

Suivi du pic de Bragg par détection des particules secondaires émises par la fragmentation du ¹²C

Marie VANSTALLE

GSI Helmholtzzentrum für Schwerionenforschung, DARMSTADT Biophysics department

Plan de présentation

- 1. Contexte la thérapie par ions légers
- 2. Dispositif expérimental
- 3. Simulations Monte Carlo
- 4. Etalonnage en énergie du BaF₂ (γ)
- 5. Résultats préliminaires pour les γ prompts
- 6. Conclusion/Perspectives

La hadronthérapie

3

- Hadronthérapie :
- protonthérapie
- thérapie par ions légers type ¹²C

Avantage : profil du dépôt d'énergie (pic de Bragg PB)

Suivi du volume irradié

[2] <u>Schardt et al.</u>, Heavy-ion tumor therapy: Physical and radiobiological benefits
Review of Modern Physics,
2010

<u>Actuellement</u> : suivi du PB par méthode TEP (Tomographie à Emission de Positrons), par décroissance du ¹¹C produit.

Inconvénient : ≠ méthode en temps réel (online)

La fragmentation, une alternative ?

[3] <u>Gunzert-Marx et al.</u>, Secondary beam fragments produced by 200 MeV/u ¹²C ions in water and their dose contributions in carbon ion radiotherapy New Journal of Physics, 2008

5

Plan de présentation

- 1. Contexte la thérapie par ions légers
- 2. Dispositif expérimental
- 3. Simulations Monte Carlo
- 4. Etalonnage en énergie du BaF₂ (γ)
- 5. Résultats préliminaires pour les γ prompts
- 6. Conclusion/Perspectives

Dispositif expérimental

Mesures effectuées

G 55 1 8

Un exemple

Courtesy of M. Rovituso

ΔE-E et temps de vol
 (Time-Of-Flight=TOF)
 → 1 bande
 =
 1 type de particule

Plan de présentation

- 1. Contexte la thérapie par ions légers
- 2. Dispositif expérimental
- 3. Simulations Monte Carlo
- 4. Etalonnage en énergie du BaF₂ (γ)
- 5. Résultats préliminaires pour les γ prompts
- 6. Conclusion/Perspectives

Simulations Monte Carlo avec Geant4

MC : localisation du PB avec y prompts

MC : localisation du PB avec protons

— 13

Plan de présentation

- 1. Contexte la thérapie par ions légers
- 2. Dispositif expérimental
- 3. Simulations Monte Carlo
- 4. Etalonnage en énergie du BaF₂ (γ)
- 5. Résultats préliminaires pour les γ prompts
- 6. Conclusion/Perspectives

Le fluorure de baryum (BaF₂)

Scintillateur inorganique

Numéro atomique (Z=56) et densité (4.88 g/cm³) élevés ~100% d'efficacité aux ions et photons Jusqu'à 20% d'efficacité aux neutrons

15

Etalonnage du BaF₂ (γ)

Etalonnage du BaF₂ (γ) - exposition au ²³⁹PuBe

Etalonnage BaF₂ (γ)

Plan de présentation

- 1. Contexte la thérapie par ions légers
- 2. Dispositif expérimental
- 3. Simulations Monte Carlo
- 4. Etalonnage en énergie du BaF₂ (γ)
- 5. Résultats préliminaires pour les γ prompts
- 6. Conclusion/Perspectives

Spectres y attendus - Monte Carlo

 γ prompts <u>arrivant</u> sur le BaF₂ (pas de réponse du détecteur)

Spectres y corrigés - données

Résolution en énergie BaF₂ ~ 15% (de l'étalonnage)

Comparaison avec la simulation

NB : ici spectres mesurés (pas de correction d'angle solide) + facteur multiplicatif de 1/5 pour Geant4

Comparaison avec le LYSO (90°)

LYSO = aussi scintillateur inorganique, haute densité (7.3 g/cm³) mais plus petit que BaF_2

23

Courtesy of M. Marafini

Mesures avec collimateur

Collimateur \Rightarrow sélection d'une profondeur donnée pour **suivre la position du pic de Bragg** avec le taux de production des γ

24

Taux de production vs profondeur de la cible

Comparaison avec la simulation

Geant4 => surestimation du taux de production des γ (connu) MAIS <u>forme similaire</u> !

26

Conclusion et perspectives

Bilan :

- Spectres en énergie et profil d'émission (γ) en accord qualitatif avec le Monte Carlo
- Profil d'émission des γ permet la localisation du pic de Bragg mais difficilement utilisable à cause de la stat.

- Perspectives :
- Etude des protons avec tracker CMOS (corrélation avec données du BaF₂)
- Nouvelles expériences avec SOBP et fantôme anthropomorphique

Remerciements

C. La Tessa, M. Rovituso, C. Schuy

SAPIENZA UNIVERSITÀ DI ROMA

M. Marafini, I. Mattei, V. Patera, L. Piersanti, A. Sarti, A. Sciubba

J. Baudot, C. Finck, M. Goffe, M. Winter

Institut Pluridisciplinai

and...P. Ortega from CERN !

28

Merci pour votre attention !

G S II— 29

G SS II ----- 30

La fragmentation

[1] <u>Gunzert-Marx et al.</u>, Secondary beam fragments produced by 200MeV/u ¹²C ions in water and their dose contributions in carbon ion radiotherapy New Journal of Physics, 2008, 10

Spread-Out-Bragg-Peak

Single beam

+ scanning in depth

3D conformed dose

¹²C vs IMRT

Le LYSO

Scintillateur inorganique Lu_{1.8}Y_{0.2}SiO₅(Ce)

Numéro atomique (Z=56) et densité (7.3 g/cm³) élevés

Pulse shaping

Corrections des spectres y

Acceptance et efficacité du BaF₂ par simulation Monte Carlo (FLUKA) par P. Ortega (CERN).

36

Time-Of-Flight

Sélection des y

⇒ E-ToF

G 55 X----- 38⁶

A propos des protons

Spectres en énergie (ultra preliminary)

