Heavy Quarks Messengers from QGP

With J. Aichelin, R. Bierkandt, Th. Gousset, A. Peshier, V. Guiho

5 talks on strong interaction – SUBATECH – 14-18 January 2013

The Monte Carlo @ Heavy Quark Generator

The Monte Carlo @ Heavy Quark Generator

The Monte Carlo @ Heavy Quark Generator

Model in a Nutshell: HQ Interaction with the bulk

- No force on HQ before thermalization of QGP
- Hydro evol => macroscopic parameters T(t,h,xT), v(t,h,xT), $\mu(t,h,xT)$,
- In QGP: heavy quarks are assumed to interact with partons of type "i" (massless quarks and gluons) with local $2\rightarrow 2$ collisional rate:

$$R_{i} = \frac{1}{2E_{p}} \int \frac{d^{3}k}{(2\pi)^{3}2k} \int \frac{d^{3}k'}{(2\pi)^{3}2k'} \int \frac{d^{3}p'}{(2\pi)^{3}2E'}$$

$$n_{i}(k) \times (2\pi)^{4} \delta^{(4)}(P+K-P'-K') \sum |\mathcal{M}_{i}|^{2} \longrightarrow \Phi \text{ inside}$$

...depends on the QGP macroscopic parameters at a given 4-position (t,x). We follow the hydro evolution and sample the rates R_i "on the way", performing the Qq \rightarrow Q'q' & Qg \rightarrow Q'g' collisions according to Boltzmann: Monte Carlo approach

- In mixed phase: Rate = $\epsilon/\epsilon_{end QGP}$ x Rate at end of QGP
- No D (B) interaction in hadronic phase

Oldies on Collisional Energy Loss...

suffers from customary choices

Cross sections

However, t-channel is IR divergent => modelS

Naïve regulating of IR divergence:

$$\frac{1}{t} \rightarrow \frac{1}{t - \mu^2} \qquad \text{With } \mu(T) \text{ or } \mu(t)$$

Models A/B: 2 customary choices

$$\mu^2(T) = m_D^2 = 4\pi\alpha_s(1+3/6)xT^2$$

$$\alpha_{s}(Q^{2}) \rightarrow \begin{bmatrix} 0.3 \pmod{A} \\ \alpha_{s}(2\pi T) \pmod{B} \ (\approx 0.3) \end{bmatrix}$$

	$T(MeV) \ p(GeV/c)$	10	20
$\frac{aE_{coll}(C)}{C}$	200	0.18	0.27
dx	400	0.35	0.54

... of the order of a few % !

Results for model B:

One reproduces the R_{AA} shape at the price of a *huge cranking* K-factor !!!

the collisional rate

Calibrating on HTL... *permits to fix the effective mass μ*

Our solution: Introduce a semi-hard propagator $1/(t-v^2)$ for $|t| > |t^*|$ to attenuate the discontinuities at t^* in BT approach.

Prescription: v^2 in the semi-hard prop. is *chosen* such that the resulting E loss is maximally $|t^*|$ -independent.

This allows a matching at a sound value of $|t^*| \approx T$

Model C: optimal μ^2

with
$$m_D^2 = 4\pi\alpha_s(2\pi T)(1+3/6)xT^2$$

$$\frac{dE}{dx} (GeV/fm) \\
0.4 \\
0.3 \\
0.2 \\
0.1 \\
0.05 \\
0.1 \\
0.15 \\
0.2 \\
0.2 \\
0.2 \\
0.1 \\
0.15 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2$$

 $\frac{dE_{coll}(c)}{dx} \dots \text{ factor 2 increase w.r.t. mod}$ $\frac{dE_{coll}(c)}{dx} = B \text{ (not enough to explain R_{AA})}$

T(MeV) \p(GeV/c)	10	20
200	0.36 (0.18)	0.49 (0.27)
400	0.70 (0.35)	0.98 (0.54)

Running $\alpha_s \dots$

Motivation: Even a fast parton with the largest momentum P will undergo collisions with moderate q exchange and large $\alpha_s(Q^2)$. The running aspect of the coupling constant has been "forgotten/neglected" in most of approaches

...asymptotic freedom and infrared slavery <u>Strategy</u>

- 1. Effective α_{eff} (Q²)
- 2. "generalized BT" / convergent-kinetic => dE/dx
- 3. Fix the optimal IR regulator in propagator $\alpha_{\text{eff}}(t)$ i.e. in t-channel, fix the optimal κ $t - \kappa \tilde{m}_D^2$

 $\mu^2(\mathbf{T})$

Self consistent m_D (Peshier hep-ph/0607275) m_{Dself}^2 (T) = (1+n_f/6) $4\pi\alpha_s(m_{Dself}^2)$ xT²

Model E : running α_s AND optimal μ^2

• Effective $\alpha_s(Q^2)$ (Dokshitzer 95, Brodsky 02)

Observable = T-L effective coupling * Process dependent fct

"Universality constrain" (Dokshitzer 02) helps reducing uncertainties:

$$\frac{1}{Q_u} \int_{|Q^2| \le Q_u^2} dQ \alpha_s(Q^2) \approx 0.5$$

Large values for intermediate momentum-transfer IR safe. The detailed form very close to $Q^2 = 0$ is not important does not contribute to the energy loss Model E : running α_s AND optimal μ^2

• Bona fide "running HTL": $\alpha_s \rightarrow \alpha_s(Q^2)$

```
Brute BT: Not Indep. of |t*| !
```


$\frac{dE_{coll}(c/b)}{dx}$	$T(MeV) \setminus p(GeV/c)$	10	20
	200	1 / 0.65	1.2 / 0.9
	400	2.1 / 1.4	2.4 / 2

Of the order of 10 % of energy

Model E : running α_s AND optimal μ^2

• Optimal regulator:

$$\mu^2(T) \approx 0.2 \ m_{\text{Dself}}^2(T)$$

µ-local-model: medium effects at finite T in t-channel

Differential cross sections

Large enhancement of both cross sections at small and intermediate |t|

Little change at large |t|

N.B: Non perturbative aspects (beyond Born). Usually in convergent kinetic:

Ladders necessary at short distance (large force)

Running α_s : some Energy-Loss values

	$T(MeV) \setminus p(GeV/c)$	10	20
$\frac{dE_{_{coll}}(c/b)}{dE_{_{coll}}(c/b)}$	200	1 / 0.65	1.2 / 0.9
dx	400	2.1 / 1.4	2.4 / 2

≈ 10 % of HQ energy

Transport coefficients

Probability P(w) of energy loss per fm/c:

Running α_s : theoretical uncertainties

Experimental observables

Model vs R_{AA} (Au-Au, all centralities)

Tuning: Cranking the interaction rates by "empirical" K-factor

v_2 for tuned model :

Reasonable hope that v₂ will agree with data when hadronic phase implemented

Corona effect and Beyond

How Opaque (or Translucid) is the (s)QGP?

• Two kinds of (theoretical) "observables" to understand:

- «Forward»: Cuts on initial variables (position, momentum,...) and look at consequences for final quantities
- Backward: Cuts on final variables and observe initial quantities

Probing the energy loss with R_{AA} at large p_T

All analysis: Au+Au at 200 A GeV & b=0 fm

* Forward: focus on c-quarks produced within various coronas

Transverse plane

 $r_{T}^{in}(fm): 0-2 fm$ $r_{T}^{in}(fm): 2-4 fm$ $r_{T}^{in}(fm): 4-6 fm$ $r_{T}^{in}(fm): 6-8 fm$

The stopping depends strongly on the position where the HQ's are created

The spectra at large $p_{\rm T}$ are insensitive to the HQ's produced in the center of the plasma

Very few Q produced in central zone come out... however, more quarks produced than at periphery

...answers may vary depending on T and p

 \approx cst at periphery => robust corona

* Challenge: tagging on the "central" Q, i.e. getting closer to the ideal "penetrating probe" concept:

Probing the Energy Loss with R_{AA} at large p_T

* Backward Analysis: tag on final p_T and builds the distribution of *initial positions* in transverse plane

However: finite contribution from the center (hot zone), larger and larger at high p_T How

How to *better* access them ?

Q-Qbar Correlations

* Reversing the argument: selecting $\langle \Delta p_T(\overline{\mathbf{Q}}) \rangle \approx \langle \Delta p_T(\mathbf{Q}) \rangle$ might bias the data in favor of "central" pairs

Possible caveat: tangential events

 \Rightarrow Need for a detailed study

Q-Qbar Correlations

Average transv.-dist. to center as a function of Δp_T^{fin} for various p_T^{in}

<u>However</u>: No access to p_T^{in} !!!

Q-Qbar Correlations

<u>Best ansatz:</u> $p_T^{in}(Q) \rightarrow \overline{p}_T^{fin} := \frac{p_T^{fin}(Q) + p_T^{fin}(\overline{Q})}{2}$

Average transv.-dist. to center as a function of Δp_T^{fin} for various $\overline{p_T}^{\text{fin}}$

Bias towards Central production:

Conclusion: Favorable bias for av. $p_T^{fin} > 8 \text{ GeV/c}$ and "small" Δp_T^{fin}

Q-Qbar Correlations: back to r_T distributions

R_{AA} with Q-Qbar Correlations

Close to experimental prediction but not yet (Hadronization, NLO at the time of production, background substraction,...)

(Induced) Radiative for HQ

I) Approach of increasing sophistication

II) Ultimate goal is to have "simple" effective model that can be implemented in Monte Carlo simulations => need for analytical formula

III) Mostly centered on HQ

Basic (massive) Gunion-Bertch

Formation time for a single coll. $\begin{array}{c} & & & \\ & &$

For x<x_{cr}=m_g/M, basically no mass effect in gluon radiation

$\begin{array}{c} l_{f,\text{sing}}[\text{fm}] \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.5 \\ 0.5 \\ 0.2 \\ 0.4 \\ 0.6 \\ 0.8 \\ 1.0 \\ 0.8 \\ 1.0 \\ x \end{array}$

radiated from heavy quarks are resolved in less time then those \leftarrow light quarks and gluon => radiation process less affected by coherence effects in multiple scattering

Dominant region for quenching

Dominant region for average E loss

A first criteria

Comparing the formation time (on a single scatterer) with the mean free path:

Coherence effect for HQ gluon radiation \Leftrightarrow

$$\frac{E}{M} \gtrsim m_g \lambda_Q \sim \frac{1}{g_s}$$

Maybe not completely foolish to neglect coherence effect in a first round for HQ.

(will provide at least a maximal value for the quenching)

Mostly coherent Mostly uncoherent

(of course depends on the physics behind λ_0)

Radiation spectra

Interesting *per se*, but not much connected to the quenching or R_{AA} .

Probability P of energy loss ω per unit length (T,M,...):

- Too large quenching; good as we obviously overestimate the radiative Eloss
- 2. Radiative Eloss indeed dominates the collisional one
- 3. Flat experimental shape is well reproduced

separated contributions $e \leftarrow D$ and $e \leftarrow B$.

Results

- 1. Collisionnal + radiative energy loss + dynamical medium : *compatible* with data
- Shape for radiative E loss and *rescaled* collisional E loss are pretty similar
- 3. To my knowledge, one of the first model using radiative Eloss that reproduces v_2

Basics of Coherent Radiation

Subject of numerous (mosty numerical) investigations

See Peigné & Smilga (2008) for some analytical results pertaining to HQ

Formation time in a random walk

For light quark (infinite matter):

Phase shift at each collision

One obtains an effective formation time by imposing the cumulative phase shift to be Φ_{dec} of the order of unity

Formation time and decoherence for HQ

"Competition" between

• decoherence" due to the masses: $m_g^2 + x^2 M^2$ • decoherence due to the transverse kicks $\langle Q_{\perp}^2 \rangle \equiv l_{f, \text{mult}} \hat{q}$

Special case:
$$\lambda < l_{f,\text{mult}} < L_{\text{QCD}}^{\star\star} := \frac{m_g^2 + x^2 M^2}{\hat{q}}$$

One has a possibly large coherence number $N_{coh} := l_{f,mult}/\lambda$ but the radiation spectrum per unit length stays mostly unaffected:

Radiation on an effective center of length $l_{f,mult} = N_{coh} \lambda \longrightarrow \begin{bmatrix} d^2I \\ dz d\omega \end{bmatrix} \leftarrow Radiation at small angle \alpha \langle Q_{\perp}^2 \rangle$ i.e. αN_{coh} Compensation at leading order !

LESSON: HQ radiate less, on shorter times scales but are less affected by coherence effects than light ones !!! (dominance of 1rst order in opacity expansion)

Formation time and decoherence for HQ

Criteria: HQ radiative E loss strongly affected by coherence provided:

Regimes and radiation spectra

Semi-quantitative model:

- Compares well to the BDMPS result (N_{coh} >>1) for light quark (up to some color factor => rescaling), including the coulombian logs.
- Naturally interpolates to the massive-GB regime for $N_{coh} \leq 1$.
- Incorporates all regimes discussed above.

Reduced spectra from coherence

- : Suppression due to coherence increases with increasing energy
- : Suppression due to coherence decreases with increasing mass

In (first) Monte Carlo implementation: we quench the probability of gluon radiation by the ratio of coherent spectrum / GB spectrum

Results with Coherence Included

 R_{AA} lept

1. Some moderate increase of R_{AA} for D at large p_T .

2. No effect seen for B

Conclusions can vary a bit depending on the value of the transport coefficient

Confirms that RAA at RHIC is mostly the physics of rather numerous but small E losses, not very sensitive to coherence .

What is (really) missing ?

- 0-opacity correction and transition radiation that partly compensates and lead to an effective retardation of the energy loss.
- Better Monte Carlo implementation for radiation caused by multiple collisions.
- Finite path Length effects : In practice, formation length are of the order of a couple of fm => HQ emanating from the corona have a path length $L < l_{f,mult}$

{Radiative + Elastic} vs Elastic for leptons @ RHIC

El. and rad. Eloss exhibit very different E and mQ dependences. However...

 σ_{el} alone rescaling: K=1.8-2.2

$\sigma_{el}~\&~\sigma_{rad}$ cocktail: rescaling by

QGP properties from HQ probe at RHIC (the bad and the good news from our messengers)

Gathering all *rescaled* models (*coll. and radiative*) compatible with RHIC R_{AA}:

