Higgs Physics at ATLAS From the WW Perspective

Corrinne Mills

(Harvard University)

Seminar at CPPM (Marseille)

25 February 2012

Discovery!

• After last winter's preamble, great excitement last summer

Local p_0

Overview

- History: this past summer's discovery, and why it was so long-sought
- Updated $H \rightarrow WW \rightarrow IvIv$ analysis
 - \rightarrow Motivation; role in the discovery
 - → Candidate event identification in light of detector and LHC
 - → Background estimation vs. systematic uncertainties
- Latest results from ATLAS globally
- The way forward
- (Along the way: hints of results in the pipeline)

The History

The Higgs Mechanism

Gauge invariance does not allow fundamental particle masses: instead, generate masses through interaction with a scalar field

- → Ground state is not zero-field
- → Breaks the electroweak symmetry

$$L = \left[-\left(g_1 \frac{Y}{2}\right)^2 B_{\mu} B^{\mu} - g_1 g_2 \frac{Y}{4} \vec{\tau} \cdot \vec{W}_{\mu} B^{\mu} - g_2^2 \left(\frac{\vec{\tau}}{2} \cdot \vec{W}_{\mu}\right) \left(\frac{\vec{\tau}}{2} \cdot \vec{W}^{\mu}\right) \right] \phi^2$$

Interaction with nonzero field permeating space generates mass

- → Minimal implementation: complex scalar doublet
- \rightarrow Other possibilities exist

"vacuum expectation value"

choose $\langle \phi \rangle = -$

5

 $\phi = \begin{pmatrix} \phi^+ \\ \phi^0 \end{pmatrix}$

Consequences of EWSB

 μ

- Vacuum expectation value enters electroweak interactions, can measure!
- Best constraints from muon decay

$$v = (\sqrt{2} G_F)^{-1/2} \approx 246 \,\mathrm{GeV}$$

• W and Z masses related by weak mixing angle θ_W

$$M_W = M_Z \cos(\theta_W) \qquad \cos(\theta_W) = \frac{g_2}{\sqrt{g_1^2 + g_2^2}}$$

Electroweak symmetry breaking is experimentally verified

- → Strong evidence for the Higgs mechanism
- → Question: what is the nature of the Higgs field?

$$\boldsymbol{\mathcal{T}}_{\mu} = \frac{192 \,\pi^3 \hbar^7}{\mathbf{G}_{\mathrm{F}}^2 \, m_{\mu}^5 \, c^4} \propto \boldsymbol{\mathcal{V}}$$

 $ilde{
u_{\mu}}$

W⁺

The Standard Model Higgs

- Focus now on the **simplest** implementation: the Standard Model Higgs mechanism
- Four extra degrees of freedom in the complex scalar doublet field
 - \rightarrow Only 3 needed to give mass to the W and Z
 - \rightarrow Fourth is a physical scalar: the Higgs boson
- For every massive particle, an interaction with this new scalar
 - ightarrow Interaction strength **determined** by particle mass and VEV $\mathcal V$
- Only thing not determined: the mass of the Higgs boson

How to Make a Higgs Boson

- Colorless particle ⇒ no (direct) strong production
- Recall: coupling strength $\propto m^2$
 - \rightarrow Interactions go through the heaviest available particle

LEP: not quite enough energy

- Early high-mass search
- m_H < m_Z ruled out by nonappearance in Z decay
- LEP: e^+e^- collisions at $\sqrt{s} = 189-209$ GeV
- Four experiments' combined direct bound m_H > 114.4 GeV
 - \rightarrow (209 91 = 118)
- In the end, limited by machine energy
- Did not quite reach expected BG-only limit of 115.3 GeV

Tevatron: almost...

- 2 TeV proton-antiproton
- Cross section for ggF @ 125 = 0.95 pb
 - → compare 20 pb at LHC
- Added sensitivity at low mass from associated production searches $(\sigma_{WH} = 0.13 \text{ pb})$
- Final combined CDF+D0 Run II significance 2.5σ (2.9σ considering bbbar alone)

The Machine

The Large Hadron Collider at CERN

The Alps

Lac Leman

airplanes go here

Genève

CERN

world's highest energy particle collider pp collisions at sqrt(s) = 8 TeV

An Unprecedented Dataset

- Opened the throttle: > 20 fb⁻¹ for analysis at 8 TeV (2011: \approx 5 fb⁻¹ at 7 TeV)
- **2012 Instantaneous luminosity record = 7.7 x 10³³ cm⁻²s⁻¹** (2011: 3.7 x 10³³ cm⁻²s⁻¹)
- Delivered Luminosity [fb⁻¹ 1380 colliding 35 ATLAS Online Luminositv **bunches** (2011: 1331) 2010 pp √s = 7 TeV 30 2011 pp $\sqrt{s} = 7$ TeV – 2012 pp √s = 8 TeV analyzing now! up to 1.5x10¹¹ p/ 25 **bunch** (~ same in 20 2011) this talk 15 10 discovery published 5 Ω JUI Apr Oct Jan Month in Year

The ATLAS Detector

Hadron Collider Kinematics

$WW^* \rightarrow /_V/_V$

- The price at low m_H: one W off mass shell ⇒ no mass resolution, soft lepton from W* requires increased backgrounds to maintain efficiency
- The payoff: still better signal/background than $\gamma\gamma$ and more signal yield than ZZ \rightarrow 41 for m_H ~ 125 GeV \Rightarrow contribution to discovery

→ Post-discovery: key channel for rate ($\mu = \sigma/\sigma_{SM}$) measurement

The Details

The scale of the challenge

What Matters?

	Signal	WW	$WZ/ZZ/W\gamma$	tī	tW/tb/tqb	Z/γ^* + jets	W + jets	Total Bkg.
H+ 0-jet	45 ± 9	242 ± 32	26 ± 4	16 ± 2	11 ± 2	4 ± 3	34 ± 17	334 ± 28
H+ 1-jet	18 ± 6	40 ± 22	10 ± 2	37 ± 13	13 ± 7	2 ± 1	11 ± 6	114 ± 18

 Bottom line: S/B ~ 15%, so BG must be small or well understood

→ Estimate it reliably (small uncertainty) or knock it out

- Key examples:
 - → WW: relatively well-understood but not small
 - → W+jets: small but large systematic uncertainty

Backgrounds

What do you get when you select dilepton events with E_T^{miss} ?

Backgrounds

25 February

C. Mills (Harvard U.)

Dilepton selection

- Lepton selection dictated by signal acceptance and W+jets rejection
- Electrons selected using most selective ID: calo shower shape, track match, conversion rejection
- **Muons** selected as combined ID, MS track (incl. d₀ significance)
- track- and calorimeter- based **isolation**
- $p_T(lead) > 25 \text{ GeV}, p_T(sublead) > 15 \text{ GeV}$
- $m(II) > 10 \text{ GeV for } e\mu + \mu e (12 \text{ for } ee + \mu \mu)$
- (no) Taus

reject low-mass resonances

Reject Z/γ* by selecting MET

$MET \rightarrow METRel$

<u>Pileup</u>

- Price of luminosity: multiple interactions per bunch crossing
- Primary impact on physics: E_T^{miss} resolution scales with $sqrt(\Sigma(E_T))$
- Pileup adds "soft stuff"

Select MET to reject Z/ γ^*

Analysis by Njet

- ggF signal mostly has zero jets ⇒ use data with zero or one jet
- Jets: anti-k_T, cone 0.4
 - $\rightarrow p_T > 25 \text{ GeV} (p_T > 30 \text{ GeV for} \\ |\eta| > 2.5)$
 - \rightarrow $|\eta| < 4.5$ (edge of calorimeter)

- Control top BG, for a price (systematics)
 - → experimental: jet energy scale and resolution (4% on 0-jet signal yield)
 - → theoretical: **QCD scale uncert. of 17% and 30%** on 0-jet and 1-jet signal yield (partially anti-correlated; reduced impact on total signal strength)

$p_T(II)$ and $Z \rightarrow \tau \tau$

distributions after jet veto

- Most Z/ γ^* background in eµ is from $\tau\tau$
 - \rightarrow Spin correlation still holds
 - → 0 jet: reject by requiring $p_T(II) > 30 \text{ GeV}$
- Normalize remaining BG using data with m(II) < 80, $\Delta \phi(II) > 2.8$

W + X

- **W+jets: "fake factor"** (ratio of identified to anti-identified leptons in a QCD-enriched sample) multiplied by W+anti-ID distribution
 - → 50% err. on fake factor (sample dependence, EWK subtraction, pileup, trigger bias)
 - → 5% uncertainty on total BG yield. 0, 1 jet bin: compare 8%, 16% total!
- Validate in same-charge events (below: after METRel, jet veto, $p_T(II)$)

m(II) and WW: control regions

- WW is the dominant background
- Reduce uncertainties by normalizing WW background to data in signal-depleted "control regions" CR

25 February

C. Mills (Harvard U.)

1-jet analysis: top and the b-veto

1-jet analysis: top and the b-veto

Veto b-tagged jets for signal region

- → 85% b-jet efficiency operating point ⇒ aggressive veto, only 85% efficient for signal but rejects 75% of top background
- → Even with veto, largest background in 1-jet SR, 44% of total

Tagged events form **control region** used to normalize background Total uncertainty on 1-jet top = 37% (uncertainty on eff. 5-10%) *b*-tagging is leading systematic on 1-jet background yield, at 11%

Interplay between systematics

25 February

The Results

Observed m_T Distribution

Statistical Interpretation

- Profile log likelihood $\mathcal{L}(\mu, \theta)$ is our model of the data
 - → Product of Poisson distributions describing number of events in data and Gaussian distributions describing systematic constraints
 - → Fit for free parameter **signal strength** μ = ratio of observed signal yield to SM Higgs prediction
 - \rightarrow Systematic uncertainties represented by **nuisance parameters** θ
- Key quantities:
 - → 95% confidence level (CL) excluded cross section (or mass; more on the next slide) → exclusion
 - → Significance p₀ = probability that the observed data generated by background alone → discovery

uses test statistic
$$q_{\mu} = -2 \ln \left(\mathcal{L}(\mu, \hat{\theta}_{\mu}) / \mathcal{L}(\hat{\mu}, \hat{\theta}) \right)$$

→ Best-fit signal strength μ → consistency with Standard Model

The Bottom Line: p_{θ}

	Signal	WW	$WZ/ZZ/W\gamma$	tī	tW/tb/tqb	Z/γ^* + jets	W + jets	Total Bkg.	Obs.
H+0-jet	45 ± 9	242 ± 32	26 ± 4	16 ± 2	11 ± 2	4 ± 3	34 ± 17	334 ± 28	423
H+ 1-jet	18 ± 6	40 ± 22	10 ± 2	37 ± 13	13 ± 7	2 ± 1	11 ± 6	114 ± 18	141

for $m_H = 125$ GeV:

- observed $p_0 = 4 \times 10^{-3} (2.6\sigma)$
- expected $p_0 = 3 \times 10^{-2} (1.9\sigma)$

(ICHEP values, 2012 only): 3.1σ observed, 1.6σ expected

Signal Strength and Systematics

- or, in more detail -

uncertainty on signal and background yields by source:

Source (0-jet)	Signal (%)	Bkg. (%)
Inclusive ggF signal ren./fact. scale	13	-
1-jet incl. ggF signal ren./fact. scale	10	-
PDF model (signal only)	8	-
QCD scale (acceptance)	4	-
Jet energy scale and resolution	4	2
W+jets fake factor	-	5
WW theoretical model	-	5
Source (1-jet)	Signal (%)	Bkg. (%)
1-jet incl. ggF signal ren./fact. scale	26	-
2-jet incl. ggF signal ren./fact. scale	15	-
Parton shower/ U.E. model (signal only)	10	-
b-tagging efficiency	-	11
PDF model (signal only)	7	-
QCD scale (acceptance)	4	2
Jet energy scale and resolution	1	3
W+jets fake factor	-	5
WW theoretical model	-	3

 $\mu = 1.48^{+0.35}_{-0.33} \text{ (stat)}^{+0.41}_{-0.36} \text{ (sys theor)}^{+0.28}_{-0.27} \text{ (sys exp)} \pm 0.05 \text{ (lumi)}$

The Question

The next steps

- Standard Model-like Higgs can't be the whole story
 - → What about dark matter?
 - → If this is a fundamental particle and a scalar, what stabilizes the quantum corrections to its mass?
- But is this a Standard Model Higgs boson? We don't know
- Precise Higgs measurements may show the way forward
 - \rightarrow Mass and global signal strength
 - \rightarrow Spin and parity: Can we firmly establish 0+?
 - → Test interactions with existing particles: new particles in the loop?

Testing the spin

25 February

Determining m_t

Latest combined results (Dec. '12)

Interactions: fermions

- Recall: EWSB does not *require* the same particle to provide fermion mass
- bbar and $\tau\tau$ have highest branching ratios in SM for $m_H=125$ GeV
- just reaching SM sensitivity

Indirect search for new physics

VBF vs. ggF: different production mechanisms with different potential virtual contributions

Next up: VBF $H \rightarrow WW$

• Soon: updated H \rightarrow WW 2-jet analysis, optimized for VBF production of SM Higgs boson at m_H=125 GeV

old plots, but illustrate unique VBF signature: energetic wellseparated jets

cross sections for signal, top background

	σ (pb)	\sqrt{s} = 8 TeV	√s = 14 TeV
Next run: 13-14 TeV	ggF	20	50 (x 2.5)
~10x more int. luminosity	VBF	1.6	4.2 (x 2.6)
	ttbar	238	920 (x 3.9)

Summary

• Update of July 2012 analysis consolidates evidence for a new Higgs-like particle in the WW \rightarrow lvlv channel

 \rightarrow 2012 observed min. $p_0 = 3 \times 10^{-3}$ or 2.8 σ

- → Broad minimum in p_0 centered at $m_H = 125$
- → Signal strength in agreement with Standard Model

 $\mu = 1.48^{+0.35}_{-0.33} \text{ (stat)}^{+0.41}_{-0.36} \text{ (sys theor)}^{+0.28}_{-0.27} \text{ (sys exp)} \pm 0.05 \text{ (lumi)}$

- Analysis of full 2011+2012 dataset maturing rapidly
 - → Interactions with SM particles
 - fermionic decays and VBF measurements
 - → Spin and parity measurements
 - → Improved mass and signal strength measurements

<u> yy – 41 measured m_H difference</u>

• After extensive study, significance of difference estimated to be just less than three sigma (2.3-2.8 depending on assumptions made)

$$\Delta \hat{m}_H = \hat{m}_H^{\gamma\gamma} - \hat{m}_H^{4\ell} = 3.0^{+1.1}_{-1.0} \text{ GeV} = 3.0 \pm 0.8 \text{ (stat)}^{+0.7}_{-0.6} \text{ (sys) GeV}$$

25 February

C. Mills (Harvard U.)

m(II) and WW

- POWHEG+PYTHIA8 model for WW
 - → better model of lepton kinematics than MC@NLO (ICHEP model)
- Worse model of jet multiplicity, but correct for this by design

July 2012 Results

Signal Strength μ for 2011 + 2012 combined ATLAS 2011 - 2012 $m_{\rm H} = 126.0 \; GeV$ W,Z H \rightarrow bb \rightarrow comparable to other channels, √s = 7 TeV: ∫Ldt = 4.7 fb⁻¹ $H \rightarrow \tau \tau$ \rightarrow best individual measurement of μ ! $\sqrt{s} = 7 \text{ TeV}: \int Ldt = 4.6-4.7 \text{ fb}^{-1}$ $H \longrightarrow WW^{(*)} \longrightarrow IVV$ $\sqrt{s} = 7 \text{ TeV: } \int Ldt = 4.7 \text{ fb}^{-1}$ $v_{s} = 8 \text{ TeV}: \int Ldt = 5.8 \text{ fb}^{-1}$ Signal strength (μ) $H \rightarrow WW^{(*)} \rightarrow WV$ ATLAS $H \rightarrow \gamma \gamma$ 6 - Best fit $\sqrt{s} = 7 \text{ TeV}: \int Ldt = 4.8 \text{ fb}^{-1}$ $\sqrt{s} = 7 \text{ TeV}: \int Ldt = 4.7 \text{ fb}^{-1}$ $\sqrt{s} = 8 \text{ TeV}: \int Ldt = 5.9 \text{ fb}^{-1}$ $-2 \ln \lambda(\mu) < 1$ $H \rightarrow ZZ^{(*)} \rightarrow 4$ → Exp. m_µ = 126 GeV $\sqrt{s} = 8 \text{ TeV}: \int Ldt = 5.8 \text{ fb}^{-1}$ $\sqrt{s} = 7 \text{ TeV}: \int Ldt = 4.8 \text{ fb}^{-1}$ – -2 ln λ(μ) < 1 $\sqrt{s} = 8$ TeV: $\int Ldt = 5.8$ fb⁻¹ 4 Combined 1.3 ± 0.5 @ m_H = 126 **√**s = 7 TeV: ∫Ldt = 4.6 - 4.8 fb⁻¹ $\mu = 1.4 \pm 0.3$ √s = 8 TeV: ∫Ldt = 5.8 - 5.9 fb⁻¹ 3 -1 0 Signal strength (μ) Expected curve for $m_H = 126$: 0 behavior consistent with 120 125 130 150 115 135 145 140 expectation m_H [GeV]

July 2012 Results

Signal and BG with systematics for different jet bins

 m_T cut applied to be "indicative of analysis sensitivity" Note different treatment of WW, top systematics compared to Nov. note

	Signal	WW	$WZ/ZZ/W\gamma$	tī	tW/tb/tqb	Z/γ^* + jets	W + jets	Total Bkg.	Obs.
H+0-jet	20 ± 4	101 ± 13	12 ± 3	8 ± 2	3.4 ± 1.5	1.9 ± 1.3	15 ± 7	142 ± 16	185
H+1-jet	5 ± 2	12 ± 5	1.9 ± 1.1	6 ± 2	3.7 ± 1.6	0.1 ± 0.1	2 ± 1	26 ± 6	38
H+2-jet	0.34 ± 0.07	0.10 ± 0.14	0.10 ± 0.10	0.15 ± 0.10	-	-	-	0.35 ± 0.18	0

C. Mills (Harvard U.)

July 2012 results

Combined 2011+2012 p₀: 3 x 10⁻³ (2.8σ) observed, 1 x 10⁻² (2.3σ) expected

Event Selection Summary

0 jet analysis

- $\rightarrow \Delta \varphi(II,MET) > \pi/2 \text{ to clean}$ up events with fake MET (rejects few events)
- $\rightarrow p_T(ll) > 30 \text{ GeV}$

1 jet analysis

- → b-jet veto
- $\rightarrow Z \rightarrow \tau \tau \text{ veto } (|m_{\tau\tau} m_Z| > 25 \text{GeV})$
- $\rightarrow p_T(tot)$ cut removed

Common "topological" selection

- $\rightarrow m(ll) < 50 \text{ GeV}$
- $\rightarrow \Delta \varphi(ll) < 1.8$

Candidate event **blinding** to remove phase space with significant $m_H \sim 125$ GeV signal

- → pass preselection
- → zero jets or no b-tagged jet
- $\rightarrow m(ll) < 50 \; GeV$
- $\rightarrow \Delta \varphi(ll) < 1.8$
- $\rightarrow 82.5 < m_T < 140 \text{ GeV}$

Signal region, in four parts

Signal region, in four parts

MV1 b-tagging at ATLAS

- NN to combine input from SV0 (secondary vertex), IP3D+SV1 (3d impact parameter via likelihood ratio, secondary vertex), and CombNN (neural net) algorithms for best performance
- ~0.1 light-jet mistag rate at our 85% efficient operating point

Tevatron: almost...

- Cross section for ggH @ 125 = 0.95 pb
 - → compare 20 pb at LHC
- Most sensitivity at low mass from associated production searches (sigma_WH = 0.13 pb)

Full 13 fb⁻¹ Cutflow

Cutflow evolution in the different signal regions										
<i>H</i> +0-jet	Signal	WW	$WZ/ZZ/W\gamma$	tī	tW/tb/tqb	Z/γ^* + jets	W + jets	Total Bkg.	Obs.	
Jet veto	110±1	3004 ± 12	242 ± 8	387 ± 8	215 ± 8	1575 ± 20	340 ± 5	5762 ± 28	5960	
$\Delta \phi_{\ell\ell,E_{m}^{miss}} > \pi/2$	108 ± 1	2941 ± 12	232 ± 8	361 ± 8	206 ± 8	1201 ± 21	305 ± 5	5246 ± 28	5230	
$p_{\mathrm{T},\ell\ell} > 30 \mathrm{GeV}$	99 ± 1	2442 ± 11	188 ± 7	330 ± 7	193 ± 8	57 ± 8	222 ± 3	3433 ± 19	3630	
$m_{\ell\ell} < 50 \text{ GeV}$	78.6 ± 0.8	579 ± 5	69 ± 4	55 ± 3	34 ± 3	11 ± 4	65 ± 2	814 ± 9	947	
$\Delta\phi_{\ell\ell} < 1.8$	75.6 ± 0.8	555 ± 5	68 ± 4	54 ± 3	34 ± 3	8 ± 4	56 ± 2	774 ± 9	917	
H+ 1-jet	Signal	WW	$WZ/ZZ/W\gamma$	tī	tW/tb/tqb	Z/γ^* + jets	W + jets	Total Bkg.	Obs.	
One jet	59.5 ± 0.8	850 ± 5	158 ± 7	3451 ± 24	1037 ± 17	505 ± 9	155 ± 5	6155 ± 33	6264	
b-jet veto	50.4 ± 0.7	728 ± 5	128 ± 5	862 ± 13	283 ± 10	429 ± 8	126 ± 4	2555 ± 20	2655	
$Z \rightarrow \tau \tau$ veto	50.1 ± 0.7	708 ± 5	122 ± 5	823 ± 12	268 ± 9	368 ± 8	122 ± 4	2411 ± 19	2511	
$m_{\ell\ell} < 50 { m ~GeV}$	37.7 ± 0.6	130 ± 2	39 ± 2	142 ± 5	55 ± 4	99 ± 3	30 ± 2	495 ± 8	548	
$\Delta\phi_{\ell\ell} < 1.8$	34.9 ± 0.6	118 ± 2	35 ± 2	134 ± 5	52 ± 4	22 ± 2	24 ± 1	386 ± 8	433	

above: stat. uncertainties only below: add $m_{\rm T}$ cut and systematics

Those Green and Yellow Plots

Pileup vs. Jets

- Pileup adds jets: stability of analysis in jet bins
- Take care with what you define as a "jet"
 - → associate to primary vertex using tracks

2011 Analysis

- Possible signal at $m_H \sim 125$ in $\gamma\gamma$, ZZ $\rightarrow 4l$ channels
- Ambiguous results from WW \rightarrow lvlv

25 February

C. Mills (Harvard U.)

How to Make a Higgs Boson

- Gluon-gluon fusion is dominant production mode at the LHC
- Analysis done for zero, one, two jet events separately
 - → In this talk, I will focus on the zero jet analysis, which contributes the most sensitivity for low Higgs masses
- Theoretical uncertainty on inclusive cross section now well under control (~ 15-20%) in spite of large corrections LO → NLO and NLO → NNLO
 - → Still a leading uncertainty in the combined limits
The Atlas Detector, in Numbers

- Tracker: precision tracking to $|\eta| = 2.5$
 - → 3d spacepoints from semiconductor tracking: 3 pixel layers, SCT is 4 doublelayers (SAS)
 - → TRT is 4 mm diameter straw tubes (Xenon), providing 36 additional $R-\varphi$ (or $z-\varphi$) points
- Calorimetry
 - \rightarrow LAr barrel from 1.5 < R < 2m, 22 X₀ deep
 - \rightarrow 10 λ (interaction lengths) active, >11 total
 - \rightarrow HCAL from 2.3 < R < 4.3 m, 7.4 λ by itself
 - → total coverage to almost $|\eta| = 5$
- Magnets
 - \rightarrow Solenoid field 2T
 - → Toroid field bending power $1 < \int B \cdot dl < 7.5 \ T \cdot m$
- Muons
 - → Three MDT planes measure R-z using 3mm diameter tubes (Ar/CO₂)
 - Nominal single-hit precision 80 μm
 - → Forward precision by CSC (MWPC strip-wire-strip) $2 < |\eta| < 2.7$
 - Designed to be functional at expected rates of > 150 Hz/cm²
 - → RPC and TGC: fast 2d spacepoints for triggering and second (phi) coordinate