal{Z}}_s f_s(y;\mathcal{Z}_s)\tilde{f}_s(Y-y;\tilde{\mathcal{Z}}_s)\prod_{i=1}^s g(z_i-\tilde{z}_i-b).$$

It does not depend on the linkage point y ("boost invariance") if

$$\lambda \int g(b)d^2b = \int p_{m_2}(b)d^2b + \frac{1}{2}\int p_{\nu}(b)d^2b \; ,$$

Correspondence RFT-Stochastic model

We use the simplest form of g(b), $p_{m_2}(b)$ and $p_{\nu}(b)$:

$$p_{m_2}(\mathbf{b}) = m_2 \ \theta(\mathbf{a} - |\mathbf{b}|); \quad p_{\nu}(\mathbf{b}) = \nu \ \theta(\mathbf{a} - |\mathbf{b}|);$$
$$g(\mathbf{b}) = \theta(\mathbf{a} - |\mathbf{b}|);.$$

with a – some small scale; $\epsilon \equiv \pi a^2$.

RFT	stochastic model		
Rapidity <i>y</i>	Evolution time <i>y</i>		
Slope $lpha'$	Diffusion coefficient D		
$\Delta = \alpha(0) - 1$	$\lambda-m_1$		
Splitting vertex r_{3P}	$\lambda\sqrt{\epsilon}$		
Fusion vertex r_{3P}	$(m_2 + \frac{1}{2}\nu)\sqrt{\epsilon}$		
Quartic coupling χ	$\frac{1}{2}(m_2+\nu)\epsilon$		
1			

Few things to note:

Boost invariance $(\lambda = m_2 + \frac{\nu}{2}) \Leftrightarrow$ equality of fusion and splitting vertices The $2 \to 2$ vertex cannot be set to zero $(m_2, \nu > 0)$

Summary of the stochastic approach I

Peculiarities of the approach:

- Presence of the triple and $2 \rightarrow 2$ couplings
- Regularization scale (equivalient to the cutoff or the Pomeron size) enters via parton interaction distance $(g(b), p_{m_2}(b), p_{\nu})$.
- ullet exchanges only
- Neglect of the real part of the \mathbb{P} exchange amplitude.

Summary of the stochastic approach II

In theory: One could compute numerically the whole set of the RFT Green functions and use them for constructing amplitude and all possible cuts. However, this is practically impossible – too expensive numerically.

In practice: It is possible to compute numerically certain convolutations of RFT Green function which correspond to:

- the elastic scattering amplitude
- the single diffractive cut of the amplitude.

For calculation of the SD cut we rely on the AGK result for the lower block: its independence on the position of the cut.

Calculation method – the amplitude l

Key: compute the amplitudes of interest event-by-event (not f_s).

- N-channel eikonal vertices ⇒
 - \Rightarrow Superposition of N Poissons in parton \sharp distribution
- MC evolution upto the given rapidity ⇒
 - ⇒ A sample of partons at certain positions

$$f_s^{\mathrm{sample}}(\mathcal{Z}_s) = \sum_{\{\hat{\mathbf{x}}_{i_1},..,\hat{\mathbf{x}}_{i_s}\} \in \hat{\mathcal{X}}_N} \delta(\mathbf{z}_1 - \hat{\mathbf{x}}_{i_1}) \dots \delta(\mathbf{z}_s - \hat{\mathbf{x}}_{i_s})$$

Calculation method – the amplitude l

Key: compute the amplitudes of interest event-by-event (not f_s).

- N-channel eikonal vertices ⇒
 - \Rightarrow Superposition of N Poissons in parton \sharp distribution
- MC evolution upto the given rapidity ⇒
 - ⇒ A sample of partons at certain positions

$$f_{s}^{\mathrm{sample}}(\mathcal{Z}_{s}) = \sum_{\{\hat{\mathbf{x}}_{i_{1}},..,\hat{\mathbf{x}}_{i_{s}}\} \in \hat{\mathcal{X}}_{N}} \delta(\mathbf{z}_{1} - \hat{\mathbf{x}}_{i_{1}}) \ldots \delta(\mathbf{z}_{s} - \hat{\mathbf{x}}_{i_{s}})$$

Instead of doing this ...

$$T^{el} = \sum_{n,s,k} \frac{(-1)^{s-1}}{s!} \underbrace{\frac{P_n(\mathcal{X}) \otimes f_{ns}(\mathcal{X}|\mathcal{Z})}{f_s(y,\mathcal{Z})}} \otimes \prod g(\mathcal{Z} - \tilde{\mathcal{Z}}) \otimes \underbrace{\frac{\tilde{f}_{ks}(\tilde{\mathcal{X}}|\tilde{\mathcal{Z}}) \otimes \tilde{P}_k(\tilde{\mathcal{X}})}{\tilde{f}_s(Y - y, \tilde{\mathcal{Z}})}}$$

Calculation method – the amplitude l

Key: compute the amplitudes of interest event-by-event (not f_s).

- N-channel eikonal vertices ⇒
 - \Rightarrow Superposition of N Poissons in parton \sharp distribution
- MC evolution upto the given rapidity ⇒
 - ⇒ A sample of partons at certain positions

$$f_s^{\mathrm{sample}}(\mathcal{Z}_s) = \sum_{\{\hat{\mathbf{x}}_{i_1},..,\hat{\mathbf{x}}_{i_s}\} \in \hat{\mathcal{X}}_N} \delta(\mathbf{z}_1 - \hat{\mathbf{x}}_{i_1}) \ldots \delta(\mathbf{z}_s - \hat{\mathbf{x}}_{i_s})$$

we do this:

$$T^{el} = \sum_{n,k} P_n(\mathcal{X}) \otimes \sum_{s} \frac{(-1)^{s-1}}{s!} f_{ns}(\mathcal{X}|\mathcal{Z}) \otimes \prod_{s} g(\mathcal{Z} - \tilde{\mathcal{Z}}) \otimes \tilde{f}_{ks}(\tilde{\mathcal{X}}|\tilde{\mathcal{Z}}) \otimes \tilde{P}_k(\tilde{\mathcal{X}}).$$

$$T_{\text{sample}}^{el} = \sum_{s=1}^{N_{min}} (-1)^{s-1} \sum_{\substack{i_1 < i_2 ... < i_s \ i_1 < ... < i_s}} \sum_{j_1 < ... < j_s} g_{i_1 j_1} ... g_{i_s j_s}.$$

Calculation method - the amplitude II

Setting the linkage point to full rapidity interval y=Y simplifies the calculation: $\tilde{f}_s(y=0,\mathcal{Z}_s)=N_s(\mathcal{Z}_s)/\epsilon^{s/2}$ and the MC average involves evolution from only one side:

$$T^{el} = \sum_{n} P_{n}(\mathcal{X}) \otimes \underbrace{\sum_{s} \frac{(-1)^{s-1}}{s!} f_{ns}(\mathcal{X}|\mathcal{Z}) \otimes \prod_{s} g(\mathcal{Z} - \tilde{\mathcal{X}}) \otimes \tilde{P}_{s}(\tilde{\mathcal{X}})}_{T_{sample}}.$$

$$T_{\text{sample}}^{el} = \sum_{s=1}^{N} (-1)^{s-1} \tilde{\mu}_s \epsilon^s \sum_{i_1 < i_2 \dots < i_s} \tilde{p}_s (\hat{\mathbf{x}}_{i_1} - \mathbf{b}, \dots, \hat{\mathbf{x}}_{i_s} - \mathbf{b}).$$

Calculation method – the SD cut

For the SD cut substituting "event-by-event Green functions" gives

$$T_{\text{sample}}^{SD} = 2T_{\text{sample}}^{el} - T_{\text{sample}}'$$

 T'_{sample} is computed the same way as T^{el}_{sample} with two distinctions:

- Not one, but two sets from the projectile side
- which are evolved independently until the Δy_{gap} and then combined into a single one

<u>Resumé:</u> The elastic scattering amplitude and its SD cut are computed within the same numerical framework.

Model parameters

- Two-channel eikonal $p-n\mathbb{P}$ vertices to incorporate low- M^2 diffraction
- Account the secondary Reggeons contribution to the lowest order
- Neglect the real part of the Pomeron exchange amplitude (keeping it for the secondary Reggeons)
- Neglect central diffraction in calculation of SD cross sections (CD contribution is accounted twice in calculation of 2-side SD, the extra contribution should have been subtracted).

Model parameters

```
r_{3\mathbb{P}} – fixed [Kaidalov'79] 

a – regularization scale 

1+\Delta – bare Pomeron intercept 

\alpha' – Pomeron slope 

|p\rangle=\beta_1|1\rangle+\beta_2|2\rangle; \quad |\beta_1|^2\equiv C_1; \ |\beta_2|^2\equiv C_2=1-C_1. 

\mathbb{P} couplings to |1\rangle and |2\rangle: g_{1/2}=g_0(1\pm\eta) 

R – size of the p–\mathbb{P} vertex (Gaussian) 

Strategy:
```

- 1 Eikonal fit to σ_{tot} , σ_{el} , B and low energy low- M^2 σ_{SD}
- 2 All-loop fit to σ_{tot} , σ_{el} , B starting with parameter set from [1]
- 3 Calculation of diffractive cross sections with parameters obtained at [2]

Results on X-sections and slope $(B = \frac{d}{dt} \ln \frac{d\sigma_{el}}{dt}|_{t=0})$

 $\chi_3 > \chi_1 = \chi_4 > \chi_2$; $a_1 = a_2 = 0.018$ fm; $a_3 = a_4 = 0.036$ fm. $C_1 = C_2 = 0.5$, $\eta = 0.55$. $\Delta = 0.195$; $\alpha' = 0.154$ GeV⁻²; $R^2 = 3.62$ GeV⁻²; $g_0 = 4.7$ GeV⁻¹; $r_{3P} = 0.087$ GeV⁻¹ [Kaidalov'79].

Inelastic and diffractive profiles

Conclusions

- Total, elastic and single diffractive cross sections are computed in RFT within the same numerical framework to all orders in the number of loops;
- A satisfactory description on total and elastic cross sections is obtained within the all-loop framework;
- The single diffractive cross sections energy behaviour is compatible with logarithmic growth.

Backup – cross sections definitions

$$\sigma^{\text{tot}}(Y) = 2 \, \Im M(Y, \mathbf{q} = 0), \quad \sigma^{\text{el}} = \int \frac{d^2 q}{(2\pi)^2} \, |M(Y, \mathbf{q})|^2 \,,$$

$$f(Y, \mathbf{b}) = \frac{1}{(2\pi)^2} \int d^2 q \, e^{-i\mathbf{q}\mathbf{b}} M(Y, \mathbf{q}) \,.$$

$$\sigma^{\text{tot}}(Y) = 2 \int d^2 b \, \Im f(Y, \mathbf{b}) \,, \quad \sigma^{\text{el}} = \int d^2 b \, |f(Y, \mathbf{b})|^2.$$

$$f(Y, \mathbf{b}) \simeq iT(Y, \mathbf{b}), \quad T \equiv \Im f$$

$$B = -\frac{d}{dt} \ln \frac{d\sigma^{el}}{dt} \Big|_{t=0} = \frac{\int b^2 \Im A(b) d^2 b \int \Im A(b) d^2 b + \int b^2 \Re A(b) d^2 b \int \Re A(b) d^2 b}{2 \left(\left(\int \Im A(b) d^2 b \right)^2 + \left(\int \Re A(b) d^2 b \right)^2 \right)}$$

Backup – secondary trajectories

$$\begin{split} \rho p &: \Im f_{\rho p}(b) = \Im A_{P}(b) + [\Im A_{+}(b) + \Im A_{-}(b)][1 - \Im A_{P}(b)] \\ \Re f_{\rho p}(b) &= [\Re A_{R_{+}} + ReA_{R_{-}}][1 - \Im A_{P}(b)] \\ \rho p &: \Im f_{\rho p}(b) = \Im A_{P}(b) + [\Im A_{+}(b) - \Im A_{-}(b)][1 - \Im A_{P}(b)] \\ \Re f_{\rho p}(b) &= [\Re A_{R_{+}} - ReA_{R_{-}}][1 - \Im A_{P}(b)] \\ \rho p &\text{SD:} \\ f_{\rho p}^{\text{Diff}}(b) &= f_{\rho p}^{\text{Diff}}(b)\big|_{\mathbb{P} \text{only}}[1 + |A_{R_{+}}(b) + A_{R_{-}}(b)|^{2} - 2\Im (A_{R_{+}}(b) + A_{R_{-}}(b))] \\ A_{\pm}(y, b) &= \eta_{\pm}\beta_{\pm}^{2} \frac{\exp(\Delta_{\pm}y)}{2\alpha'_{\pm}y + 2R_{\pm}^{2}} \exp\left(-\frac{b^{2}}{4(\alpha'_{\pm}y + R_{\pm}^{2})}\right) \\ \eta_{\pm} &= \pm i - \frac{1 \pm \cos \pi \alpha_{\pm}(0)}{\sin \pi \alpha_{+}(0)} \end{split}$$

Backup – parameters of the fit

$$C_1 = C_2 = 0.5$$
; $\eta = 0.55$; $r_{3P} = 0.087 \text{ GeV}^{-1}$; $\chi_1 = \chi_4 = 0.0005569 \text{ fm}^2 = 0.01435 \text{ GeV}^{-2}$, $\chi_2 = 0.0002785 \text{ fm}^2 = 0.00717 \text{ GeV}^{-2}$, $\chi_3 = 0.0011134 \text{ fm}^2 = 0.0287 \text{ GeV}^{-2}$.

Trajectory	\mathbb{P}	R_{+}	R_{-}
$\alpha(0)-1$	0.195	-0.34	-0.55
$lpha'$, GeV $^{-2}$	0.154	0.70	1.0
R^2 , GeV $^{-2}$	3.62	3.0	5.2
$eta_{0/+/-}$, GeV^{-1}	4.7	4.05	2.59

 $\Delta_{eiko\,nal} = 0.14$

In terms of the stochastic approach:

	a, fm	λ	m_1	m_2	$\mid \nu$	Ν	D, fm ²	R_P , fm
1	0.018	0.54722	0.35222	0	1.09488	29	0.0065	0.375
2	0.018	0.54722	0.35222	0.54722	0	29	0.0065	0.375
3	0.036	0.27361	0.07861	0	0.54722	14.5	0.0065	0.375
4	0.036	0.27361	0.07861	0.27361	0	14.5	0.0065	0.375