Scaling properties of large p_{\perp} hadron production at hadronic colliders

François Arleo

LLR, Palaiseau

Mini-workshop "Five topics in QCD phenomenology"

Nantes – January 2013

Outline¹

Motivations

- Scaling laws in inclusive processes
- Leading-twist vs. higher-twist hadron production

World-data analysis

- hadron, photon, and jet scaling properties from fixed-target to colliders, in comparison to NLO expectations
- Interpretation

Hadron production at the LHC

- Testing leading-twist QCD NLO
- Data-theory comparison
- Data-driven predictions using x₁ scaling

References

FA, Brodsky, Hwang, Sickles, Phys. Rev. Lett. 105 (2010) 062002 [arXiv:0910.4604]

FA, D. d'Enterria, A. Yoon, JHEP 06 (2010) 035 [arXiv:1003.2963]

Dimensional analysis

Scattering amplitude $1 \ 2 \cdots \rightarrow \dots n$ has dimension

$$\mathcal{M} \sim [\text{length}]^{n-4}$$

Consequence

In a conformal theory (no intrinsic scale), scaling of inclusive particle production

$$E \frac{d\sigma}{d^3p}(A B \to C X) \sim \frac{|\mathcal{M}|^2}{s^2} = \frac{F(x_{\perp}, \vartheta^{\text{cm}})}{p_{\perp}^{2n_{\text{active}} - 4}}$$

where $n_{
m active}$ is the number of fields participating to the hard process

 $x_{\perp} = 2p_{\perp}/\sqrt{s}$ and $\vartheta^{\rm cm}$: ratios of invariants

Let's take the inclusive pion production as an example. . .

Scaling laws in inclusive pion production

• Conventional pQCD picture (leading twist): $2 \rightarrow 2$ process followed by fragmentation into a pion on long time scales

Scaling laws in inclusive pion production

• Conventional pQCD picture (leading twist): $2 \rightarrow 2$ process followed by fragmentation into a pion on long time scales

Direct higher-twist picture: pion produced directly in the hard process

$$n_{\text{active}} = 5 \rightarrow n = 6 \ (= 2 \times 5 - 4)$$

$$E \frac{d\sigma}{d^3p}(p p \rightarrow \pi X) \sim \frac{F'(x_{\perp}, \vartheta^{\mathrm{cm}})}{p_{\perp}^6}$$

Scaling laws in inclusive pion production

- Conventional pQCD picture (leading twist): $2 \rightarrow 2$ process followed by fragmentation into a pion on long time scales
- Direct higher-twist picture: pion produced directly in the hard process

Remarks

• $F(x_{\perp})$ falls faster than $F'(x_{\perp})$ with x_{\perp} from the larger number of spectator partons [Brodsky Burkardt Schmidt 1995]

$$F(x_{\perp}) \sim (1-x_{\perp})^{2n_{
m spectator}-1}$$

ullet Higher-twist processes naturally suppressed at large p_{\perp}

Higher-twist contributions possible at high ${\it x}_{\!\scriptscriptstyle \perp}$ and not too large ${\it p}_{\scriptscriptstyle \perp}$

[Sivers Brodsky Blankenbecler 1975]

Scaling violations

QCD is not conformal

Scaling violations expected from

- running coupling
- evolution of parton densities and fragmentation functions
 Scaling exponent greater than 4 even in leading-twist QCD

Scaling violations

- Slight increase of n^h with x_{\perp} from $n^h \simeq 5$ to 6
- Smaller exponent in the photon sector: $n^{\gamma} \simeq n^h 1$
 - lesser scaling violations due to (almost) no fragmentation component
- Almost no difference between hadron species

Scaling violations

QCD is not conformal

Scaling violations expected from

- running coupling
- evolution of parton densities and fragmentation functions
 Scaling exponent greater than 4 even in leading-twist QCD

This analysis: systematic comparison between data and NLO expectations

Data analysis

• Scaling exponent extracted by comparing x_{\perp} spectra at two \sqrt{s}

$$n^{\rm exp}(x_{_\perp}) \equiv -\frac{\ln\left[\sigma^{\rm inv}(x_{_\perp},\sqrt{s_1})\big/\sigma^{\rm inv}(x_{_\perp},\sqrt{s_2})\right]}{\ln\left(\sqrt{s_1}\big/\sqrt{s_2}\right)}$$

within the same experiment in order to reduce systematic errors

- Particle production at mid-rapidity
 - hadrons (π and h^{\pm}), prompt photons, jets
- Data sets
 - most recent measurements: CDF, D0, E706, PHENIX
 - ...as well as older ISR data

Results

- ullet Significant increase of the hadron \emph{n}^{exp} with \emph{x}_{\perp}
 - $n^{\rm exp} \simeq 8$ at large x_{\perp}
- Huge contrast with photons and jets !
 - n^{exp} constant and slight above 4 at all x_1

Comparing to QCD

NLO calculations carried out within the experimental kinematics $(p_{\scriptscriptstyle \perp},\,\sqrt{s})$

$$\Delta(x_{\perp}) \equiv n^{\rm exp} - n^{\rm NLO}$$

Comparing to QCD

- $\Delta^h \simeq 0.5 2$ from small to large x_{\perp}
- $\Delta^{\gamma/\text{jets}}$ consistent with 0
- \bullet Error bars include theoretical uncertainty $\mu=p_{_\perp}/2$ to $2p_{_\perp}$

Comparing to QCD

Clear hierarchy

Tevatron RHIC fixed target

$$x_{\perp} \sim 10^{-2} \ x_{\perp} \sim 10^{-1} \ x_{\perp} \sim {
m few \ times} \ 10^{-1}$$

$$\Delta \simeq 0.5$$

$$\Delta \simeq 1$$

$$\Delta \simeq 2$$

Interpretations

Resumation of large "threshold" logs $\ln(1-x_{\perp})$ could explain part of the data. However, data – theory discrepancy even at small $x_{\perp}\sim 10^{-2}$

Most natural explanation

Higher-twist contributions : $q\ ar{q}\ o g\ \pi$ and $q\ g\ o q\ \pi$

- HT effects absent in photon and jet production
- scale dependence
- meson vs. baryon behavior

Pion scaling exponent extracted vs. p_{\perp} at fixed x_{\perp}

- ullet QCD slowly approaches n=4 in the Bjorken limit $(s o\infty$, fixed $x_{\perp})$
- ullet data theory discrepancy larger at smaller p_{\perp}

Pion scaling exponent extracted vs. p_{\perp} at fixed x_{\perp} 2-component toy-model

$$\sigma^{
m model}(pp o\pi~{
m X}\,) \propto rac{A(x_{_\perp})}{p_{_\perp}^4} + rac{B(x_{_\perp})}{p_{_\perp}^6}$$

Define effective exponent

$$n_{ ext{eff}}(x_{\perp}, p_{\perp}, B/A) \equiv -\frac{\partial \ln \sigma^{ ext{model}}}{\partial \ln p_{\perp}} + n^{ ext{NLO}}(x_{\perp}, p_{\perp}) - 4$$

$$= \frac{2B/A}{p_{\perp}^{2} + B/A} + n^{ ext{NLO}}(x_{\perp}, p_{\perp})$$

Pion scaling exponent extracted vs. p_{\perp} at fixed x_{\perp} 2-component toy-model

$$\sigma^{
m model}(pp o\pi~{
m X}\,)\propto rac{A(x_{_\perp})}{p_{_\perp}^4}+rac{B(x_{_\perp})}{p_{_\perp}^6}$$

Define effective exponent

$$\begin{split} n_{\text{eff}}(x_{\perp}, p_{\perp}, B/A) &\equiv -\frac{\partial \ln \sigma^{\text{model}}}{\partial \ln p_{\perp}} + n^{\text{NLO}}(x_{\perp}, p_{\perp}) - 4 \\ &= \frac{2B/A}{p_{\perp}^2 + B/A} + n^{\text{NLO}}(x_{\perp}, p_{\perp}) \end{split}$$

$$\begin{array}{ll} \text{Limits} \\ n_{\text{eff}}(x_{\perp}, p_{\perp}) = n^{\text{NLO}}(x_{\perp}, p_{\perp}) & \text{for } B \ll A \times p_{\perp}^{2} \\ n_{\text{eff}}(x_{\perp}, p_{\perp}) = n^{\text{NLO}}(x_{\perp}, p_{\perp}) + 2 & \text{for } B \gg A \times p_{\perp}^{2} \end{array}$$

- Fit gives $[B(x_{+})/A(x_{+})]^{1/2} \simeq 4-7 \text{ GeV}$
- Significantly reduced because of trigger bias effect
 - $[B(x_{\perp})/A(x_{\perp})]^{1/2} \simeq 1 \text{ GeV}$

Which scaling behavior for higher-twist baryon production? Take for instance proton production

$$n_{\text{active}} = 6$$

$$E \frac{d\sigma}{d^3p}(p p \rightarrow p X) \sim \frac{F(x_{\perp}, \vartheta^{cm})}{p_{\perp}^8}$$

Which scaling behavior for higher-twist baryon production? Take for instance proton production

$$n_{\text{active}} = 6$$

$$E \frac{d\sigma}{d^3p}(p p \rightarrow p X) \sim \frac{F(x_{\perp}, \vartheta^{\mathrm{cm}})}{p_{\perp}^8}$$

... which contrasts with pion scaling exponents

$$n_{\text{active}} = 5$$

$$E \, rac{d\sigma}{d^3p}(p \, p \,
ightarrow \pi \, X) \sim rac{F'(x_{\scriptscriptstyle \perp}, artheta^{
m cm})}{p_{\scriptscriptstyle \perp}^6}$$

Protons minus pions results

	$n^p - n^\pi$
QCD NLO Higher-twist picture	$\simeq 0$ $\simeq 2$
Experiment (ISR)	$\simeq 1$

Results consistent with a mixture of LT and HT "direct" components

Protons minus pions results

	$n^p - n^\pi$
QCD NLO Higher-twist picture	$\stackrel{\sim}{\sim} 0$ $\stackrel{\sim}{\sim} 2$
Experiment (ISR)	$\simeq 1$

Results consistent with a mixture of LT and HT "direct" components

Hadrochemistry as a useful probe of production dynamics at large $p_{\scriptscriptstyle \perp}$

Need for good hadron identification capabilities (π, K, p) at the LHC!

Global fit

 $\Delta^{\mathrm{fit}}(\mathbf{x}_{_{\perp}},\mathbf{p}_{_{\perp}})$ extracted from a fit to Tevatron, PHENIX, and E706 data

$$\Delta^{\text{fit}}(x_{\perp}, p_{\perp}) = (-\log x_{\perp})^{p_3} \times \frac{2 p_1 (1 - x_{\perp})^{p_2}}{p_{\perp}^2 + p_1 (1 - x_{\perp})^{p_2}}$$

Global fit

 $\Delta^{
m fit}({\it x}_{_{\perp}},{\it p}_{_{\perp}})$ extracted from a fit to Tevatron, PHENIX, and E706 data

$$\Delta^{\text{fit}}(x_{\perp}, p_{\perp}) = (-\log x_{\perp})^{p_3} \times \frac{2 p_1 (1 - x_{\perp})^{p_2}}{p_{\perp}^2 + p_1 (1 - x_{\perp})^{p_2}}$$

Predictions at RHIC and LHC

	$\sqrt{s_1}$	$\sqrt{s_2}$
RHIC	500 GeV	200 GeV
LHC	7 TeV	1.8 TeV

- $\Delta \lesssim 1$ at RHIC, $\Delta \lesssim 0.5$ at LHC
- \bullet Deviation from NLO visible below $x_{\scriptscriptstyle \perp} = 10^{-1}/10^{-2}$ at RHIC/LHC

PHENIX results

Scaling exponents from $\sqrt{s}=500$ GeV preliminary data

[A. Bazilevsky, APS Meeting]

ullet Magnitude of Δ and its x_{\perp} -dependence consistent with predictions

CMS preliminary measurements

[CMS, PAS QCD-10-008]

• CMS preliminary data suggest n = 5.1

CMS preliminary measurements

[FA, D. d'Enterria, A. Yoon, 1003.2963]

- CMS preliminary data suggest n = 5.1
- Slightly above (but not much) QCD NLO predictions $n \simeq 4.9$

CMS preliminary measurements

[CMS, PAS QCD-10-008]

- CMS preliminary data suggest n = 5.1
- Slightly above (but not much) QCD NLO predictions $n \simeq 4.9$
- Bin-to-bin $(p_{\perp}$ -dependent) extraction of n would be ideal

Isolated hadrons

Leading twist

Hadrons accompanied by a significant hadronic activity \Rightarrow inside jets Higher twist

Color-singlet produced in the hard process ⇒ "isolated" hadrons

Isolated hadrons

Leading twist

Hadrons accompanied by a significant hadronic activity \Rightarrow inside jets Higher twist

Color-singlet produced in the hard process \Rightarrow "isolated" hadrons

Idea: use isolation criteria to filter the leading twist component

$$E_{\perp}^{\text{had}} \leq E_{\perp}^{\text{max}} = \varepsilon \ p_{\perp}^{h}$$

for particles inside a cone

$$(\eta - \eta_{\gamma})^2 + (\phi - \phi_{\gamma})^2 \le R^2$$

Isolated hadrons

Leading twist

Hadrons accompanied by a significant hadronic activity \Rightarrow inside jets Higher twist

Color-singlet produced in the hard process ⇒ "isolated" hadrons

Idea: use isolation criteria to filter the leading twist component

$$E_{\perp}^{\text{had}} \leq E_{\perp}^{\text{max}} = \varepsilon \ p_{\perp}^{h}$$

for particles inside a cone

$$(\eta - \eta_{\gamma})^2 + (\phi - \phi_{\gamma})^2 \le R^2$$

Consequence

Enhanced scaling exponent for isolated hadrons

$$n_{\text{isolated}}^h > n_{\text{inclusive}}^h$$

At large enough transverse momentum, higher-twist "direct" hadron production should be completely suppressed

Hadron spectra at LHC interesting playground for testing (leading-twist) QCD NLO predictions

- Test of parton distribution functions (PDF)
- Test of fragmentation functions (FF)

π , K, p/\bar{p} spectra at $\sqrt{s} = 7$ TeV

- PDF uncertainty rather small at all p_{\perp} : $\lesssim 10\%$
- Important scale dependence, especially at low p₁: 50%

Sassot Zurita Stratmann, 1008.0540

- FF uncertainty larger at large p_{\perp} (i.e. large z), almost comparable in size to the scale dependence
- Chemical composition almost independent of p_{\perp}
 - pions (60%), kaons (25%), protons/antiprotons (15%), others ($\leq 4\%$)

CMS 1104.3547

Rather good agreement with PYTHIA (various tunes)

CMS 1104.3547

Discrepancy between CMS and NLO!

ALICE 1205.5724

 "NLO calculations cannot provide a consistent description of measured data at both beam energies"

How to compare pp and Pb Pb spectra?

A crucial requirement for heavy-ion spectra

Need to compare precisely hadron spectra in pp and Pb Pb collisions at the same energy \sqrt{s}

Problem

- No pp data (yet) at $\sqrt{s} = 2.76$ and 5.5 TeV
- NLO QCD calculations are known within 20% accuracy at best

Prescription

[FA, D. d'Enterria, A. Yoon, 1003.2963]

- Assume x_{\perp} scaling in large p_{\perp} hadron production
- Interpolate data from e.g. $\sqrt{s} = 1.96/2.36$ TeV to 7 TeV data

How to compare pp and Pb Pb spectra?

Assuming x_{\perp} scaling only (value of exponent not necessary)

$$\sigma^{\mathrm{inv}}(\sqrt{s}, p_{\perp} = x_{\perp} \frac{\sqrt{s}}{2}) = \sigma^{\mathrm{inv}}(\sqrt{s_{1}}, x_{\perp}) \times \left[\frac{\sigma^{\mathrm{inv}}(\sqrt{s_{2}}, x_{\perp})}{\sigma^{\mathrm{inv}}(\sqrt{s_{1}}, x_{\perp})}\right]^{\alpha}$$

where $\alpha \equiv \ln(\sqrt{s}/\sqrt{s_1})/\ln(\sqrt{s_2}/\sqrt{s_1})$

Interpolation uncertainty

$$\frac{\delta \sigma^{\mathrm{inv}}(\sqrt{s}, x_{\perp})}{\sigma^{\mathrm{inv}}(\sqrt{s}, x_{\perp})} = \sqrt{(1 - \alpha)^2 \left(\frac{\delta \sigma^{\mathrm{inv}}(\sqrt{s_{1}}, x_{\perp})}{\sigma^{\mathrm{inv}}(\sqrt{s_{1}}, x_{\perp})}\right)^2 + \alpha^2 \left(\frac{\delta \sigma^{\mathrm{inv}}(\sqrt{s_{2}}, x_{\perp})}{\sigma^{\mathrm{inv}}(\sqrt{s_{2}}, x_{\perp})}\right)^2}$$

possibly smaller than that of NLO QCD predictions

How to compare pp and Pb Pb spectra?

Checking the interpolation by comparing

- PYTHIA at $\sqrt{s} = 5.5$ TeV
- x_{\perp} -interpolation of PYTHIA at $\sqrt{s}=1.96$ TeV and $\sqrt{s}=14$ TeV

Agreement within less than 10% above $p_{\perp}=10~\text{GeV}$

Summary

Scaling laws

powerful probe of hadron production dynamics

World-data analysis

- exponents systematically extracted from hadron, photon and jet data
- significant discrepancy in the hadron sector supports a non-negligible higher-twist contribution at not too large p_{\perp} (first seen at ISR)

Hadron production at LHC

- scale dependence largest uncertainty (20% above $p_{\perp}=20~{\rm GeV})$
- Discrepancy between data and NLO predictions from 0.9 to 7 TeV
- x_{\perp} -scaling procedure to interpolate pp data at heavy-ion c.m.s. energies