

Nitrogen fluorescence in air for observing extensive air showers

B. Keilhauer

AtmoHEAD: Atmospheric Monitoring for High-Energy Astroparticle Detectors, Saclay, 10 – 12 June 2013

Interpretation of Cosmic Rays - scaling of the absolute energy -

Fluorescence Light Production

- excitation of nitrogen in air because of energy deposit from EAS
 - direct excitation of 1N via ionization

 $N_2 + e^- \to N_2^{+\star} + e^- + e^-$

- ➤ collisions with low energy electrons with spin change for 2P $N_2 + e(\uparrow) \rightarrow N_2^{\star}(C^3\Pi_u) + e(\downarrow)$
- down cascading from higher level of 2P

 $N_2^+ + e \to N_2^\star(C^3 \Pi_u)$

spontaneous de-excitation
 → fluorescence light

Fluorescence Light Production

- excitation of nitrogen in air because of energy deposit from EAS
- spontaneous de-excitation → fluorescence light
- atmosphere dependence because of quenching

NIM A597(2008)41

7

$$Y_{\text{air}}(\lambda, p, T) = Y_{\text{air}}(337 \text{ nm}, p_0, T_0) \cdot I_{\lambda}(p_0, T_0) \cdot \frac{1 + \frac{p_0}{p'_{\text{air}}(\lambda, T_0)}}{1 + \frac{p}{p'_{\text{air}}(\lambda, T_0) \cdot \sqrt{\frac{T}{T_0}} \cdot \frac{H_{\lambda}(T_0)}{H_{\lambda}(T)}}}$$

$$Y_{\text{air}}(\lambda, p, T) = \underbrace{Y_{\text{air}}(337 \text{ nm}, p_0, T_0)}_{Y_{\text{air}}(\lambda, p_0, T_0)} \cdot \frac{1 + \frac{p_0}{p'_{\text{air}}(\lambda, T_0)}}{1 + \frac{p}{p'_{\text{air}}(\lambda, T_0)} \cdot \sqrt{\frac{T}{T_0}} \cdot \frac{H_{\lambda}(T_0)}{H_{\lambda}(T)}}$$

a) absolute yield value of a reference transmission:

fluorescence yield in photons emitted per MeV of energy deposited at given experimental conditions p_0 and T_0

no

$$Y_{\text{air}}(\lambda, p, T) = Y_{\text{air}}(337 \text{ nm}, p_0, T_0) \underbrace{I_{\lambda}(p_0, T_0)}_{I_{\lambda}(p_0, T_0)} \cdot \frac{1 + \frac{p_0}{p'_{\text{air}}(\lambda, T_0)}}{1 + \frac{p}{p'_{\text{air}}(\lambda, T_0) \cdot \sqrt{\frac{T}{T_0}} \cdot \frac{H_{\lambda}(T_0)}{H_{\lambda}(T)}}$$

a) absolute yield value of a reference transmission

b) wavelengths-dependent spectrum:

ratio of individual transitions of the spectrum between about 280 and 430 nm to the strength of the transitions at 337.1 nm

no

$$Y_{\rm air}(\lambda, p, T) = Y_{\rm air}(337 \text{ nm}, p_0, T_0) \cdot I_{\lambda}(p_0, T_0) \cdot \frac{1}{1 + \frac{p_{\rm air}'}{p_{\rm air}'(\lambda, T_0)}}$$

a) absolute yield value of a reference transmission

b) wavelengths-dependent spectrum

c) pressure dependence in dry air:

characteristic pressure of dry air at experimental conditions T₀

 p_0

1

$$Y_{\text{air}}(\lambda, p, T) = Y_{\text{air}}(337 \text{ nm}, p_0, T_0) \cdot I_{\lambda}(p_0, T_0) \cdot \frac{1 + \frac{p_0}{p'_{\text{air}}(\lambda, T_0)}}{1 + \frac{p_0}{p'_{\text{air}}(\lambda, T_0)} \cdot \sqrt{\frac{T}{T_0}} \cdot \frac{H_{\lambda}(T_0)}{H_{\lambda}(T)}}$$

a) absolute yield value of a reference transmission

b) wavelengths-dependent spectrum

c) pressure dependence in dry air

d) humidity quenching:
$$\frac{1}{p'_{\text{air}}} \rightarrow \frac{1}{p'_{\text{air}}} \left(1 - \frac{p_h}{p}\right) + \frac{1}{p'_{\text{H}_2\text{O}}} \frac{p_h}{p}$$

 $p'_{H2O}(\lambda, T_0)$ - characteristic pressure of water vapor at experimental conditions T_0

no

$$Y_{\text{air}}(\lambda, p, T) = Y_{\text{air}}(337 \text{ nm}, p_0, T_0) \cdot I_{\lambda}(p_0, T_0) \cdot \frac{1 + \frac{p_0}{p'_{\text{air}}(\lambda, T_0)}}{1 + \frac{p}{p'_{\text{air}}(\lambda, T_0) \cdot \sqrt{\frac{T}{T_0}} \cdot \frac{H_{\lambda}(T_0)}{H_{\lambda}(T)}}}$$

a) absolute yield value of a reference transmission

b) wavelengths-dependent spectrum

c) pressure dependence in dry air

d) humidity quenching

e) temperature-dependent collisional cross sections: $\frac{H_{\lambda}(T)}{H_{\lambda}(T_0)} = \left(\frac{T}{T_0}\right)^{5}$

 α_{λ} - exponent of the power law describing the T-dependent collisional cross sections for each λ

$$Y_{\text{air}}(\lambda, p, T) = Y_{\text{air}}(337 \text{ nm}, p_0, T_0) \cdot I_{\lambda}(p_0, T_0) \cdot \frac{1}{1+1}$$

a) absolute yield value of a reference transmission

b) wavelengths-dependent spectrum

c) pressure dependence in dry air

d) humidity quenching

e) temperature-dependent collisional cross sections

Non-radiative deexcitation of excited nitrogen molecules

 $p'_{\rm air}(\lambda, T_0) \cdot \sqrt{\frac{T}{T_0}}$

⇒ only 1 value for each band system

 $H_{\lambda}(T_0$

Strategy

- 1. Describing the spectrum and the dependences on atmospheric conditions:
 - b) wavelengths-dependent spectrum
 - c) pressure dependence in dry air
 - d) humidity quenching
 - e) temperature-dependent collisional cross sections
- \Rightarrow common altitude-dependent shape
- ⇒ requires adequate knowledge of atmospheric profiles
- 2. Finding the absolute scaling:
- \Rightarrow direct shift of reconstructed primary E of air showers

Suggested Reference Fluorescence Description - spectral intensities -

spectral intensities I_{λ} as measured by AIRFLY; 34 transitions between 296 and 428 nm

Suggested Reference Fluorescence Description - pressure dependence-

p'_{air} :

- one value for each band system;
- weighted averages for 2P(0,x), (1,x), (2,x), (3,x), 1N(0,x), (1,x), GH (0,x) derived from AIRFLY measurements;
- for weak transitions, as 2P(4,x), further GH, estimates from their publicatation

system	band	$\lambda \qquad I_{\lambda}/I_{337}$		$p'_{\rm air}$
		(nm)	(%)	(hPa)
N ₂ 2P	0-0	337.1	100	
	0-1	357.7	67.4 ± 2.4	15.02 . 0.00
	0-2	380.5	27.2 ± 1.0	13.83 ± 0.80
	0-3	405.0	8.07 ± 0.29	

Suggested Reference Fluorescence Description - humidity dependence-

p'_{H2O}:

- one value for each band system;
- weighted averages for 2P (0,x), (1,x), (2,x), 1N (0,x) derived from Sakaki et al.
 measurements using the **photon yield** and the **lifetime technique**
- for weak transitions of 2P(3,x) and 2P(4,x) use weighted average of p⁺_{H2O} of 2P (1,x) and (2,x) bands (4.8% of the total emission at p₀, T₀)
- for all others set to Zero (2.1% of the total emission at p_0 , T_0)

system	band	λ	I_{λ}/I_{337}	$p'_{\rm air}$	$p'_{\rm H_{2}O}$
		(nm)	(%)	(hPa)	(hPa)
N ₂ 2P	0-0	337.1	100		
	0-1	357.7	67.4 ± 2.4	15 02 1 0 00	1 46 + 0.05
	0-2	380.5	27.2 ± 1.0	13.83 ± 0.80	1.40 ± 0.03
	0-3	405.0	8.07 ± 0.29		

Systematic study from Sakaki et al. - humidity dependence-

Suggested Reference Fluorescence Description - temp.-dep. collisional cross sections -

 α -coefficient :

- one value for each band system;
- weighted average for 2P(0,x) and 1N(0,x) derived from AIRFLY measurements
- for weak transitions of 2P(3,x) and 2P(4,x) use weighted average of p⁺_{H2O} of 2P (1,x) and (2,x) bands (4.8% of the total emission at p₀, T₀)
- for all others set to Zero (2.1% of the total emission at p_0 , T_0)

system	band	λ	I_{λ}/I_{337}	$p'_{\rm air}$	$p'_{\rm H_2O}$	α
		(nm)	(%)	(hPa)	(hPa)	
N ₂ 2P	0-0	337.1	100			
	0-1	357.7	67.4 ± 2.4	15.02 . 0.00	1.46 ± 0.05	-0.35 ± 0.08
	0-2	380.5	27.2 ± 1.0	13.83 ± 0.80		
	0-3	405.0	8.07 ± 0.29			

system	band	λ	I_{λ}/I_{337}	$p'_{\rm air}$	$p'_{\rm H_{2}O}$	α	
		(nm)	(%)	(hPa)	(hPa)		
N ₂ 2P	0-0	337.1	100				
	0-1	357.7	67.4 ± 2.4	15.83 ± 0.80	1.46 ± 0.05	-0.35 ± 0.08	Parameter Set for the
	0-2	380.5	27.2 ± 1.0	15.05 ± 0.00	1.40 ± 0.05	0.55 ± 0.00	
	0-3	405.0	8.07 ± 0.29				Deference
	2.31						Reference
	1-0	315.9	39.3 ± 1.4				
	1-1	333.9	4.02 ± 0.18				Eluorosconco
	1-2	353.7	21.35 ± 0.76	12.03 ± 0.66	1.90 ± 0.18	-0.20 ± 0.08	FIUDIESCEIICE
	1-3	3/5.6	$1/.8/\pm0.63$				
	1-4	399.8	8.38 ± 0.29				Description
	1-5	427.0	7.08 ± 0.28				Description
	2.0	207 7	2 77 . 0 12				
	2-0	297.7	2.77 ± 0.13				
	2-1	315.0	11.05 ± 0.41 2.15 ± 0.12				
	2-2	350.9	2.13 ± 0.12 2.79 ± 0.11	13.12 ± 0.71	1.80 ± 0.14	-0.17 ± 0.08	
	2-3	371.1	4.97 ± 0.11	13.12 ± 0.71	1.00 ± 0.14	-0.17 ± 0.08	
	2-4	394 3	3.36 ± 0.15				
	2-6	420.0	1.75 ± 0.10				
	20	120.0	1.75 ± 0.10				
	3-1	296.2	5.16 ± 0.29				
	3-2	311.7	7.24 ± 0.27				
	3-3	328.5	3.80 ± 0.14	19.88 ± 0.86	1.84 ± 0.2	-0.19 ± 0.08	
	3-5	367.2	0.54 ± 0.04				
	3-7	414.1	0.49 ± 0.07				
	4-4	326.8	0.80 ± 0.08	10 + 5.0	184 + 0.2	0.10 ± 0.08	
	4-7	385.8	0.50 ± 0.08	19 ± 5.0	1.64 ± 0.2	-0.19 ± 0.08	
$N_{2}^{+} 1N$	0-0	391.4	28.0 ± 1.0	2.94 ± 0.33	0.47 ± 0.02	-0.76 ± 0.08	
	0-1	427.8	4.94 ± 0.19	2.74 ± 0.55	0.47 ± 0.02	-0.70 ± 0.00	
	10 T 100						
	1-1	388.5	0.83 ± 0.04	3.92 ± 0.32	0	0	
	1-2	423.6	1.04 ± 0.11		6		
N. OU	0.4	246.2	174.011				
$N_2 GH$	0-4	346.3	1.74 ± 0.11	7.00 . 0.50	0	0	
	0-5	366.1	1.13 ± 0.08	7.98 ± 0.56	0	0	
	0-6	381.1	$1.1/\pm 0.06$				
	5.2	308.0	1.44 ± 0.10	21 ± 10.0	0	0	
	5-2	508.0	1.44 ± 0.10	21 ± 10.0	0	0	
	6-2	302.0	0.41 ± 0.06				B. Kennauer et al. , proc. UHECR 2012
	6-3	317.6	0.41 ± 0.00	21 ± 10.0	0	0	10 lune 2012
	0-5	517.0	0.40 ± 0.00				10. June 2013

"academic" fluorescence yield - scaling according Nagano et al. (2004) -

2

"academic" fluorescence yield - variations of p'_{H2O} -

"academic" fluorescence yield - variations of α -

Application to air shower reconstruction - same absolute scaling, Auger reconstruction framework -

AtmoHEAD 2013

Systematics in air shower reconstruction - same absolute scaling, Auger reconstruction framework -

B. Keilhauer et al., proc. UHECR 2012

Systematics in air shower reconstruction - same absolute scaling, Auger reconstruction framework -

B. Keilhauer et al., proc. UHECR 2012

Systematics in air shower reconstruction - same absolute scaling, Auger reconstruction framework -

B. Keilhauer et al., proc. UHECR 2012

Application to air shower reconstruction - different absolute scaling -

Influence of atmospheric profiles

30

Conclusion

- a reference fluorescence description has been developed
- all known atmospheric effects are implemented
- application to air shower reconstructions are done for Auger and TA, but not used in the official experiments' reconstructions yet

