

SM H-> \tau with ATLAS

Dimitris Varouchas

Why bother with $H \rightarrow \tau \tau$?

Summer 2012: Historic observation of a new Higgslike particle @ ~125 GeV

Phys.Lett. B716 (2012) 1-29

But.. What did we observe exactly?

- Too early for definitive answers
- Some facts:
- Couples to Vector Bosons
 ZZ/WW
- Couples to fermions?
 - Probably yes: ggF production and γγ decay via quark loop.
- Couples to leptons?
 - TT search is addressing this question

SM Higgs boson in LHC

- Higgs-like boson of m_H~125 GeV accessible
 - bb, **ττ**, WW*, ZZ*, γγ, Zγ, μμ

> тт

- > With WW \rightarrow Ivqq, highest $\sigma \times BR \sim 1 \text{pb} @ 7 \text{ TeV}$
- Well motivated search, but very challenging

Tau lepton trivia in one slide

- Mass: 1.777 GeV/c²
- ст: ~87µm

3prong hadronic tau decay

Most important decay modes

Decay Mode	Branching Fraction
Leptonic modes ~35%	
$\tau^{\pm} \rightarrow e^{\pm} \nu_e \nu_{\tau}$	18%
$\tau^{\pm} \rightarrow \mu^{\pm} \nu_{\mu} \nu_{\tau}$	17%
Hadronic modes ~65%	
1 prong (1 charged pion)	46%
$\tau^{\pm} \rightarrow \pi^{\pm} \nu_{\tau}$	11%
$\tau^{\pm} \rightarrow \pi^{\pm} 1 \pi^0 v_{\tau}$	26%
$\tau^{\pm} \rightarrow \pi^{\pm} 2\pi^0 \nu_{\tau}$	9%
3 prong (3 charged pions)	14%
$\tau^{\pm} \rightarrow \pi^{\pm} \pi^{\pm} \pi^{\mp} \nu_{\tau}$	9%
$\tau^{\pm} \rightarrow \pi^{\pm} \pi^{\pm} \pi^{\mp} 1 \pi^{0} \nu_{\tau}$	5%

Tau Reco (τ_{had}) in ATLAS

- τ_{had} appears as a narrow isolated jet
- τ_{had} seed: jet of cone $\Delta R < 0.4$, p_{T} > 10 GeV and $|\eta|$ < 2.5
- Classify τ_{had}: count number of tracks in signal cone of $\Delta R < 0.2$ around the jet seed
- τ_{had} energy: Energy from calorimetric topological clusters in $\Delta R < 0.2$

Isolation region: cone $0.2 < \Delta R < 0.4$

Tau Identification (TauID)

- TauID: Distinguish τ_{had} jets from QCD jets and electrons
- Use a number of discriminating variables based on tau properties: isolation, energy profiles, fractions of EM & Had energy, angular distances $\pi^{-}_{-\pi^{0}}$
- Combine all variables separately on 1-prong and multi-prong tau decays using MVA discriminator

QCD jet

TauID efficiency, energy scale

E_T^{miss} in a nutshell

$H \rightarrow \tau^+ \tau^-$

> According to the decay of τ , split the analysis in 3 channels

- II 4v (LepLep)
- ► IT_{had} 3v (LepHad)

, Lep : e or μ Had: hadronic decay of τ

τ_{had}τ_{had} 2ν (HadHad)

> Neutrinos result into missing energy, thus missing information

Analysis strategy

DiTau mass reconstruction: MMC

• Missing Mass Calculator (MMC) based on NIM A 654 (2011) 481

Solve τ, E_T^{miss} in Δφ(τ,ν) d parameter space using Δθ_{3D}(τ,ν) template from simulation as PDF

- High efficiency for ττ resonances (>99%)
 - Works for back-to-back events as well
- More precise mass description
 - Reduced tails, resolution 13-20%, correct peak position
- ~20-30% analysis sensitivity improvement
- > MMC mass the final discriminating variable used in all 3 channels
- The most powerful (and almost the only) way to enhance separation of signal against Z→ττ

Background estimation

Data driven methods

Background estimation: $Z \rightarrow \tau \tau$

- Dominant background due to the same final state $Z \rightarrow \tau \tau$
- Shape estimation from $Z \rightarrow \mu\mu$ data: "Embedding" technique
 - Delete muon tracks and deposited calorimeter energy from data events
 - Replace by full-simulated Z→ττ decays, generated with Tauola with identical kinematics
 - Almost a pure data-driven technique
 - Jet/MET/pile-up/UE/etc described by data
 - Only tau decays described by MC
- Normalize in data $Z \rightarrow \tau \tau$ rich region

Results: mass distributions

> **VBF**: 1st most sensitive category

- > Limited statistics but best S/ \sqrt{B} ratio among all categories
- **Boosted**: 2^{nd} most sensitive category, large p_T^H or large jet p_T
 - Improved mass resolution due to large E_T^{miss}: Higgs and Z better separated

Systematics

Theory uncertainty on signal: 18 – 23%

- QCD scale: ~1% for VBF, 8–12% for ggF
- PDF: 8% for gluon processes, ~4% for quark processes

$Z \rightarrow \tau \tau$ SignalEmbedding3%---JES---3-9%TES4-15%2-9%TaulD4-5%Luminosity3.9% @ 7TeV2 - 6%2 - 6%

Dominant detector-related systematics:

> Both shape and normalization variations are taken into account

3.6% @ 8 TeV

Results: combined limit and p0

Local p₀: probability that background fluctuation mimics signal

- ≻ m_H=125 GeV
 - > p_0 : observed **1.1** σ , highest expected sensitivity **1.7** σ
 - > Signal strength $\mu = 0.7 \pm 0.7$ consistent with both presence and absence of SM H $\rightarrow \tau\tau$ signal

Result interpretation attempt

H→тт in the overall picture

- > Higgs combined excess 7σ , with H $\rightarrow \tau\tau$ contribution of 1.1σ
- > Very challenging and complicated analysis due to large amount of backgrounds, small S/ \sqrt{B} , complexity of final state, large resolution effects
- Very important role in the SM Higgs searches, since provides direct measurement of the coupling to leptons

H→тт uncertainty in VBF

- Measure of the precision in probing VBF: projection in y-axis of 95% CL contour
 - Η→ττ ~ 5.4μ
 - > H→WW ~ 6.1µ
 - ⊢→γγ ~ 6.4μ
- \rightarrow H \rightarrow $\tau\tau$ has smaller uncertainty (better precision)
- Potential of contributing significantly in measuring VBF production mode of new boson

ATLAS SM H→TT perspective

LHC 2 years shut-down period since a few days

- $H \rightarrow \tau \tau$ search in ATLAS
 - Analyze full 2012 dataset, additional ~7fb⁻¹ @ 8 TeV
 - Reminder: current result with ~18fb⁻¹(7TeV & 8TeV)
 - Expected sensitivity 1.7σ
 - Goal of new analysis to push the sensitivity as much as possible towards 3σ and provide a more conclusive statement on whether new boson couples to ττ and thus to fermions
 - Explore and use the enhanced discrimination power of MVA techniques
 - > Add and improve categories
 - Optimizing basic objects such as TaulD, MET, jets, mass reconstruction

Next update will include the complete 2011+2012 dataset

CMS Vs ATLAS: Notable differences

- > CMS different event categorization low tau p_T Vs high tau p_T
 - 20% improvement with respect to CMS previous analysis
- CMS has two additional explicit analyses to probe signal in the production mode of VH, where V decays in leptons

Conclusions

- SM $H \rightarrow \tau \tau$ in ATLAS up to now..
 - Analyzed 4.6(13) fb⁻¹ @ 7(8) TeV
 - Combined limit:
 - Observed (expected): 1.9 (1.2) $x\sigma_{SM} @ m_{H} = 125 \text{ GeV}$
 - Excess of data driven by nonVBF, LepLep channels
 - Expected p₀ @ m_H=125 GeV: 1.7σ
 - Observed p₀ @ m_H=125 GeV: 1.1σ
- 7 additional fb⁻¹ @ 8TeV are being analyzed
- Stay tuned for the next H→ττ more sensitive update, coming soon!

VBF $H \rightarrow \tau_{had} \tau_{\mu}$

