Detection of electrons and positrons with the AMS-02 detector is space

Manuela Vecchi National Central University, Taiwan

Centre de Physique des Particules de Marseille, March 4th 2013

AMS-02 on board of the ISS

High acceptance magnetic spectrometer ($\sim 500 \text{ cm}^2\text{sr}$) on board of the International Space Station (ISS)

Scientific goals

- Spectra of Cosmic Rays in the GeV-TeV range.
- Direct search for antimatter in space.
- Indirect search for dark matter
- Cosmic rays propagation
- Gamma rays physics

AMS-02: A TeV precision, multipurpose spectrometer

Manuela Vecchi, NCU

Orbital DAQ parameters

Acquisition rate [Hz]

DAQ efficiency

Time at location [s]

Particle rates: 200 to 2000 Hz per orbit

Orbit average: DAQ efficiency ~ 80% DAQ rate ~700Hz

so far : 30 10⁹ events 33 TB/yr

30 billion events (so far)!

Transition Radiation Detector

Identifies e+ and e- by transition radiation and nuclei by dE/dX
20 layers of fleece radiator with

XeCO2 straw tubes.

•Lepton-hadron discriminating power up to 400 GeV.

Tracker

Time Of Flight

TOF goals :

- -Trigger;
- -Determination of the particle velocity (β);
- -Albedo rejection;
- -Charge identification from dE/dX.

Performance : •Z=1 : $\Delta t \sim 120 \text{ ps}, \Delta \beta / \beta \sim 4\%$

Ring Imaging Cherenkov Detector

Why do we need ECAL ?

-To Measure the energy of e^+ , e^- and γ .

-To separate e^+ from p in the GeV to TeV region.

-To directly measure high energy photons with accurate energy and direction determination.

Electromagnetic Calorimeter

A 3-D sampling calorimeter made out of lead and scintillating fibers

High granularity: ~ 0.9 x 0.9 cm Readout cells: ~ 1 $X_0(Z)$ 0.5 $R_{molière}(X,Y)$ 18 Longitudinal samplings 18 x 72 = 1296 cells \rightarrow 3D sampling

•Lead (58%), Scintillating fibers (33%), Optical glue (9%), Density $\sim 6.8 \text{ g/cm}^3$

•Dimensions 648x648x167 mm

 $(17 X_0, \lambda_1 / X_0 \sim 22)$

ECAL, performance: Energy Resolution

2010 Test Beam :

- •Linearity better than 1%
- •Resolution better than 2% @ 100 GeV

Electrons and positrons in Cosmic Rays : state of the art

Electron spectrum is determinated by:Slope of injection (power law)Energy Losses (Synchrotron, IC)Diffusion in Galactic magnetic field.

Electron horizon is limited by severe energy losses to within few kpc.

Conventional scenario : •Cosmic Rays are produced in SuperNova Remnants •*e*⁺,*e*⁻ are secondaries from CR collisions with Inter-stellar medium.

Electrons and positrons in Cosmic Rays : state of the art

Measured all electron spectrum :

•Low E dominated by solar modulation.

- •A bump @ 600 GeV is observed by ATIC.
- •A sharp cutoff is observed by HESS @ 1 TeV.

•Positron fraction measured by satellite PAMELA, is in contrast with pure secondary origin.

Electron spectrum is determinated by: •Slope of injection (power law) •Energy Losses (Synchrotron, IC) •Diffusion in Galactic magnetic field.

Electron horizon is limited by severe energy losses to within few kpc.

Conventional scenario : •Cosmic Rays are produced in SuperNova Remnants •*e*⁺,*e*⁻ are secondaries from CR collisions with Inter-stellar medium.

Electrons and positrons in Cosmic Rays : state of the art (II)

7.7 billion electrons and positrons between 0.5-350 GeV identified by AMS-02 between Mai 2011 and December 2012.

Electrons and positrons in Cosmic Rays detected by AMS

Keys of success :

- redundancy of sub-detectors
- ECAL energy resolution.
- Large data sample.
- Charge-one particles (within ECAL acceptance) identified by TOF+Tracker+ECAL.
- Lepton/hadron discrimination with TRD+ECAL+TRK
- Main sources of background :
 - Lepton/hadron mis-identification (*p identified as e+*)
 - Charge confusion (*e- identified as e+*) :
 - Interactions along the track (radiating e- resulting in high E/P)
 - Spillover due to finite tracker momentum resolution (small E/P)

Sensitive Şearch for the origin of Dark Matter

a) Minimal material in the TRD and TOF

So that the detector does not become a source of e+.

b) A magnet separates TRD and ECAL so that e⁺ produced in TRD will be swept away and not enter ECAL

In this way the rejection power of TRD and ECAL are independent

c) Matching momentum of 9 tracker planes with ECAL energy measurements

Lepton-hadron separation with TRD

Lepton hadron separation with ECAL

Positron 100 GeV

Longitudinally contained Shower lateral size ~ $R_{moli\hat{e}re}(2cm)$ $E_{ECAL} \sim P_{TRK}$

Proton 100 GeV

Longitudinal Leak Shower lateral size >> R_{molière}

 $E_{ECAL} << P_{TRK}$

Proton rejection with ECAL:

- ✓ Energy fraction in each layer
- Shower lateral width in each layer
- ✓ Shower longitudinal profile
- ✓ Shower 3D profile

ECAL+ Tracker Proton Rejection

Manuela Vecchi, NCU

Take home message

AMS works very well !

- AMS02 is in space, onboard the ISS, since May 16th 2011.
- The detector is running smoothly its performance is constantly monitored and within expectations.
- Given its large acceptance AMS-02 will collect an enormous amount of data over its lifetime (~10%reached so far), leading to cosmic ray measurements with unprecedented statistics.

Concerning electrons and positrons measurement :

- The redundancy of AMS-02 sub-detectors allows for lepton/hadron separation at the level of 10⁶ in the GeV to TeV range.
- Excellent energy resolution, few % at E>100 GeV.
- The positron fraction paper is ready for submission.
- The spectrum of primary electrons and positrons will be studied over a very large statistics, up to TeV energies.

Thank you !

