A new mechanism for Deflagration to Detonation Transition (DDT) in thermonuclear supernovae

Camille Charignon, under supervision of Jean-Pierre Chièze

CEA/DSM/Service d'Astrophysique - AIM

30 Mai 2013

Séminaire LPNHE

2 Progenitors and explosion models

3 DDT and the delayed detonation

Supernovae

Two types of supernovae : Core-collapse and Thermonuclear

High-Z Supernova Search Team HST/NASA

- 1 Supernova as bright as 1 galaxy
- Visible extremely far away
- Thermonuclear SNe are standardisable candles : → distance measurement across the Universe

 \Rightarrow Revealed the acceleration of the expansion of our Universe (Nobel prize 2011 : Perlmutter, Schmidt et Riess)

Exponential decay, t = 8.8 jours ⇒ 56Ni

Conclusions

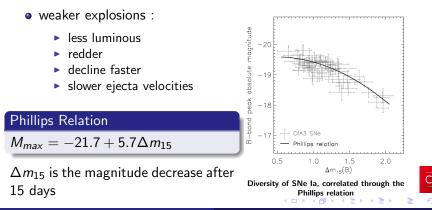
Thermonuclear Supernovae (type Ia)

- Spectra :
 - No hydrogen lines
 - Strong silicon lines
- Light curves :

▶ Powered by decay of ⁵⁶Ni :

 $^{56}\textit{Ni} \rightarrow ^{56}\textit{Co} \rightarrow ^{56}\textit{Fe}$

Exponential decay, $\tau = 111.3$ jours $\Rightarrow 56Co$ de la supe uminosi 107 150 200 Light curves of different types of supernovae Si radus (km s⁻¹) Abundance stratification inferred by tomography



- Nucleosynthesis :
 - Stratification of ejecta
 - ▶ High velocity IME (~²⁸ Si)

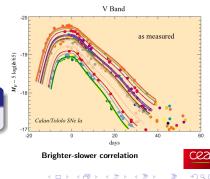
Diversity and correlation

Inhomogeneities strongly correlated

Most SNe Ia are arrangeable in a 1-parameter family according to explosion strength

Diversity and correlation

Inhomogeneities strongly correlated

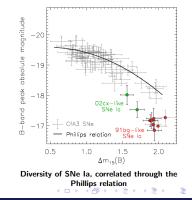

Most SNe Ia are arrangeable in a 1-parameter family according to explosion strength

- weaker explosions :
 - less luminous
 - redder
 - decline faster
 - slower ejecta velocities

Phillips Relation

 $M_{max} = -21.7 + 5.7 \Delta m_{15}$

 Δm_{15} is the magnitude decrease after 15 days


Peculiar supernovae

However, Peculiarity rate of about 30%

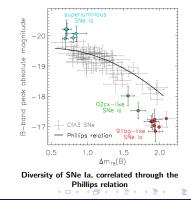
- These SNe are outlier compared to phillips relation
- They present spectral differences that make them abnormal

Subluminous (20%) :

- Fainter than Phillips relation
- Two subclasses
 - 91bg like
 - 02cx like or type lax

Peculiar supernovae

However, Peculiarity rate of about 30%


- These SNe are outlier compared to phillips relation
- They present spectral differences that make them abnormal

Subluminous (20%) :

- Fainter than Phillips relation
- Two subclasses
 - 91bg like
 - 02cx like or type lax

Superluminous (10%) :

• Brighter than Phillips relation

What are thermonuclear supernovae?

They are thermonuclear explosions of Carbon-Oxygen White Dwarf

SN 2011fe (in M101) has a radius $< 0.02R_{\odot}$ (Bloom & al 2011)

C+O combustion explains :

- Absence of H and He
- Production of ²⁸Si and ⁵⁶Ni
- Typical energy of 1.5 10⁵¹ erg

What are thermonuclear supernovae?

They are thermonuclear explosions of Carbon-Oxygen White Dwarf SN 2011fe (in M101) has a radius $< 0.02R_{\odot}$ (Bloom & al 2011)

C+O combustion explains :

- Absence of H and He
- Production of ²⁸Si and ⁵⁶Ni
- Typical energy of 1.5 10⁵¹ erg

Single WD unconditionally stable

 \Rightarrow Necessarily in binary systems

What are thermonuclear supernovae?

They are thermonuclear explosions of Carbon-Oxygen White Dwarf SN 2011fe (in M101) has a radius $< 0.02R_{\odot}$ (Bloom & al 2011)

C+O combustion explains :

- Absence of H and He
- Production of ²⁸Si and ⁵⁶Ni
- Typical energy of 1.5 10⁵¹ erg

Single WD unconditionally stable

 \Rightarrow Necessarily in binary systems

However

- Progenitor evolution up to ignition?
- Combustion mode : deflagration or detonation ?

Physical conditions in White Dwarves

• 1 solar mass in less than an earth radius :

 \Rightarrow Very compact object, $ho_c\gtrsim 10^9~g.cm^{-3}=1000~ton.cm^{-3}.$

- Fully ionized plasma
- Correlated plasma : ions form a liquid
- e^- are extremely degenerate and relativistic ($\epsilon_f > m_e c^2$) :
 - Superconducting plasma : Strong magnetic field
 - Pressure P dominated by degenerate electrons (P_e)
 - Thus P is (mostly) independent of the temperature

No negative feedback on combustion by expansion

 \Rightarrow Explosive thermonuclear reactions

Thermonuclear combustion

• 13 α -elements network : ⁴He(= α) and ¹²C, ¹⁶O, ²⁰Ne, ²⁴Mg, ²⁸Si, ..., ⁵²Fe, ⁵⁶Ni

э

・ 同 ト ・ ヨ ト ・ ヨ ト

Thermonuclear combustion

- 13 α -elements network : ⁴He(= α) and ¹²C, ¹⁶O, ²⁰Ne, ²⁴Mg, ²⁸Si, ..., ⁵²Fe, ⁵⁶Ni
- Including 30 nuclear reactions :
 - Heavy ions : ${}^{12}C + {}^{12}C \rightarrow {}^{20}Ne + \alpha \quad \dots$
 - $\blacktriangleright~\alpha$ captures : $^{20}\textit{Ne} + \alpha~\rightarrow~^{24}\textit{Mg} + \gamma~...$, all the way to $^{56}\textit{Ni}$
 - Reverse reactions : photo-disintegration.

Propagation of combustion

Subsonic mode : Deflagration

- Propagate through e^- conduction + radiation
- Unstable to Rayleigh-Taylor and Landau-Darrieus instabilities
- Slow combustion : the star expands

Propagation of combustion

Subsonic mode : Deflagration

- Propagate through *e*⁻ conduction + radiation
- Unstable to Rayleigh-Taylor and Landau-Darrieus instabilities
- Slow combustion : the star expands

Supersonic mode : Detonation

- Propagated by a leading shock followed by combustion
- Once triggered, disrupt the whole star (No expansion)

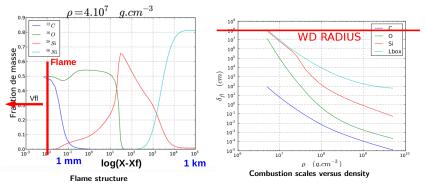
Propagation of combustion

Subsonic mode : Deflagration

- Propagate through e^- conduction + radiation
- Unstable to Rayleigh-Taylor and Landau-Darrieus instabilities
- Slow combustion : the star expands

Supersonic mode : Detonation

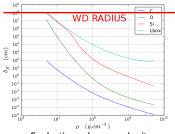
- Propagated by a leading shock followed by combustion
- Once triggered, disrupt the whole star (No expansion)


Reaction rates $\propto T^{27} \Rightarrow$ very thin flames (1 μm to 1cm)

Combustion fronts unresolved (in simulations) $\delta_{fl}/R_{WD} \sim 10^{-10}$

Thermonuclear flames in C+O white dwarfs

High resolution hydro simulations with ASTROLABE (ALE mesh) :


- 3 burning stages : Carbon, Oxygen , Silicium
- 3 highly disparate reaction lengths
- Incomplete silicon burning at low densities

Nucleosynthesis constraint

Combustion products :

- High densities : $ho\gtrsim 10^8~g.cm^{-3}
 ightarrow {}^{56}Ni$
- Low densities : $ho \lesssim 5 \ 10^7 \ g.cm^{-3}
 ightarrow {}^{28}Si$

Combustion scales versus density

< 1 →

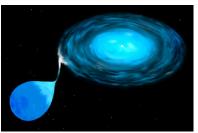
Observations : Both ⁵⁶Ni and ²⁸Si produced

 \Rightarrow Combustion has to occur both at low and high densities.

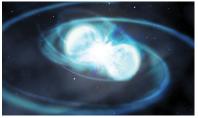
Observations and constraints

2 Progenitors and explosion models

3 DDT and the delayed detonation


< ∃⇒

Conclusions


The three main models

Accretion model (Hydrogen)

Accretion model (Helium)

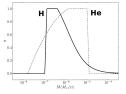
2 WD merger model

Camille Charignon DDT in Thermonuclear Supernovae

Single Degenerate model (SD)

External trigger :

Accretion of Hydrogen up to Chandrasekahr mass


Robust ignition mechanism

- ► The WD accretes mass to M_{ch} → unstable WD → explosion
- Central ignition as a deflagration

Acrretion of H from a giant companion

< 4 ₽ > < Ξ

Retention efficiency

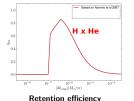
• But M_{ch} hard to reached

- if low $\dot{M}_H \rightarrow$ recurrent novae
- if strong $\dot{M}_H \rightarrow$ mass loss by winds

Single Degenerate model (SD)

External trigger :

Accretion of Hydrogen up to Chandrasekahr mass


Robust ignition mechanism

- ► The WD accretes mass to M_{ch} → unstable WD → explosion
- Central ignition as a deflagration

Acrretion of H from a giant companion

< 4 ₽ > < Ξ

• But *M_{ch}* hard to reached

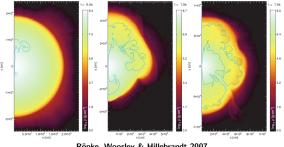
- if low $\dot{M_H} \rightarrow$ recurrent novae
- if strong $\dot{M}_H \rightarrow$ mass loss by winds

Pure detonation models (Arnett 1969)

Chandrasekhar mass white dwarfs :

- $M_{ch} \sim$ 1.4 M_{\odot}
- Central densities above $10^9 \ g \ cm^{-3}$
- Most of the mass is above $10^8 \ g \ cm^{-3}$

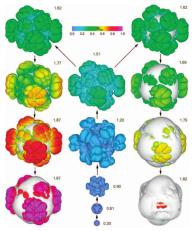
This rules out pure detonation models


A detonation propagates supersonically :

- \Rightarrow The star has no time to expand
- \Rightarrow Combustion at high density, producing only ^{56}Ni

Pure deflagration models

With the most advanced flame model :



Röpke, Woosley & Hillebrandt 2007

Not enough energy released

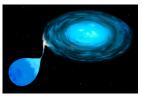
- In 2D : The deflagration cannot unbind the star
- In 3D : The outcome depends on the ignition geometry

Delayed detonation models

Gamezo, Khokhlov & Oran 2005

- Deflagration to expand the star
- Detonation to incinerate the remaining fuel
- $\rho_{DDT}\sim 2.10^7 g.cm^{-3}$
- \Rightarrow correct nucleosynthesis and energetics.

But...


Physical mechanism for DDT still unknown

Sub-*M_{ch}* double detonation models

External trigger :

Accretion of helium up to ignition of a He-detonation

- The WD accretes Helium
- If sufficiently massive layer forms \Rightarrow Helium detonation
- Send a converging shock inward
 ⇒ Trigger a carbon core detonation

Helium accretion

・ 同 ト ・ ヨ ト ・ ヨ ト

Detonation in a sub-Chandrasekahr mass WD

- Less massive WD \Rightarrow Lower central densities
- A pure detonation produces correct nucleosynthesis

Sub- M_{ch} double detonation models

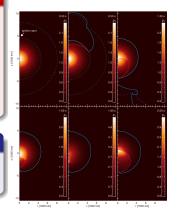
The helium layer problem

- Produces ⁵⁶Ni in outer layers
 - \Rightarrow At odds with observations
- Model discarded in 90s

(Thought to require too massive helium layer : $\sim 0.1 M_{\odot}$)

Conclusions

Sub- M_{ch} double detonation models


The helium layer problem

- Produces ⁵⁶Ni in outer layers
 ⇒ At odds with observations
- Model discarded in 90s

(Thought to require too massive helium layer : $\sim 0.1 M_{\odot}$)

Shock convergence

The convergence of the inner shock allows for lighter helium shell

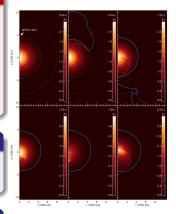
Fink&al2010

Conclusions

Sub- M_{ch} double detonation models

The helium layer problem

- Produces ⁵⁶Ni in outer layers
 ⇒ At odds with observations
- Model discarded in 90s


(Thought to require too massive helium layer : $\sim 0.1 M_{\odot}$)

Shock convergence

The convergence of the inner shock allows for lighter helium shell

Small helium layer + Mixing

Correct spectra (Kromer & al 2010)

Fink&al2010

Double Degenerate models (DD)

External trigger :

Collision of two C+O white dwarfs

Merger of two CO whites dwarfs

- WD mergers are quite frequent
- Off-center deflagration ignition must be avoided (leading to collapse)

Double Degenerate models (DD)

External trigger :

Collision of two C+O white dwarfs

Merger of two CO whites dwarfs

- WD mergers are quite frequent
- Off-center deflagration ignition must be avoided (leading to collapse)

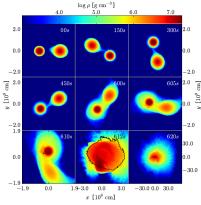
M_{ch} mergers

- Secondary is disrupted and slowly accreted
- Central deflagration ignition
- DDT (⇔ SD scenario)

Double Degenerate models (DD)

External trigger :

Collision of two C+O white dwarfs


Merger of two CO whites dwarfs

- WD mergers are quite frequent
- Off-center deflagration ignition must be avoided (leading to collapse)

<i>M_{ch}</i> mergers	sub- <i>M_{ch}</i> violent mergers
 Secondary is disrupted and slowly accreted 	 Violent accretion of secondary
 Central deflagration ignition DDT (⇔ SD scenario) 	 Off-center detonation sub-<i>M_{ch}</i> leads to correct nucleosynthesis

DDT in Thermonuclear Supernovae

Violent double degenerate mergers

Pakmor & al 2011

Detonation ignition

favourable conditions are met directly during the fast accretion of the secondary

Observables

Spectra from these events can reproduce normal Type Ia

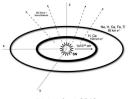
< A ▶

4 E b

Explosion models, summary :

- Each oh these models can reproduce the main observables :
 - the range of observed luminosities
 - the stratification of ejecta
- 3D modelling of hydro and radiative transfer gives acceptable spectra

HOWEVER all rely on unresolved physical mechanisms :


- Delayed detonation : The DDT mechanism (also in the classical M_{ch} merger)
- Double detonation : The helium detonation ignition
- Violent merger : The detonation ignition at contact between the two white dwarfs

Conclusions

Direct Observations

- PTF 11kx : Symbiotic Nova progenitor
 ⇒ incompatible with DD (Dilday&al 2012)
- SNR 0509-67.5 : Absence of any companion star
 ⇒ Rules out SD scenario. (Schaefer&al 2012)

Dilday & al 2012

No single progenitor path to thermonuclear supernovae

 \Rightarrow the question is now, which one contributes most?

In this context :

- Homogeneity is an argument in favour of SD
- This model is the most mature
- It still lacks a major piece of physics :

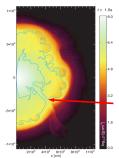
The DDT mechanism

Studying and understanding this transition is still important

(This transition is also needed in the classical M_{ch} DD scenario)

Observations and constraints

- Progenitors and explosion models
- 3 DDT and the delayed detonation



< ∃⇒

Models to get a delayed detonation :

Several models have been designed to obtain a detonation after an initial phase of deflagration and expansion :

- Turbulence induced DDT (Khokhlov 1997)
- Gravitationally confined detonation (Plewa & al 2004)
- Pulsational detonation
- ...

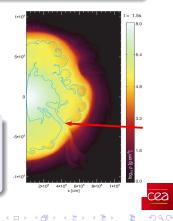
All rely on the Zel'dovich's gradient mechanism But on VERY unresolved scales

Zel'dovich gradient mechanism

- Rely on an induction time (τ_i) gradient :
 - τ_i is the time needed to burn half of the carbon
 - A spontaneous combustion wave propagates from short τ_i to long τ_i
- If the gradient is sonic :

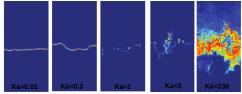
$$\nabla \tau_i = \frac{1}{Cs}$$

Overpressure accumulates at the wave front



Global models

- Gravitationally confined detonation
- Ignition studies with resolved combustion scales :
 - \rightarrow Critical conditions


 \Rightarrow Rely on the global flow to reach critical values at the grid scale (Collision of two plumes or re-contraction of the whole structure)

Pulsational detonation

Turbulence induced DDT

- Rayleigh-Taylor and Kelvin-Helmholtz \Rightarrow Turbulence :
 - $V_{RT} \sim 100 \; km.s^{-1}$ on scale $L_{RT} \sim 10 \; {
 m km}$
 - Cascade down to Kolmogorov scale
 - $\eta \ll \delta_{\rm fl} \ll L_{\rm RT} \Rightarrow$ Interaction with the flame
- If intense enough, can penetrate the flame : (Distributed burning)

Aspden, Bell & Woosley, 2008,2010

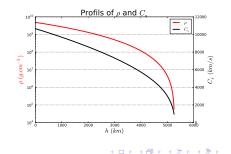
Distributed regime reached at $ho \sim 3 \ 10^7 \ g.cm^{-3}$

Correspond to the $\rho_{\textit{DDT}}$ inferred from observation. Coincidence ?

Requirement for the Zel'dovich mechanism in supernovae

- Woosley & al (2009) obtained a DDT in one dimensional turbulence simulations
- DDT actually occurred in the distributed regime
- Require high turbulence intensity (20% of sound speed)

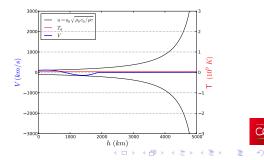
Is such a level of turbulence realistic?


 \rightarrow Maybe through intermittency (Röpke 2007)

\Rightarrow In this context we propose a novel approach ... (Charignon & Chièze 2013)

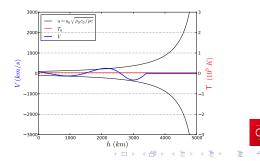
We considered another original approach :

- Energy carried : $F = \frac{1}{2}\rho u^2 C_s$
- Flux conservation : $u(h) = u_0 \sqrt{\frac{\rho_0 C_{s,0}}{\rho C_s(h)}}$



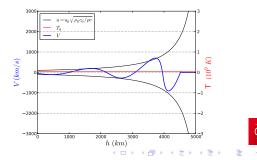
We considered another original approach :

Perturbations are produced in the flame,


- Energy carried : $F = \frac{1}{2}\rho u^2 C_s$
- Flux conservation : $u(h) = u_0 \sqrt{\frac{\rho_0 C_{s,0}}{\rho C_s(h)}}$

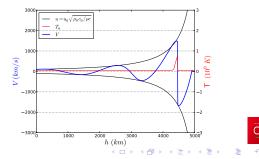
We considered another original approach :

- Perturbations are produced in the flame,
- get amplified through the density gradient,


- Energy carried : $F = \frac{1}{2}\rho u^2 C_s$
- Flux conservation : $u(h) = u_0 \sqrt{\frac{\rho_0 C_{s,0}}{\rho C_s(h)}}$

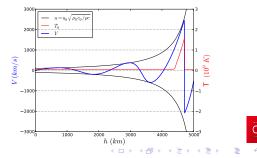
We considered another original approach :

- Perturbations are produced in the flame,
- get amplified through the density gradient,


- Energy carried : $F = \frac{1}{2}\rho u^2 C_s$
- Flux conservation : $u(h) = u_0 \sqrt{\frac{\rho_0 C_{s,0}}{\rho C_s(h)}}$

We considered another original approach :

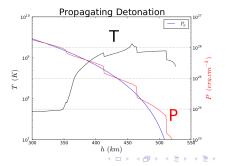
- Perturbations are produced in the flame,
- get amplified through the density gradient,
- I degenerate into shocks and heat up the medium.


- Energy carried : $F = \frac{1}{2}\rho u^2 C_s$
- Flux conservation : $u(h) = u_0 \sqrt{\frac{\rho_0 C_{s,0}}{\rho C_s(h)}}$

We considered another original approach :

- Perturbations are produced in the flame,
- get amplified through the density gradient,
- I degenerate into shocks and heat up the medium.

- Energy carried : $F = \frac{1}{2}\rho u^2 C_s$
- Flux conservation : $u(h) = u_0 \sqrt{\frac{\rho_0 C_{s,0}}{\rho C_s(h)}}$

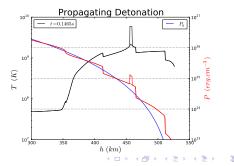

Conclusions

non local DDT

We considered another original approach :

- Perturbations are produced in the flame,
- 2 get amplified through the density gradient,
- I degenerate into shocks and heat up the medium.
- If strong enough : a detonation can be ignited (well ahead of the flame ⇒ non local DDT)

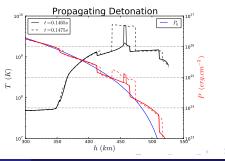
- Energy carried : $F = \frac{1}{2}\rho u^2 C_s$
- Flux conservation : $u(h) = u_0 \sqrt{\frac{\rho_0 C_{s,0}}{\rho C_s(h)}}$


Conclusions

non local DDT

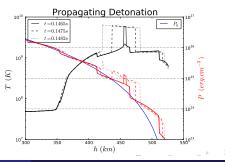
We considered another original approach :

- Perturbations are produced in the flame,
- 2 get amplified through the density gradient,
- I degenerate into shocks and heat up the medium.
- If strong enough : a detonation can be ignited (well ahead of the flame ⇒ non local DDT)


- Energy carried : $F = \frac{1}{2}\rho u^2 C_s$
- Flux conservation : $u(h) = u_0 \sqrt{\frac{\rho_0 C_{s,0}}{\rho C_s(h)}}$

We considered another original approach :

- Perturbations are produced in the flame,
- get amplified through the density gradient,
- Ø degenerate into shocks and heat up the medium.
- If strong enough : a detonation can be ignited (well ahead of the flame ⇒ non local DDT)


- Energy carried : $F = \frac{1}{2}\rho u^2 C_s$
- Flux conservation : $u(h) = u_0 \sqrt{\frac{\rho_0 C_{s,0}}{\rho C_s(h)}}$

We considered another original approach :

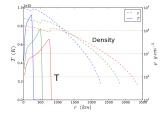
- Perturbations are produced in the flame,
- get amplified through the density gradient,
- Ø degenerate into shocks and heat up the medium.
- If strong enough : a detonation can be ignited (well ahead of the flame ⇒ non local DDT)

- Energy carried : $F = \frac{1}{2}\rho u^2 C_s$
- Flux conservation : $u(h) = u_0 \sqrt{\frac{\rho_0 C_{s,0}}{\rho C_s(h)}}$

Application to supernovae

4 A self-gravitating white dwarf : Geometrical effects

$$F = \frac{1}{2}\rho u^2 C_s r^2$$
, $u(r) = u_0 \sqrt{\frac{\rho_0 C_{s,0}}{\rho C_s(r)}} \times \frac{r_0}{r} \Rightarrow$ weaker shocks.


② Taking into account the initial deflagration phase :

- A thickened flame model to pre-expand the star...
- Allowing for studies at decreasing densities (shallower gradients) :

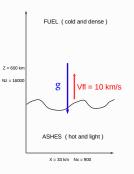
•
$$ho_{fl} \sim 10^9$$
 : $M \ge 0.02$

•
$$\rho_{fl} \sim 3 \ 10^8 : M \ge 0.03$$

•
$$ho_{fl} \sim 10^8$$
 : $M \ge 0.05$

Where these perturbations come from?

- Large scale combustion, driven by the Rayleigh-Taylor instability
- Possible magnetic reconnection after amplification in the flow
- Small scale combustion in very intense turbulence


Turbulent combustion and magnetic field

2D Non ideal MHD simulations with OHM (G. Aulanier, LESIA) :

- OHM : A 5th order finite difference MHD code
- ADR flame :

$$\frac{\partial f}{\partial t} + \vec{v}.\vec{\nabla}f = D\Delta f + R(f)$$

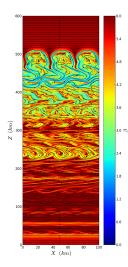
- Initial set-up :
 - Hydrostatic equilibrium
 - Slightly perturbed flame

2D RT driven combustion

æ

< ≣⇒

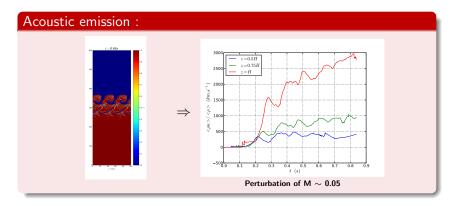
A ►


2D RT driven combustion : Reconnection

э

_ र ≣ ≯

2D RT driven combustion : Reconnection

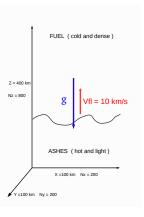


We could not check our hypothesis about magnetic reconnection :

- Amplification of B, but not enough for dynamic effects ($\beta \sim 10$)
- Finite differences scheme
 - \Rightarrow numerical diffusion
 - \Rightarrow less amplification

2D RT driven combustion

- A 2D flame can emit enough acoustic perturbations
- Perturbation are associated with large scales. In real 3D combustion, they will likely disappear...


Rayleigh-Taylor driven flame in 3D

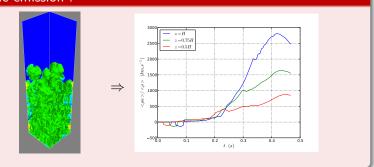
Hydro simulations with HERACLES (E. Audit, Maison de la Simulation) :

- HERACLES : A 2nd order Godunov hydro code.
- ADR flame :

$$\frac{\partial f}{\partial t} + \vec{v}.\vec{\nabla}f = D\Delta f + R(f)$$

Same initial set-up

Rayleigh-Taylor driven flame in 3D



▶ < ≣ ▶

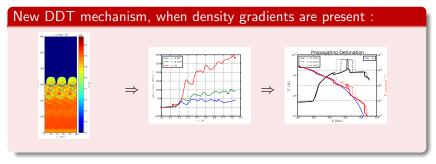
▲ 同 ▶ → ● 三

3D RT driven combustion

Acoustic emission :

- Not much acoustic emission in 3D
- The magnetic field could prevent the small scale from growing \rightarrow Moving the MHD code to 3D

P


▶ < ≣ ▶

Turbulent Flame : acoustic emission

æ

Conclusion

However...

- It requires a sufficiently noisy flame
- 2 At large scales this is not sure
- At small scales it seems to be the case for highly turbulent flames

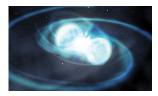

Conclusion

Take away

Thermonuclear SNe are more diverse than we previously thought

- Probably no single progenitor
- Single Degenerate scenario
 - Rates and delay time distribution
 - Accretion physics
 - + Robust and well studied ignition
 - \pm Physical mechanism for DDT

- Double Degenerate scenario
 - + Rates and delay time distribution
 - Require violent mergers
 - Detonation ignition


Conclusion

Take away

Thermonuclear SNe are more diverse than we previously thought

- Probably no single progenitor
- Single Degenerate scenario
 - Rates and delay time distribution
 - Accretion physics
 - + Robust and well studied ignition
 - $\pm\,$ Physical mechanism for DDT

- Double Degenerate scenario
 - + Rates and delay time distribution
 - Require violent mergers
 - Detonation ignition

Peculiar Supernovae : sub-luminous

There are two kinds of subluminous supernovae :

- 1991bg-like supernovae
 - Low ⁵⁶Ni mass ($\sim 0.1 M_{\odot}$)
 - ▶ ²⁸Si present in most of the ejecta

Detonation at low densities

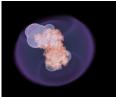
For example a violent merger of 2 WD of $0.9M_{\odot}$ (Pakmor & al 2010)

2002cx like or type lax supernovae

- ▶ Low ⁵⁶Ni mass ($\sim 0.2M_{\odot}$) ▶ Well mixed ejecta
- Very low expansion velocity

Pure deflagration leaving bound remnant

Deflagration naturally explains low kinetic energy and mixed ejecta Leave a bound remnant : C+O white dwarf with an iron core (Kromer & al 2012)



Peculiar Supernovae : super-luminous

Super- M_{ch} explosions

Such luminosities \Rightarrow $^{56}Ni > 1M_{\odot} \Rightarrow M_{WD} > M_{ch}$

- Degeneracy pressure cannot support more than M_{ch}
- Centrifugal force could stabilize well above this threshold
- Also rotation will "focus" a deflagration, leaving more fuel for the detonation

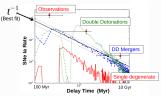
Hillebrandt&al2013

Delayed detonation of a rapidly rotating WD A 2 M_{\odot} rotating WD could produce 1.5 M_{\odot} of ⁵⁶Ni

• $\nu(t) \propto t^{-1}$

Constraint on the progenitor system

Rates an delay time distribution


•
$$\nu_{gal} = 0.003 \ SNe.yr^{-1}$$

- Common envelope
- Accretion efficiency

 \Rightarrow Results highly dependent on the group preferred model...

BPS are not yet mature, but

- DD reproduce naturally a t^{-1} DTD $(au_{GW} \propto a^{-4})$
- SD has some problems reproducing the DTD

Delay time distribution from Hillebrandt & al 2013

Unconfined DDT?

In unconfined media a DDT could be triggered through the Zeldovich's gradient mechanism

 \Rightarrow turbulence would create the appropriate conditions.

Flame and turbulence interaction :

• Gibson scale, I_G , defined by $au_{_{turb}}(I_G) = au_{_{fl}}(I_G)$

•
$$\tau_{turb} = I/\delta_v(I)$$
 : Eddy turnover time (at scale I)

•
$$au_{_{fl}} = I/S_{_{lam}}$$
 : Flame crossing time (at scale I)

• Karlovitz number :
$$Ka = \sqrt{rac{\delta_{ff}}{l_G}} = \left(rac{ au_{ff}(\delta_{ff})}{ au_{turb}(\delta_{ff})}
ight)^{3/2}$$

- ▶ if Ka < 1 : wrinkled flame regime
- ▶ if *Ka* > 1 : distributed regime

DDT in distributed flame?

Fundamentally different regime \Rightarrow broadened reaction zone